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1 Introduction

Let S be a connected, orientable, finite-type surface. The curve complex is the simplicial complex C(S) whose
k-simplices are sets of to k + 1 distinct isotopy classes of essential simple curves on S that are pairwise disjoint.

The extended mapping class group, denoted by Mod±(S), acts naturally on the set of curves up to isotopy
on S. This action preserves disjointness of curves, and therefore extends to an action on the complex C(S). Via
this action, the curve complex works as a combinatorial model to study properties of Mod±(S). For instance,
a celebrated theorem of Ivanov in [12] asserts that, for sufficiently complex surfaces, the group Mod±(S) is iso-
morphic to the group of simplicial automorphisms of the curve complex, a result commonly known as simplicial
rigidity. In turn, this result is a key ingredient in establishing the isomorphism Aut(Mod±(S)) ≅ Mod±(S).

The curve complex, and its applications to the mapping class group, has motivated the study of similar
complexes associated to surfaces. For example, simplicial rigidity has been established for the arc complex [11],
the non-separating curve complex [8], the separating curve complex [3, 13], the Hatcher–Thurston complex [10],
and the pants graph [14] (see [16] for a survey on complexes associated to surfaces).

Another notion of rigidity which has been of recent interest is that of finite rigidity: the simplicial com-
plex C(S) is said to be finitely rigid if there exists a finite subcomplex X such that any locally injective simplicial
map

ϕ : X → C(S)

is induced by a uniquemapping class, that is, there exists a unique h ∈ Mod±(S) such that the simplicial action
h : C(S) → C(S) satisfies h|X = ϕ. Such X is called a finite rigid set of C(S) with trivial pointwise stabilizer.

The finite rigidity of the curve complex was proven by Aramayona and Leininger in [1], thus answering
a question by Lars Louder. Furthermore, they constructed in [2] an exhaustion of C(S) by finite rigid sets with
trivial pointwise stabilizers, thus recovering Ivanov’s result [12] on the simplicial rigidity of C(S).

Following the result of Aramayona and Leininger, finite rigidity has been proven for other complexes:
Shinkle proved it for the arc complex [17] and the flip graph [18], Hernández, Leininger andMaungchang proved
a slightly different notion for the pants graph [5, 15], and Huang and Tshishiku proved a weaker notion for the
separating curve complex [6].

*Corresponding author: Rodrigo De Pool, Instituto de Ciencias Matemáticas (ICMAT), Madrid, Spain, e-mail: rodrigo.depool@icmat.es

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Inter-
national License.



996  R. De Pool, Finite rigid sets of the non-separating curve complex

The main goal of this article is to prove the finite rigidity of the non-separating curve complex N(S), which
is the subcomplex of C(S) spanned by the non-separating curves. To prove the finite rigidity ofN(S), one would
like to restrict the finite rigid set of C(S) in [1] toN(S); however, it is not clear why this restriction would yield a
finite rigid set inN(S) as their proof uses separating curves in a fundamentalway. Below,we construct a different
subcomplex ofN(S) and prove its rigidity.

Our main result is compiled in the next theorem.

Theorem 1.1. Let S be a connected, orientable, finite-type surface of genus g ≥ 3. There exists a finite simplicial
complex X ⊂ N(S) such that any locally injective simplicial map

ϕ : X → N(S)

is induced by a unique h ∈ Mod±(S).

Our second result produces an exhaustion of the non-separating curve complex by finite rigid sets.

Theorem 1.2. Let S be an orientable finite-type surface of genus g ≥ 3. There exist subcomplexes

X1 ⊂ X2 ⊂ ⋅ ⋅ ⋅ ⊂ N(S)

such that
∞
⋃
i=1

Xi = N(S)

and each Xi is a finite rigid set with trivial pointwise stabilizer.

From Theorem 1.2 we can recover the simplicial rigidity ofN(S) (see [9, Theorem 1.1]).

Corollary 1.3. Let S be a connected, orientable, finite-type surface of genus g ≥ 3. Any locally injective simplicial
map ϕ : N(S) → N(S) is induced by a unique h ∈ Mod±(S). In particular, this yields an isomorphism between
Mod±(S) and the group of simplicial automorphisms ofN(S).

Plan of the paper. In Section 2, we introduce some basic definitions that will be required. In Section 3, we
introduce the notion of finite rigid sets. Sections 4 and 5 deal with the proofs of Theorems 1.1 and 1.2 for closed
surfaces. Lastly, Sections 6 and 7 present the proofs of Theorems 1.1 and 1.2 for punctured surfaces.

2 Preliminaries

Let S be a connected, orientable surface without boundary. We will further assume that S has finite type, i.e.,
π1(S) is finitely generated. As such, S is homeomorphic to Sg,n , the result of removing n points from a genus
g surface. We refer to the removed points as punctures. If S has no punctures, we will say that S is closed.
Otherwise, we will refer to S as a punctured surface.

Before fervently jumping into the proofs, we warn the reader that the classification of surfaces, the change
of coordinates principle and the Alexander method will be frequently used in proofs, sometimes without men-
tion. For these and other fundamental results on mapping class groups, we refer the reader to [4].

2.1 Curves

By a curve c in S we will mean the isotopy class of an unoriented simple closed curve that does not bound
a disk or a punctured disk. Throughout the article, we will make no distinction between curves and their
representatives. We will say that c is non-separating if any representative γ of c has connected complement
in S.

The intersection number i(a, b) between two curves a and b is the minimum intersection number between
representatives of a and b. If i(a, b) = 0, we will say that the curves a and b are disjoint. Given two representa-
tives α ∈ a and β ∈ b, we say that they are inminimal position if i(a, b) = |α ∩ β|. A fact that will be often used is
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that for any set of curves we may pick a single representative for each curve such that the representatives are
pairwise in minimal position (see [4, Chapter 1.2]).

Given a set of curves {c1 , . . . , ck}, consider representatives γi ∈ ci pairwise in minimal position. We will
denote a regular neighborhood of⋃ γi by N(⋃ γi). The set of curves in the boundary of N(⋃ γi)will be denoted
by

∂(c1 , . . . , ck).

We emphasize that implicit in the definition of b ∈ ∂(c1 , . . . , ck) is that b is an isotopy class of a simple closed
curve which does not bound a disk or a punctured disk.

2.2 Non-separating curve complex

The non-separating curve complex N(S) is the simplicial complex whose k-simplices are sets of k + 1 isotopy
classes of pairwise disjoint curves.

Note that we can endow N(S) with a metric by declaring each k-simplex to have the standard euclidean
metric and considering the resulting path metric onN(S).

2.2.1 Pants decompositions

The dimension ofN(Sg,n) is 3g − 3 + n, and the vertex set of a top-dimensional simplex inN(Sg,n) is called a non-
separating pants decomposition of Sg,n . If P = {c1 , . . . , ck} is a pants decomposition of S, then S \ ⋃ ci is a union
of pairs of pants (i.e., a union of subsurfaces homeomorphic to S0,3).

