Home Arithmetic progression in a finite field with prescribed norms
Article
Licensed
Unlicensed Requires Authentication

Arithmetic progression in a finite field with prescribed norms

  • Kaustav Chatterjee , Hariom Sharma , Aastha Shukla and Shailesh Kumar Tiwari ORCID logo EMAIL logo
Published/Copyright: March 26, 2024

Abstract

Given a prime power q and a positive integer n, let 𝔽 q n represent a finite extension of degree n of the finite field 𝔽 q . In this article, we investigate the existence of m elements in arithmetic progression, where every element is primitive and at least one is normal with prescribed norms. Moreover, for n 6 , q = 3 k , m = 2 we establish that there are only 10 possible exceptions.

MSC 2020: 12E20; 11T23

Communicated by Freydoon Shahidi


Funding statement: First author is supported by the National Board for Higher Mathematics (IN), Ref No. 0203/6/2020-R&D-II/7387.

Acknowledgements

We sincerely appreciate and acknowledge the reviewers for their helpful comments and suggestions. All authors are equally contributed.

References

[1] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk and S. A. Vanstone, An implementation for a fast public-key cryptosystem, J. Cryptology 3 (1991), no. 2, 63–79. 10.1007/BF00196789Search in Google Scholar

[2] Anju and R. K. Sharma, Existence of some special primitive normal elements over finite fields, Finite Fields Appl. 46 (2017), 280–303. 10.1016/j.ffa.2017.04.004Search in Google Scholar

[3] S. D. Cohen and D. Hachenberger, Primitivity, freeness, norm and trace, Discrete Math. 214 (2000), no. 1–3, 135–144. 10.1016/S0012-365X(99)00224-1Search in Google Scholar

[4] S. D. Cohen and S. Huczynska, The strong primitive normal basis theorem, Acta Arith. 143 (2010), no. 4, 299–332. 10.4064/aa143-4-1Search in Google Scholar

[5] L. Fu and D. Wan, A class of incomplete character sums, Q. J. Math. 65 (2014), no. 4, 1195–1211. 10.1093/qmath/hau012Search in Google Scholar

[6] H. Hazarika, D. K. Basnet and G. Kapetanakis, On the existence of primitive normal elements of rational form over finite fields of even characteristic, Internat. J. Algebra Comput. 32 (2022), no. 2, 357–382. 10.1142/S0218196722500187Search in Google Scholar

[7] G. Kapetanakis, Normal bases and primitive elements over finite fields, Finite Fields Appl. 26 (2014), 123–143. 10.1016/j.ffa.2013.12.002Search in Google Scholar

[8] A. Lemos, V. G. L. Neumann and S. Ribas, On arithmetic progressions in finite fields, Des. Codes Cryptogr. 91 (2023), no. 6, 2323–2346. 10.1007/s10623-023-01201-zSearch in Google Scholar

[9] H. W. Lenstra, Jr. and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48 (1987), no. 177, 217–231. 10.1090/S0025-5718-1987-0866111-3Search in Google Scholar

[10] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl. 20, Cambridge University, Cambridge, 1997. 10.1017/CBO9780511525926Search in Google Scholar

[11] C. Paar and J. Pelzl, Public-key cryptosystems based on the discrete logarithm problem, Understanding Cryptography, Springer, Berlin (2010), 205–238. 10.1007/978-3-642-04101-3_8Search in Google Scholar

[12] M. Rani, A. K. Sharma, S. K. Tiwari and I. Gupta, On the existence of pairs of primitive normal elements over finite fields, São Paulo J. Math. Sci. 16 (2022), no. 2, 1032–1049. 10.1007/s40863-021-00224-5Search in Google Scholar

[13] A. K. Sharma, M. Rani and S. K. Tiwari, Primitive normal pairs with prescribed norm and trace, Finite Fields Appl. 78 (2022), Article ID 101976. 10.1016/j.ffa.2021.101976Search in Google Scholar

[14] A. K. Sharma, M. Rani and S. K. Tiwari, Primitive normal values of rational functions over finite fields, J. Algebra Appl. 22 (2023), no. 7, Article ID 2350152. 10.1142/S0219498823501529Search in Google Scholar

[15] H. Sharma and R. K. Sharma, Existence of primitive normal pairs with one prescribed trace over finite fields, Des. Codes Cryptogr. 89 (2021), no. 12, 2841–2855. 10.1007/s10623-021-00956-7Search in Google Scholar

[16] R. K. Sharma, A. Awasthi and A. Gupta, Existence of pair of primitive elements over finite fields of characteristic 2, J. Number Theory 193 (2018), 386–394. 10.1016/j.jnt.2018.05.016Search in Google Scholar

[17] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 8.1), (2020), https://www.sagemath.org. Search in Google Scholar

Received: 2024-01-12
Revised: 2024-02-22
Published Online: 2024-03-26
Published in Print: 2025-01-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2024-0026/html
Scroll to top button