Home Simple 𝔰𝔩 d+1-modules from Witt algebra modules
Article
Licensed
Unlicensed Requires Authentication

Simple 𝔰𝔩 d+1-modules from Witt algebra modules

  • Xiangqian Guo EMAIL logo , Xuewen Liu and Fenghua Zhang
Published/Copyright: October 27, 2023

Abstract

Let d 1 be an integer and let 𝒲 d be the Witt algebra. For any admissible 𝒲 d -module P and any 𝔤 𝔩 d -module V, one can form a 𝒲 d -module ( P , V ) , which as a vector space is P V . Since 𝒲 d has a natural subalgebra isomorphic to 𝔰 𝔩 d + 1 , we can view ( P , V ) as an 𝔰 𝔩 d + 1 -module. Taking P = Ω ( 𝝀 ) , the rank-1 U ( 𝔥 ) -free 𝒲 d -module, and V = V ( 𝐚 , b ) , the simple cuspidal module over 𝔤 𝔩 d , we get the special 𝔰 𝔩 d + 1 -modules

( 𝝀 ; 𝐚 , b ) = ( Ω ( 𝝀 ) , V ( 𝐚 , b ) )

which are U ( 𝔥 ) -free modules of infinite rank. We determine the necessary and sufficient condition for the 𝔰 𝔩 d + 1 -module ( 𝝀 ; 𝐚 , b ) to be simple, and for the non-simple case we construct their proper submodules explicitly. At last, using the above results, we deduce an explicit simplicity criterion for the generalized Verma modules induced from V ( 𝐚 , b ) and obtain a family of simple affine modules from ( 𝝀 ; 𝐚 , b ) , which can be viewed as the non-weight version of loop modules.


Communicated by Jan Frahm


Award Identifier / Grant number: 11971440

Award Identifier / Grant number: 12001493

Funding statement: X. Guo is partially supported by NSF of China (Grant 11971440). X. Liu is partially supported by NSF of China (Grant 12001493).

Acknowledgements

The authors are grateful to the referees for pointing out inaccuracies and providing good suggestions to make the paper more readable.

References

[1] Y. Billig and V. Futorny, Classification of irreducible representations of Lie algebra of vector fields on a torus, J. Reine Angew. Math. 720 (2016), 199–216. 10.1515/crelle-2014-0059Search in Google Scholar

[2] R. E. Block, The irreducible representations of the Lie algebra 𝔰 𝔩 ( 2 ) and of the Weyl algebra, Adv. in Math. 39 (1981), no. 1, 69–110. 10.1016/0001-8708(81)90058-XSearch in Google Scholar

[3] D. Britten, O. Khomenko, F. Lemire and V. Mazorchuk, Complete reducibility of torsion free C n -modules of finite degree, J. Algebra 276 (2004), no. 1, 129–142. 10.1016/j.jalgebra.2004.02.021Search in Google Scholar

[4] D. J. Britten and F. W. Lemire, A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), no. 2, 683–697. 10.1090/S0002-9947-1987-0869228-9Search in Google Scholar

[5] D. J. Britten and F. W. Lemire, Tensor product realizations of simple torsion free modules, Canad. J. Math. 53 (2001), no. 2, 225–243. 10.4153/CJM-2001-010-xSearch in Google Scholar

[6] V. Chari and A. Pressley, A new family of irreducible, integrable modules for affine Lie algebras, Math. Ann. 277 (1987), no. 3, 543–562. 10.1007/BF01458331Search in Google Scholar

[7] Y. A. Drozd, V. M. Futorny and S. A. Ovsienko, Harish-Chandra subalgebras and Gel’fand–Zetlin modules, Math. Phys. Sci. 424 (1994), 72–89. 10.1007/978-94-017-1556-0_5Search in Google Scholar

[8] A. Dzhumadil’daev, Virasoro type Lie algebras and deformations, Z. Phys. C 72 (1996), no. 3, 509–517. 10.1007/s002880050272Search in Google Scholar

[9] S. Eswara Rao, Classification of loop modules with finite-dimensional weight spaces, Math. Ann. 305 (1996), no. 4, 651–663. 10.1007/BF01444242Search in Google Scholar