Let P = {c1 , . . . , ck} be a pants decomposition of the surface S. Two curves ci , cj ∈ P are said to be adjacent
rel to P if there exists a curve ck ∈ P such that ci , cj , ck bound a pair of pants in S; see Figure 1a for an example.

We record the following observation for future use.

Remark 2.1. Let P be a non-separating pants decomposition of Sg,n , where g ≥ 3.
∙ If n ≤ 1, then every curve in P is adjacent rel to P to at least three other curves.
∙ If n > 1, then every curve is adjacent to at least two other curves.

Consider A ⊂ P, where P is a pants decomposition of S. We say that a set of curves Ã substitutes A in P if

(Ã ∪ P) \ A

is a pants decomposition. In words, we say that Ã substitutes A in P if both sets have no curves in common and
we can replace the curves in A by the curves in Ã and still get a pants decomposition.

3 Finite rigid sets

For a simplicial subcomplex X ⊂ N(S), a map ϕ : X → N(S) is said to be a locally injective simplicial map if ϕ is
simplicial and injective on the star of each vertex. A first elementary observation is the following lemma.

Lemma 3.1. Let ϕ : X → N(S) be a locally injective simplicial map. If P ⊂ X is a pants decomposition, then ϕ(P)
is a pants decomposition.

Proof. Take a vertex p ∈ P. Since ϕ is injective in the star of p and P is a simplex, ϕ is injective on P. Thus, ϕ(P) is
a maximal-dimensional simplex, i.e., ϕ(P) is a pants decomposition.

As mentioned in Section 1, the main goal of this article is to construct a finite subcomplex X ⊂ N(S) with the
following properties.
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Definition 3.2 (Finite rigid set). A finite rigid set X of N(S) is a finite subcomplex such that any locally injective
simplicial map ϕ : X → N(S) is induced by a mapping class, i.e., there exists h ∈ Mod±(S) with h|X = ϕ.

In addition, if h is unique, we say that X has trivial pointwise stabilizer.

Observe that a subcomplex X ⊂ N(S) has trivial pointwise stabilizer if and only if the inclusion X 󳨅→ N(S) is
induced uniquely by the identity 1 ∈ Mod±(S), hence the name.

Remark 3.3. By the change of coordinates principle (see [4, Chapter 1.3]), every vertex {v} ⊂ N(S) is a finite rigid
set. However, the stabilizer of {v} is not trivial.

Remark 3.4. If X is a finite rigid set and X ⊂ Y , then Y may not be a finite rigid set
For example, consider two disjoint curves v1 , v2 such that S \ ⋃ vi is connected, and two disjoint curves

v󸀠1 , v
󸀠
2 such that S \ ⋃ v

󸀠
i is disconnected. Now, take X = {v1}, Y = {v1 , v2} and the locally injective simplicial map

ϕ(vi) = v󸀠i . Clearly, ϕ is not induced by a mapping class, and so Y is not a finite rigid set of N(S). Note that X is
a finite rigid set ofN(S) by the remark above.

Following Aramayona and Leininger in [1], we will say that a subcomplex X ⊂ N(S) detects the intersection of
two curves a, b ∈ X if every locally injective simplicial map ϕ : X → N(S) satisfies

i(a, b) ̸= 0 if and only if i(ϕ(a), ϕ(b)) ̸= 0.

4 Finite rigid sets for closed surfaces

In this section, we construct finite rigid sets for closed surfaces and prove their rigidity. This will establish
Theorem 1.1 for closed surfaces.

4.1 Constructing the finite rigid set

Let S be a closed surface of genus g ≥ 3. We will start by defining the curves in the finite rigid set. The reader
should keep Figures 1 (a)–(e) in mind throughout the section.

Fix a set {p1 , c1 , . . . , pg , cg , pg+1} of non-separating curves such that i(ci , pi) = i(ci , pi+1) = 1 and the rest of
the curves are pairwise disjoint (see Figures 1 (a) and 1 (b)). Such a set of curves is unique up to homeomorphism.
Let cg+1 be a curve such that i(p1 , cg+1) = i(pg+1 , cg+1) = 1 and it is disjoint from every other curve in the set
above. We define

C = {c1 , . . . , cg+1}.

Notice that S \ ⋃ pi has two connected components (S \ ⋃ pi)+ and (S \ ⋃ pi)−; we will call (S \ ⋃ pi)+ the
top component and (S \ ⋃ pi)− the bottom component. In the same fashion, S \ ⋃ ci has two connected compo-
nents (S \ ⋃ ci)+ and (S \ ⋃ ci)−; wewill call (S \ ⋃ ci)+ the front component and (S \ ⋃ ci)− the back component.

For each k = 2, . . . , g − 1, the set ∂(p1 , c1 , . . . , pk , ck) consists of two curves: one of them in (S \ ⋃ pi)+ and
the other one in (S \ ⋃ pi)−. We will call p+k the curve of ∂(p1 , c1 , . . . , pk , ck) contained in (S \ ⋃ pi)

+, and we
will call p−k the curve of ∂(p1 , c1 , . . . , pk , ck) in (S \ ⋃ pi)

−. We set

P = {p1 . . . , pg+1} ∪ {p+2 , p
−
2 , . . . , p

+
g−1 , p
−
g−1}.

Notice that P is a pants decomposition (see Figure 1 (a)).
For each k = 2, . . . , g − 1, the set ∂(pk−1 , ck , pk) has two curves, one in (S \ ⋃ pi)+ and the other one in

(S \ ⋃ pi)−. We will denote by uk the curve in (S \ ⋃ pi)+ and by dk the curve in (S \ ⋃ pi)− (see Figure 1 (c)). We
set

U = {u2 , . . . , ug−1}

and
D = {d2 , . . . , dg−1}.
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(a) Pants decomposition P of surface Sg . As an
example, note that p1 and p2 are adjacent rel to P,
while p1 and p3 are not adjacent rel to P.

(b) Circular curves C.

(c) Up and down curves uk , dk . (d) Left and right curves lk , rk .

(e) Non-symmetrical down curve nd. (f) Non-symmetrical left and right curves nl, nr.

Figure 1: Curves in FR for a closed surface.

Given k ∈ {2, . . . , g − 1}, the set ∂(pk , ck , p+k ) contains two curves, and only one of them is also a curve in P.
We will denote by lk the curve in ∂(pk , ck , p+k ) not already in P (see Figure 1 (d)). We set

L = {l2 , . . . , lg−2}.

Analogously, let R = {r2 , . . . , rg−2} be the set of curves where rk is the unique curve in ∂(pk+1+ , ck+1 , pk+2) that
is not in P (see Figure 1 (d)).

The set ∂(p2 , c2 , . . . , pg−1 , cg−1 , pg) has two curves, one curve in each component of S \ ⋃ pi . Let b be the
curve contained in the bottom component (S \ ⋃ pi)−. Then the set ∂(c1 , b,cg) has exactly two curves, one curve
contained in (S \ ⋃ ci)+ and the other in (S \ ⋃ ci)−. Denote by nd the curve in (S \ ⋃ ci)+ (see Figure 1 (e)).

Lastly, consider the torus T1 that contains p1 and is bounded by the curves p+2 , p
−
2 . Let nl be the unique

curve contained in T1 \ (nd ∪ c1) distinct from c1 and p+2 . In the same way, p+g−1 , p
−
g−1 bound a torus Tg such

that pg ⊂ Tg , let nr be the unique curve in Tg \ (nd ∪ cg) distinct from cg and p+g−1 (see Figure 1 (f)). We set

N = {nl, nr, nd}.

We set FR to be the subcomplex ofN(S) spanned by the vertices in

P ∪ C ∪ U ∪ D ∪ L ∪ R ∪ N.

Remark 4.1. Note that the subcomplex FR has diameter two. Therefore, any locally injective simplicial map
ϕ : FR → N(S) is injective.

4.2 Proving the rigidity of FR

The first step is to check that the locally injective simplicial map ϕ : FR → N(S) preserves the non-adjacency rel
to P. To do so, we require the following technical lemma.

Lemma 4.2. Let S be a finite-type surface, let FR ⊂ N(S) be a subcomplex, let P ⊂ FR be a pants decomposition,
and let a, b ∈ P be two curves. Suppose that there exist subsets A, B ⊂ P and Ã, B̃ ⊂ FR satisfying the following
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Figure 2: There can be no arc b̃ ∩ Q that intersects b and does not intersect ã ∪ a.

assertions:
∙ a ∈ A and b ∈ B.
∙ Ã substitutes A in P.
∙ B̃ substitutes B in P.
∙ Ã ∪ B̃ substitutes A ∪ B in P.
∙ A ∩ B = 0.
Then a, b are not adjacent rel to P.

Proof. We will proceed by contradiction. Suppose that the curves a, b are adjacent in a pair of pants Q bound
by a, b, c. Since A ∩ B = 0, either c ̸∈ A or c ̸∈ B. Without loss of generality, suppose c ̸∈ A.

If Ã is a substitution of A and A ∩ B = 0, then there is a curve ã ∈ Ã such that i(ã, a) ̸= 0, i(ã, b) = 0 and
i(ã, c) = 0. Now, note that, since B̃ and Ã ∪ B̃ are substitutions, there exists b̃ ∈ B̃ with i(b̃, b) ̸= 0, i(b̃, a) = 0
and i(b̃, ã) = 0. However, it is impossible to have arcs ã ∩ Q and b̃ ∩ Q satisfying the intersections above (see
Figure 2).

Now, we prove that ϕ preserves non-adjacency rel to P.

Lemma 4.3. Let S be a closed surface of genus g ≥ 3 and let ϕ : FR → N(S) be a locally injective simplicial map.
If a, b ∈ P are not adjacent rel to P, then ϕ(a), ϕ(b) are not adjacent rel to ϕ(P).

Proof. Assume that for two curves a, b ∈ Pwehave subsets A, B ⊂ P and Ã, B̃ ⊂ FR as in Lemma4.2. Under these
conditions, the lemma ensures that a and b are not adjacent rel to P. Moreover, these properties are carried to
the image, that is, the curves ϕ(a), ϕ(b) ∈ ϕ(P) satisfy the conditions of Lemma 4.2 for the sets ϕ(A), ϕ(B) ⊂ ϕ(P)
and ϕ(Ã), ϕ(B̃). As a consequence, we deduce that ϕ(a) and ϕ(b) are not adjacent rel to ϕ(P).

By means of the method above, we are only left to find appropriate subsets A, Ã, B, B̃ for any non-adjacent
curves a, b ∈ P. We will find such subsets for certain a, b ∈ P, as the rest of the cases are similar.

If a = pk and b = pk+1 for k ∈ {3, . . . , g − 3}, we can consider

A = {p−k−1 , pk}, Ã = {lk−1 , dk−1},
B = {pk+1 , p−k+1}, B̃ = {rk , dk+1}.

It is straightforward to check that these subsets satisfy the conditions of Lemma 4.2, and so ϕ(a), ϕ(b) are not
adjacent rel to ϕ(P).

If a = p1, consider A = {p1 , p2} and Ã = {nl, c1}.
∙ If b ∈ {pg , pg+1}, take B = {pg , pg+1} and B̃ = {nr, cg}.
∙ If b ∈ {pk , p−k } for k ∈ {3, . . . , g − 1}, consider B = {pk , p

−
k } and B̃ = {ck , rk−1}.

∙ If b = p+k for k ∈ {3, . . . , g − 1}, consider B = {p
+
k } and B̃ = {uk}.

This concludes the proof.

Using the previous result, we prove that ϕ preserves adjacency rel to P.

Lemma 4.4. Let S be a closed surface of genus g ≥ 3 and let ϕ : FR → N(S) be a locally injective simplicial map.
If a, b ∈ P are adjacent rel to P, then ϕ(a), ϕ(b) are adjacent rel to ϕ(P).
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Proof. Take ϕ(p1) ∈ ϕ(P). From the non-adjacency rel to ϕ(P), it follows that ϕ(p1) has at most three adjacent
curves. On the other hand, Remark 2.1 implies that ϕ(p1) has at least three adjacent curves. Thus, we conclude
that ϕ(p1) has exactly three adjacent curves, namely ϕ(p2), ϕ(p+2 ), ϕ(p

−
2 ). The same argument applies to ϕ(p2),

so it is adjacent rel to ϕ(P) to exactly three curves, namely ϕ(p1), ϕ(p+2 ), ϕ(p
−
2 ).

We now determine the curves adjacent to ϕ(p+2 ) and ϕ(p
−
2 ). First, note that the adjacency rel to ϕ(P) of ϕ(p1)

and ϕ(p2) implies that ϕ(p+2 ) and ϕ(p−2 ) bound a subsurface homeomorphic to S1,2. Since both curves ϕ(p+2 )
and ϕ(p−2 ) are non-separating, it follows that both have four adjacent curves rel to ϕ(P). Finally, considering the
non-adjacency rel to ϕ(P), it follows that the curves adjacent to ϕ(p+2 ) are

{ϕ(p1), ϕ(p2), ϕ(p3), ϕ(p+3 )}

and the curves adjacent to ϕ(p−2 ) are

{ϕ(p1), ϕ(p2), ϕ(p3), ϕ(p−3 )}.

In the same style, we can argue inductively to determine the adjacency of each curve in ϕ(P).

As a corollary, we obtain that ϕ preserves the topological type of P.

Corollary 4.5. Let S be a finite-type surface and let ϕ : FR → N(S) be a map that preserves adjacency rel to P.
There exists h ∈ Mod±(S) such that h|P = ϕ|P .

Proof. We construct a homeomorphism h inductively by gluing abstract pairs of pants.
Consider the pairs of pants Q1 , . . . , Qk ⊂ S bound by curves in P and denote by Q󸀠1 , . . . , Q

󸀠
k ⊂ S the pairs of

pants satisfying ∂Q󸀠i = ϕ(∂Qi). Any two pairs of pants are homeomorphic, and thus we can consider homeo-
morphisms hi(Qi) = Q󸀠i . Since ϕ preserves the adjacency rel to P, we can ensure that these homeomorphisms
agree on the boundary curves. Then, by gluing the maps hi , we obtain a homeomorphism h of the surface such
that h|P = ϕ|P .