[10] V. Futorny, D. Grantcharov and L. E. Ramirez, Irreducible generic Gelfand–Tsetlin modules of 𝔤 𝔩 ( n ) , SIGMA Symmetry Integrability Geom. Methods Appl. 11 (2015), Paper 018. 10.3842/SIGMA.2015.018Search in Google Scholar

[11] V. Futorny, D. Grantcharov and L. E. Ramirez, Singular Gelfand–Tsetlin modules of 𝔤 𝔩 ( n ) , Adv. Math. 290 (2016), 453–482. 10.1016/j.aim.2015.12.001Search in Google Scholar

[12] V. Futorny, D. Grantcharov and L. E. Ramirez, New singular Gelfand–Tsetlin 𝔤 𝔩 ( n ) -modules of index 2, Comm. Math. Phys. 355 (2017), no. 3, 1209–1241. 10.1007/s00220-017-2967-xSearch in Google Scholar

[13] V. Futorny, D. Grantcharov and L. E. Ramirez, Classification of simple Gelfand–Tsetlin modules of 𝔰 𝔩 ( 3 ) , Bull. Math. Sci. 11 (2021), no. 3, Paper No. 2130001. 10.1142/S1664360721300012Search in Google Scholar

[14] V. Futorny, G. Liu, R. Lu and K. Zhao, New families of irreducible weight modules over 𝔰 𝔩 3 , J. Algebra 501 (2018), 458–472. 10.1016/j.jalgebra.2017.12.029Search in Google Scholar

[15] V. Futorny and S. Ovsienko, Fibers of characters in Gelfand–Tsetlin categories, Trans. Amer. Math. Soc. 366 (2014), no. 8, 4173–4208. 10.1090/S0002-9947-2014-05938-2Search in Google Scholar

[16] D. Grantcharov and V. Serganova, Cuspidal representations of 𝔰 𝔩 ( n + 1 ) , Adv. Math. 224 (2010), no. 4, 1517–1547. 10.1016/j.aim.2009.12.024Search in Google Scholar

[17] X. Guo, G. Liu, R. Lu and K. Zhao, Simple Witt modules that are finitely generated over the Cartan subalgebra, Moscow Math. J. 20 (2020), no. 1, 43–65. 10.17323/1609-4514-2020-20-1-43-65Search in Google Scholar

[18] X. Guo and X. Liu, Irreducible weight modules over 𝔰 𝔩 3 with infinite-dimensional weight spaces, preprint. Search in Google Scholar

[19] X. Guo and K. Zhao, Irreducible weight modules over Witt algebras, Proc. Amer. Math. Soc. 139 (2011), no. 7, 2367–2373. 10.1090/S0002-9939-2010-10679-2Search in Google Scholar

[20] T. A. Larsson, Conformal fields: A class of representations of Vect ( N ) , Internat. J. Modern Phys. A 7 (1992), no. 26, 6493–6508. 10.1142/S0217751X92002970Search in Google Scholar

[21] G. Liu, R. Lu and K. Zhao, Irreducible Witt modules from Weyl modules and 𝔤 𝔩 n -modules, J. Algebra 511 (2018), 164–181. 10.1016/j.jalgebra.2018.06.021Search in Google Scholar

[22] G. Liu and K. Zhao, New irreducible weight modules over Witt algebras with infinite-dimensional weight spaces, Bull. Lond. Math. Soc. 47 (2015), no. 5, 789–795. 10.1112/blms/bdv048Search in Google Scholar

[23] O. Mathieu, Classification of irreducible weight modules, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 2, 537–592. 10.5802/aif.1765Search in Google Scholar

[24] S. Ovsienko, Finiteness statements for Gelfand–Zetlin modules, Third International Algebraic Conference in the Ukraine Natsīonal. Akad. Nauk Ukraïni, Kiev (2002), 323–338. Search in Google Scholar

[25] S. E. Rao, Irreducible representations of the Lie-algebra of the diffeomorphisms of a d-dimensional torus, J. Algebra 182 (1996), no. 2, 401–421. 10.1006/jabr.1996.0177Search in Google Scholar

[26] G. Y. Shen, Graded modules of graded Lie algebras of Cartan type. I. Mixed products of modules, Sci. Sinica Ser. A 29 (1986), no. 6, 570–581. Search in Google Scholar

Received: 2023-04-29
Revised: 2023-08-03
Published Online: 2023-10-27
Published in Print: 2024-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0159/html?lang=en
Scroll to top button