The next three lemmas prove that FR detects intersection among certain curves. Recall that FR detects the
intersection between a and b if for any locally injective simplicial map ϕ : FR → N(S) we have that

i(a, b) ̸= 0 if and only if i(ϕ(a), ϕ(b)) ̸= 0.

Lemma 4.6. The subcomplex FR ⊂ N(S) detects the following intersections for every k = 2, . . . , g − 1:
(i) uk with p+k .
(ii) dk with p−k .

Proof. Let ϕ : FR → N(S) be a locally injective simplicial map. We need to check that i(ϕ(uk), ϕ(p+k )) ̸= 0 and
i(ϕ(dk), ϕ(p−k )) ̸= 0.

Seeking a contradiction to case (i), we assume i(ϕ(uk), ϕ(p+k )) = 0. Since ϕ is locally injective, it sends dis-
joint curves to disjoint curves. Thus, ϕ(uk) is disjoint from every curve in the pants decomposition ϕ(P), which
implies ϕ(uk) ∈ ϕ(P). However, this contradicts the injectivity of ϕ (see Remark 4.1).

To prove case (ii), the same argument works.

Remark 4.7. Notice that from the previous lemma we actually know that FR detects the intersection of uk with
every curve in P. Indeed, uk is disjoint from any curve in P \ {p+k } and ϕ preserves disjointness. In the sameway,
FR detects the intersection of dk with every curve in P.

Lemma 4.8. The subcomplex FR ⊂ N(S) detects the intersection of ck with p−k and p
+
k for every k ∈ {2, . . . , g − 1}.

Proof. Let ϕ : FR → N(S) be a locally injective simplicial map. By Corollary 4.5, there exists h ∈ Mod±(S) such
that h ∘ ϕ fixes the pants decomposition P. Observe that detecting intersection is equivalent for ϕ and for h ∘ ϕ,
since we have

i(ϕ(a), ϕ(b)) ̸= 0 if and only if i(h ∘ ϕ(a), h ∘ ϕ(b)) ̸= 0.

So, we can rename h ∘ ϕ to ϕ, and prove the statement assuming that ϕ fixes every p ∈ P.
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Figure 3: Torus Tk .

Figure 4: Pair of pants bounded by p+k−1, pk and p
+
k .

With the previous simplification, the proof boils down to check that ϕ(ck) intersects p+k and p−k . In this
direction, consider the torus Tk bounded by the curves p−k−1, p

+
k−1, p
−
k+1 and p

+
k+1 (see Figure 3). Further, define

the top of the torus by T+k = Tk ∩ (S \ ⋃ pi)
+, and the bottom of the torus by T−k = Tk ∩ (S \ ⋃ pi)

−.
By Lemma4.6, ϕ(uk) is a curve in T+k intersecting p

+
k , and ϕ(dk) is a curve in T

−
k intersecting p

−
k (see Figure 3).

Notice that ϕ(ck) is a curve in Tk distinct and disjoint from ϕ(dk) and ϕ(uk). It follows that ϕ(ck) intersects both
T+k and T

−
k .

To finish, note that ϕ(ck) ∩ T+k is disjoint from ϕ(uk), so ϕ(ck)must intersect p+k . Indeed, an arc disjoint from
a curve in a sphere with four boundary components must intersect every other curve in the sphere. Similarly,
ϕ(ck) ∩ T−k is disjoint from ϕ(dk), so ϕ(ck)must intersect p−k .

Lemma 4.9. The subcomplex FR ⊂ N(S) detects the intersection of ck ∈ C with every curve in P.

Proof. Let ϕ : FR → N(S) be a locally injective simplicial map. As in the previous proof, we may assume that ϕ
fixes every curve in P.

Now, we start by proving the cases 2 ≤ k ≤ g − 1. Note that, with the simplification above and Lemma 4.8,
we only need to check that ϕ(ck) intersects pk and pk+1.

To prove that ϕ(ck) intersects pk , consider the pair of pants Q bounded by the curves p+k−1, pk and p+k .
By Lemma 4.8, there are disjoint arcs Q ∩ ϕ(ck−1) and Q ∩ ϕ(ck) with at least one endpoint in p+k−1 and p+k ,
respectively (see Figure 4). Using that ϕ(ck−1), p+k are disjoint and ϕ(ck), p

+
k−1 are also disjoint, we conclude that

any such arc configuration requires ϕ(ck) to intersect pk . The same argument yields that ϕ(ck) intersects pk+1.
It is left to prove the cases k ∈ {1, g, g + 1}. First, we prove that ϕ(c1) intersects p2. Consider the torus T1

bounded by the curves p+2 and p
−
2 , and denote by T

+
1 the pair of pants bounded by p1 , p2 and p

+
2 (see Figure 5).

Noting that ϕ(c1) is a curve in T1 distinct from p1, p2, p−2 and p
+
2 , it follows that ϕ(c1) intersects T

+
1 . Thus, we have

disjoint arcs ϕ(c1) ∩ T+1 and ϕ(c2) ∩ T+1 , the latter one having an endpoint in p+2 (see Figure 5). Since ϕ(c1), p
+
2

are disjoint and ϕ(c2), p1 are disjoint, we conclude that ϕ(c1)must intersect p2. Again, the same argument with
slight changes yields that ϕ(cg) intersects pg .
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Figure 5: Pair of pants T+1 .

Figure 6: Torus T1.

Before proving that ϕ(c1) intersects p1 and ϕ(cg) intersects pg+1, we need to check that ϕ(cg+1) intersects
both p1, pg and every p+k , p

−
k . Surely, ϕ(cg+1) intersects at least one of these curves, since otherwise ϕ(cg+1)would

be disjoint and distinct from every curve in the pants decomposition ϕ(P). Suppose that ϕ(cg+1) intersects p+k ,
and consider the pair of pants Q bound by p+k−1, pk and p

+
k . Using the intersections above, we deduce that there

are disjoint arcs ϕ(ck−1) ∩ Q and ϕ(cg+1) ∩ Q, so that ϕ(cg+1)must also intersect p+k−1. Repeating the argument
iteratively, we can detect the intersection of ϕ(cg+1) with every curve in P.

To finish the proof, we check that ϕ(c1) intersects p1. Consider the disjoint arcs a2 = ϕ(c2) ∩ T+1 and
ag+1 = ϕ(cg+1) ∩ T+1 , where a2 has an endpoint in p+2 and ag+1 has an endpoint in p1. These two arcs exist
by the above intersections. Moreover, a2 is disjoint from p1, and ag+1 is disjoint from p2. Recall that ϕ(c1)
intersects T+1 and, since it is disjoint from both a1 , a2, it follows that ϕ(c1) intersects p1. A similar argument
yields that ϕ(cg) intersects pg+1.

So far we have seen that the map ϕ : FR → N(S) can be taken to agree with a homeomorphism on P ⊂ FR , and
that it detects some intersections. In the next lemma, we extend it so that ϕ agrees with a homeomorphism on
FR \ N .

Lemma 4.10. Let S be a closed surface of genus g ≥ 3 and let ϕ : FR → N(S) be a locally injective simplicial map.
There exists h ∈ Mod±(S) such that h|FR\N = ϕ|FR\N .

Proof. By Corollary 4.5, there exists h ∈ Mod±(S) such that h ∘ ϕ fixes every p ∈ P; we rename h ∘ ϕ to ϕ. Recall
that by Remark 4.1 we know that ϕ is injective.

First, we find a homeomorphism that agreeswith ϕ on c1 ∈ C. Observe that ϕ(c1) is contained in the torus T1
bounded by p+2 and p

−
2 (see Figure 6). Moreover, Lemma 4.9 implies that there exist disjoint arcs a ∈ ϕ(c2) ∩ T1

and ã ∈ ϕ(cg+1) ∩ T1. Notice that both arcs have endpoints in p+2 and p
−
2 , as otherwise ϕ(c1) would not inter-

sect p1, contradicting Lemma 4.9. It follows that ϕ(c1) is the curve contained in the annulus T1 \ (a ∪ ã). Even
more, there exists a twist h󸀠 ∈ Mod±(S) along p1 and p2 such that h󸀠 ∘ ϕ(c1) = c1. We rename h󸀠 ∘ ϕ to ϕ.

The same argument withminor changes yield homeomorphisms that agree with ϕ on every ck ∈ C \ {cg+1}.
Thus, we may assume that ϕ fixes every curve in P ∪ C \ {cg+1} ⊂ FR .
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To finish the proof, we are going to check that ϕ is fixing cg+1 and every curve in U ∪ D ∪ L ∪ R:
∙ Notice that ϕ(cg+1) is contained in the torus with boundary T󸀠 = S \ ⋃

g
i=2 pi . In fact, ϕ(cg+1) is the unique

curve contained in the annulus S󸀠 \ ⋃gk=1 ck , i.e., ϕ(cg+1) = cg+1.
∙ To prove that ϕ fixes U , consider uk ∈ U . Observe that ϕ(uk) is contained in the sphere S+k bounded by the

curves p+k−1, pk , pk+1 and p
+
k+1. Moreover, ϕ(uk)must be the only curve in the annulus S

+
k \ (ck ∪ cg+1), i.e.,

ϕ(uk) = uk .
∙ To prove that ϕ fixes D, consider dk ∈ U . Notice that ϕ(dk) is contained in the sphere S−k bounded by

the curves p−k−1, pk , pk+1 and p−k+1. Now, ϕ(dk) must be the only curve in the annulus S−k \ {ck , cg+1}, i.e.,
ϕ(dk) = dk .

∙ To prove that ϕ fixes L, consider the curve lk ∈ L. The image ϕ(lk) is a curve in the subsurface Sl bounded
by p−k−1, pk , p

+
k , p
−
k+1, and p

+
k+1. Since ϕ(lk) is disjoint from curves in C, we know that ϕ(lk) is contained in

the pair of pants Q = Sl \ (ck ∪ ck+1). Note that Q has only one boundary component not already in P, and
so we conclude ϕ(lk) = lk . Naturally, a similar argument yields that ϕ fixes rk ∈ R.
Summarizing, we have proven that there exists a mapping class f ∈ Mod±(S) such that f ∘ ϕ fixes FR \ N . In

other words,
f −1|FR\N = ϕ|FR\N .

This concludes the proof.

To finish the proof of Theorem 1.1, we need to check that we can take ϕ to agree with a homeomorphism
on N ⊂ FR , and that such homeomorphism is unique. Before doing so, we require one more definition: The
back-front (orientation reversing) involution is the unique non-trivial mapping class ι ∈ Mod±(S) fixing every
curve c ∈ P ∪ C.

Proof of Theorem 1.1 for closed surfaces. Let ϕ : FR → N(S)be a locally injective simplicialmap. By Lemma4.10,
there exists h ∈ Mod±(S) such that h ∘ ϕ fixes FR \ N; we rename h ∘ ϕ to ϕ.

Consider nd ∈ N and notice that ϕ(nd) is a curve in the genus two surface T bounded by the curves
p+2 , p3 , p4 . . . , pg−1 , p

+
g−1. Since ϕ(nd) is disjoint from C, we have that ϕ(nd) is a curve in Q = T \ ⋃c∈C c. Note

that Q is the disjoint union of two pairs of pants and it has only two boundary components not contained
in C, namely nd and ι(nd), where ι is the back-front involution. It follows that ϕ(nd) ∈ {nd, ι(nd)}. Thus, by
precomposing by ι if necessary, we may assume that ϕ fixes FR \ {nl, nr}.

We continue by proving that ϕ fixes nl. Note that ϕ(nl) is a curve in the torus T1 bounded by p−2 and p
+
2 .

Even more, ϕ(nl) is contained in Q = T1 \ (c1 ∪ nd), which is the union of an annulus and a pair of pants. Note
that only one curve in Q is not a curve in P ∪ C, and so we deduce ϕ(nl) = nl. An analogous argument leads to
the conclusion ϕ(nr) = nr.

So far, we have found a composition of mapping classes f ∈ Mod±(S) such that f ∘ ϕ is the identity in FR .
Therefore, ϕ is induced by the mapping class f −1.

To prove the uniqueness of the inducing mapping class, suppose that f, ̃f ∈ Mod±(S) both induce the same
ϕ : FR → N(S). Since g = ̃f ∘ f −1 fixes the curves (P ∪ C) ⊂ FR , the Alexander method implies that g is either the
identity or the back-front orientation reversing involution. However, since g also fixes the curve nd, we have
that g is the identity and f = ̃f .

5 Finite rigid exhaustion for closed surfaces

In this section, we prove that, for any closed surface S of genus g ≥ 3, there exist subcomplexes

F1 ⊂ F2 ⊂ ⋅ ⋅ ⋅ ⊂ N(S)

such that each Fi is a finite rigid set with trivial pointwise stabilizer and
∞
⋃
i=1

Fi = N(S).
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The strategy to produce an exhaustion is to first extend FR to a larger finite rigid set F1 with desirable
properties. Then the set F1will work as base case for an induction that enlarges Fi into Fi+1. Thismethod heavily
resembles the proof given by Aramayona and Leininger in [2] to produce an exhaustion of the curve complex.

The plan of the proof is summarized in the following lemma (cf. [2, Lemma 3.13]).

Lemma 5.1. Let S be a finite-type surface, let F1 ⊂ N(S) be a finite rigid set with trivial pointwise stabilizer, and
let {h1 , . . . , hk} be a set of generators ofMod±(S). If F1 ∪ hj(F1) is a finite rigid set with trivial pointwise stabilizer
for every j, then the sets

Fi+1 = Fi ∪
k
⋃
j=1
(hj(Fi) ∪ h−1j (Fi))

satisfy that F1 ⊂ F2 ⊂ ⋅ ⋅ ⋅ ⊂ N(S),⋃ Fi = N(S) and every Fi is finite rigid with trivial pointwise stabilizer.

Proof. First, notice that if F1 ∪ hj(F1) is a finite rigid set with trivial stabilizer, then the same holds for
F1 ∪ h−1j (F1).

We will now check that F2 is finite rigid with trivial stabilizer: Take ϕ : F2 → N(S) and observe that by
hypothesis there exists fj ∈ Mod±(S) such that

ϕ|F1∪hj(F1) = fj|F1∪hj(F1)

for every j ∈ {1, . . . , k}. Since F1 has trivial pointwise stabilizer and

fj|F1 = ϕ|F1 = fk|F1 ,

we deduce fj = fk for all j, k. Clearly, the same argument holds when considering F1 ∪ h−1j (F1). It follows that
ϕ = f for f ∈ Mod±(S) and F2 is a finite rigid set with trivial pointwise stabilizer.

For Fi+1, we proceed by induction. Consider ϕ : Fi+1 → N(S). By induction, we have ϕ|Fi = f|Fi ∈ Mod
±(S)

and
ϕ|hj(Fi) = fj|hj(Fi)

for some fj ∈ Mod±(S). Observe that F1 ⊂ Fi ∩ hj(Fi) and F1 is trivially stabilized. Thus f = fj for every j, and so
Fi+1 is finite rigid with trivial stabilizer.

To produce the finite rigid exhaustion of N(S), we are going to use the previous lemma. In this direction, we
enlarge FR into a set F1 and provide a set of generators for Mod±(S).

5.1 Enlarging the finite rigid set

Let ι ∈ Mod±(S) be the back-front orientation reversing involution. We define the set of curves A := A1 ∪ A2,
where

A1 :=
g−1
⋃
k=1

∂(ck , pk+1 , ck+1).

Note that the set ∂(ck , pk+1 , ck+1) has two curves, one curve in the front component and one curve in the back
component of the surface. We will call ck,k+1 the curve in the front component, so

∂(ck , pk+1 , ck+1) = {ck,k+1 , ι(ck,k+1)}.

We proceed to define A2. Consider the torus T bounded by p−k−1, p
−
k+1 and uk . Now, there is only one curve

in the pair of pants T \ (ck−1 ∪ ck ∪ ι(ck−1, k)) that is not already in P ∪ C; we denote this curve by nlk (see Fig-
ure 7 (a)). Analogously, let nrk be the unique curve in T \ (ck ∪ ck+1 ∪ ι(ck, k+1)) that is not already a curve in
P ∪ C (see Figure 7 (b)). We set

A2 = {nlk , nrk | k ∈ {2, . . . , g − 1}}.

Lemma 5.2. Let S be a closed surface of genus g ≥ 3. The subcomplex spanned by FR ∪ A ⊂ N(S) is a finite rigid
set with trivial pointwise stabilizer.
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(a) Curves in A1. (b) Curves in A2.

Figure 7: Curves in A for a closed surface.

Remark 5.3. In the argument below, we sometimes abuse notation using p+1 = p
−
1 = p1 and p

+
g = p−g = pg+1.

Proof. Take a locally injective simplicial map ϕ : FR ∪ A → N(S). By Theorem 1.1 in the closed case, there is an
h ∈ Mod±(S) such that h ∘ ϕ fixes FR; we rename h ∘ ϕ to ϕ. Furthermore, the subcomplex FR ∪ A has diameter
two, so ϕ is injective.

First, we check that ϕ fixes A1. Note that ϕ(ι(c1,2)) is contained in the torus T bounded by the curves p2, p+3
and p−3 . Since ϕ(ι(c1,2)) is disjoint from the curves in C, we have that ϕ(ι(c1,2)) is contained in the pair of pants
Q = T \ (c1 ∪ c2 ∪ c3). Notice that only one curve in Q is non-separating and disjoint from nd, namely ι(c1,2),
and so ϕ(ι(c1,2)) = ι(c1,2). Now, ϕ(c1,2) is the unique non-separating curve in Q distinct from ι(c1,2), that is,
ϕ(c1,2) = c1,2.

By an obvious modification of the above argument, we check that

ϕ(ck,k+1) = ck,k+1 and ϕ(ι(ck,k+1)) = ι(ck,k+1)

for k ≤ g − 1.
It is left to check that A2 is also fixed by ϕ. Take nrk ∈ A2; we have that ϕ(nrk) is contained in the torus T

bounded by the curves p−k−1, p
−
k+1 and uk . Also, ϕ(nrk) is disjoint from ck , ck+1 and ι(ck,k+1), and thus ϕ(nrk) is

a curve in the pair of pants
Q = T \ (ck ∪ ck+1 ∪ ι(ck,k+1)).

Notice that the only curve in Q distinct from curves in P ∪ C is the curve nrk , and thus we have ϕ(nrk) = nrk .
For nlk ∈ A2, the argument is analogous.

We have proven that if ϕ fixes FR , then it fixes FR ∪ A. The statement follows immediately.

We define F1 := FR ∪ A and proceed to prove that it satisfies the hypotheses of Lemma 5.1.

5.2 Constructing the exhaustion for closed surfaces

Let ι be the back-front orientation reversing involution and let δα be the right Dehn twist along the curve α. The
set of Dehn twists

H := {δp1 , δp2 , . . . , δpg+1 , δp−2 } ∪ {δc1 , . . . , δck }

are known as the Humphries generators, which are known to generate the group of orientation preserving
mapping classes Mod(S) (see [7]). Hence, H ∪ {ι} generates Mod±(S).

Lemma 5.4. Let h ∈ H ∪ {ι}. The set F1 ∪ h(F1) is a finite rigid set with trivial pointwise stabilizer.

Proof. First, we prove it for h = δp1 . Let ϕ : F1 ∪ h(F1) → N(S) be any locally injective simplicial map.
Since F1 is a finite rigid set, wemay assume that ϕ fixes F1 by precomposingwith amapping class.Moreover,

since h(F1) is also finite rigid, there exists a mapping class f ∈ Mod±(S) such that

ϕ|h(F1) = f|h(F1) .

Proving that F1 ∪ h(F1) is a finite rigid set with trivial pointwise stabilizer boils down to proving that
f = 1 ∈ Mod±(S).

Recall that p1 is the associated curve to the Dehn twist h = δp1 . Now, let S󸀠 = S \ p1 and consider the
well-known cutting homomorphism (see [4, Proposition 3.20])

1→ ⟨δp1⟩ → Mod(S, p1) → Mod(S󸀠),
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where Mod(S󸀠) ⊂ Mod±(S󸀠) is the subgroup of orientation preserving classes, and Mod(S, p1) ⊂ Mod±(S) is the
subgroup of orientation preserving classes that fix p1. Notice that f fixes all curves in F1 ∩ h(F1)which fill S󸀠. In
particular, f is orientation preserving and fixes p1. Furthermore, by means of the Alexander method, the image
of f by the cutting homomorphism is trivial and the above sequence implies that f = δkp1 for some k ∈ ℤ. It is
left to see that k = 0.

Note that i(nl, δp1 (cg+1)) = 0. As ϕ is locally injective, we know that

i(ϕ(nl), ϕ(δp1 (cg+1))) = 0,

which is equivalent to
i(nl, δk+1p1 (cg+1)) = 0, (5.1)

since ϕ|F1 = id and ϕ|h(F1) = δkp1 .
It can be directly checked that equation (5.1) is satisfied if and only if k = 0, thus proving the statement of

the lemma for h = δp1 .
The rest of the cases h ∈ H are proved in exactly the same way, but changing the curves in equation (5.1).

We list all cases for completeness:
∙ If h = δpg+1 , change (nl, cg+1) in (5.1) by (cg+1 , nr).
∙ If h = δpi for i ∈ {2, . . . , g − 2}, change (nl, cg+1) by (nli , ci,i+1).
∙ If h = δpg−1 , change (nl, cg+1) by (cg−2,g−1 , nrg−1).
∙ If h = δp−2 , change (nl, cg+1) by (cg+1 , nr2).
∙ If h = δck for k ∈ {1, . . . , g − 1}, change (nl, cg+1) by (pk+1 , nrk+1).
∙ If h = δcg , change (nl, cg+1) by (nlg−1 , pg).

To finish the proof,we need to consider the case h = ι. In this case, F1 ∩ h(F1) contains the trivially pointwise
stabilized set P ∪ C ∪ A1, so it follows immediately that f = 1 ∈ Mod±(S).

Proof of Theorem 1.2 for closed surfaces. Let S be a closed surface of genus g ≥ 3. Consider F1 := FR ∪ A and the
set of generators H ∪ {ι} of the extended mapping class group Mod±(S). By Lemma 5.1, we have the desired
exhaustion, where the hypotheses have been checked in Lemmas 5.2 and 5.4.

6 Finite rigid sets for punctured surfaces

Let S = Sg,n with n ≥ 1 and g ≥ 3. In this section, we construct a finite rigid set F󸀠R ⊂ N(S)with trivial pointwise
stabilizer. As we will see, the argument to prove the rigidity of F󸀠R is morally the same as the one in Section 4,
although more involved as it requires to manipulate more curves.

6.1 Constructing the finite rigid set

We start by naming some curves in the punctured surface S.
Consider the closed surface Sg and the pair of pants Q bounded by p1, p2, p+2 . Note that Q \ d2 has two

connected components; denote by A the connected component intersected by cg+1. Now, A \ (c1 ∪ cg+1) is the
union of two disks, one in the front component and one in the back component of Sg ; denote by B the disk in the
back component (Sg \ ⋃ ci)−. By removing n points from the interior of B, we obtain the punctured surface S.
Via this procedure, we get natural analogues in S of the sets of curves P, C, U , D, L, R, and N .

After this, we define the top of the surface, i.e., (S \ ⋃ pi)+, the bottom (S \ ⋃ pi)−, the front (S \ ⋃ ci)+, and
the back (S \ ⋃ ci)−, in the same way we did in Section 4.

The set P is no longer a pants decomposition in S; to fix this we add some curves. First, rename p+2 to p
+
2,n and

consider the pair of pantsQ bounded by p1, p2 and p+2,n . Observe thatQ \ c1 is an annuluswith n punctures. Now,
fix a set of non-separating curves {p+2,0 , p

+
2,1 , . . . , p

+
2,n−1 , p

+
2,n} in Q \ c1 satisfying that p

+
2,i and p

+
2,i+1 bound a once

punctured annulus. Adding the curves {p+2,0 , p
+
2,1 , . . . , p

+
2,n−1 , p

+
2,n} to the set P makes it a pants decomposition
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(a) Pants decomposition P for Sg,2. (b) Curves in C for Sg,3.

(c) Up and down curves u2 , d2 for Sg,3. (d) Curves pl1 , pl2 , pl3 for Sg,3.

(e) Curves pr1 , pr2 , pr3 for Sg,3. (f) Curves c1,2 and c2,g for Sg,3.

Figure 8: Curves in F󸀠R . Punctures are marked as small crosses on the top of the surface.

(see Figure 8 (a)). We will say that the puncture contained in the annulus bounded by p+2,k−1 and p
+
2,k is the k-th

puncture.
In this setting, we also define the back-front (orientation reversing) involution as the unique non-trivial

element ι ∈ Mod±(S) that fixes every curve P ∪ C.
Let pl1 be the unique curve in the punctured pair of pants bounded by p1, p2, p+2,1 that is disjoint from c2

and is not a curve already in P. Similarly, let plk be the unique curve in the punctured pair of pants bounded
by plk−1, p2, p+2,k that is disjoint from c2 and is not already a curve in P (see Figure 8 (d)). We set

Pl := {pl1 , . . . , pln}.

Let prn be the unique curve in the punctured pair of pants bounded by p+2,n−1, p3, p
+
3 that is disjoint from c2

and is not already a curve in P. Inductively, define prk to be the unique curve in the punctured pair of pants
bounded by p+2,k−1, p3, p

+
3 that is disjoint from c2 and not already in P (see Figure 8 (e)). We set

Pr := {pr1 , . . . , prn}.

Lastly, we define the set
C∗ = ∂(c1 , p2 , c2) ∪ ∂(c2 , p2 , . . . , pg , cg).

Note that the set ∂(c1 , p2 , c2) has two curves, one curve in the front component which we will denote by c1, g ,
and one curve in the back component which we will denote by ι(c1,g). Also, the set ∂(c2 , p2 , . . . , pg , cg) has two
curves; we denote by c2, g the curve in the front component and by ι(c2, g) the curve in the back component (see
Figure 8 (f)).

The finite rigid set F󸀠R is the maximal subcomplex ofN(S) spanned by the vertices

P ∪ C ∪ U ∪ D ∪ L ∪ R ∪ N ∪ Pl ∪ Pr ∪ C∗ .

Remark 6.1. Note that the subcomplex F󸀠R has diameter two. Therefore, any locally injective simplicial map
ϕ : F󸀠R → N(S) is injective.

The following lemmas prove the finite rigidity of F󸀠R .

Lemma 6.2. Let S be a punctured surface of genus g ≥ 3. For any locally injective simplicial map ϕ : F󸀠R → N(S),
there exists h ∈ Mod±(S) such that h|P = ϕ|P .
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Proof. First, notice that we can extend Lemma 4.3 to the case of punctured surfaces, and the proof works with
minor changes.

Lemma 4.4 can also be extended to punctured surfaces. The proof for once punctured surfaces is similar to
the closed case. Here we prove it for surfaces with n > 1 punctures.

Using Remark 2.1, it is straightforward to deduce that the curve ϕ(p+2,i) is adjacent rel to P to ϕ(p
−
2,i−1) and

ϕ(p2,i+1) for i ∈ {1, . . . , n − 1}. As a consequence of these adjacencies, we deduce that ϕ(p+2,0) and ϕ(p
+
2,n) bound

a subsurface with two boundary components and n punctures. It follows that ϕ(p+2,0) is adjacent rel to P to at
least three curves. On the other hand, the non-adjacency rel to P of ϕ(p+2,0) implies that it is adjacent to at most
three curves. Thus, ϕ(p+2,0) is adjacent to exactly three curves, namely ϕ(p

+
2,1), ϕ(p1) and ϕ(p2). The rest of the

adjacencies follow just as in the proof of Lemma 4.4.
Once we know that ϕ preserves adjacency rel to P, we can use Corollary 4.5 to produce a mapping class

h ∈ Mod±(S) with h|P = ϕ|P .

The next lemma proves that we may choose h ∈ Mod±(S) to coincide with ϕ on all curves of F󸀠R .

Lemma 6.3. Let S be a punctured surface of genus g ≥ 3. For any locally injective simplicial map ϕ : F󸀠R → N(S),
there exists h ∈ Mod±(S) such that ϕ = h|F󸀠R .

Proof. The idea is to progressively detect intersections between curves and, by composing with Dehn twists
along P, construct a mapping class that coincides with ϕ on F󸀠R .

First, by Lemma 6.2, there exists h ∈ Mod±(S) such that h ∘ ϕ fixes P pointwise; rename h ∘ ϕ to ϕ.
Next, using the same arguments as in Lemmas 4.6, 4.8 and 4.9, we detect the following intersections:

∙ Intersections of curves in U ∪ D with curves in P.
∙ Intersections of curves in Pl with curves in P.
∙ Intersections of curves in Pr with curves in P.
∙ ck with curves in P for k ∈ {2, . . . , g − 1}.
Notice that we can now use the proof of Lemma 4.10 to produce a mapping class that coincides with ϕ on the
curves of U , D and {c2 , . . . , cg−1}. Thus, we may assume that these curves are fixed by ϕ.

It follows that ϕ fixes the curves in Pl. To see this, note that ϕ(pl1) is a curve contained in the punctured
sphere S󸀠 bounded by p1, u2, p+3 and that it is disjoint from p+2,i for i > 0. Thus, ϕ(pl1) is contained in the once
punctured annulus which is a component of S󸀠 \ p+2,1. As there is only one curve in that annulus that is not
already in P, it follows that ϕ(pl1) = pl1. In the same way, ϕ(plk) is contained in the punctured sphere S󸀠k
bounded by plk−1, u2, p+3 , and it is disjoint from p+2,i for i > k − 1. Thus, ϕ(plk) is contained in the once punctured
annulus which is a component of S󸀠k \ p

+
2,k , and since there is only one curve in that annulus which is not in P,

we conclude that ϕ(plk) = plk . Naturally, an analogous argument works to prove that ϕ fixes every curve in Pr.
Now, note that ϕ detects the following intersections:

∙ Curves in C∗ with curves in P.
∙ Curves in {c1 , cg} with curves in P.
For instance, consider c1,2 ∈ C∗ and p ∈ P disjoint from c1,2. If ϕ(c1,2)was disjoint from p, then ϕ(c1,2)would have
to intersect either the curve ϕ(c1), ϕ(c2) or ϕ(ι(c2,g)), leading to a contradiction. Thus, ϕ(c1,2) and p intersect.

Using the above intersections and fixed curves, we now focus on finding a homeomorphism that agrees
with ϕ on the curves in C∗.

Observe that ϕ(c1) (resp. ϕ(cg)) is contained in the subsurface S󸀠 = S1,2 bound by the curves p−2 , p
+
2 (resp.

by p−g−1 , p
+
g−1). Additionally, since ϕ(c1) is disjoint from the arcs a1 = S󸀠 ∩ ϕ(c1,2) and a2 = S󸀠 ∩ ϕ(c2) (resp.

S󸀠 ∩ ϕ(c2,g) and S󸀠 ∩ ϕ(cg−1)), we have that ϕ(c1) (resp. ϕ(cg)) is contained in the annulus S󸀠 \ (a1 ∪ a2). It
follows that ϕ(c1) (resp. ϕ(cg)) is the unique curve in the annulus. We may again consider a mapping class
h ∈ Mod±(S) that is a composition of twists along curves in P such that h ∘ ϕ(c) = c for c ∈ {c1 , cg}; we rename
h ∘ ϕ to ϕ (the same argument with more details is given in Lemma 4.10).

For c1,2 ∈ C∗, note that ϕ(c1,2) is contained in a subsurface S󸀠 = S2,2 bound by pr1 and p−3 (or p4 if g = 3).
Evenmore, ϕ(c1,2) is contained in the pair of pants S󸀠 \ (c1 ∪ c2 ∪ c3 ∪ p2), and therefore it is one of the boundary
components. One of the boundaries is a separating curve, so either ϕ(c1,2) = c1,2 or ϕ(c1,2) = ι(c1,2). These two
alternatives are related by the involution ι. Thus, by precomposing with ι, we can assume that ϕ fixes c1,2 .
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Figure 9: Curves a1 , a3 in A3 for Sg,3.

It is now easy (but lengthy) to check that the curves in

{ι(c1,2), ι(c2,g), nl, nr, nd} ∪ L ∪ R

are fixed by ϕ. Thus, we have found a mapping class h ∈ Mod±(S) such that h ∘ ϕ fixes F󸀠R , and the statement
follows.

We have essentially completed the proof of Theorem 1.1.

Proof of Theorem 1.1 for surfaces with punctures. Let ϕ : F󸀠R → N(S) be a locally injective simplicial map. Then
Lemma 6.3 provides the mapping class inducing ϕ.

The uniqueness of the mapping class follows as in the closed case.

7 Finite rigid exhaustion for punctured surface

Let S be a punctured surface of genus g ≥ 3. In this section, we construct a sequence F󸀠1 ⊂ F
󸀠
2 ⊂ ⋅ ⋅ ⋅ ⊂ N(S) such

that each F󸀠i is a finite rigid set with trivial pointwise stabilizer and

∞
⋃
i=1

F󸀠i = N(S).

The strategy to construct the exhaustion is the same as in the closed case (see Section 5). First, we are going
to enlarge the finite rigid set F󸀠R to F

󸀠
1, and then use Lemma 5.1 to construct the exhaustion.

7.1 Enlarging the finite rigid set

First, we enlarge F󸀠R .
Consider the set of curves A1 and A2 in the closed surface. Via the same procedure described in Section 6.1,

we remove n points from the interior of the closed surface Sg , and so we obtain the punctured surface S. This
produces natural analogues of the set of curves A1 and A2 in the surface S.

We define the set of curves A3 := {a1 , . . . , an}, where ak is the unique curve in the torus bounded by plk−1,
prk+1 and d2, which is disjoint from c1, c2, c3 and ι(c1,2) (see Figure 9).

We set A󸀠 := A1 ∪ A2 ∪ A3.

Lemma 7.1. The set F󸀠R ∪ A󸀠 is finite rigid with trivial pointwise stabilizer.

Proof. Let ϕ : F󸀠R ∪ A󸀠 → N(S) be a locally injective simplicial map. By precomposing with a mapping class, we
may assume that ϕ fixes F󸀠R pointwise.

First, we prove that A1 is also fixed by ϕ. The curves c1,2 , ι(c1,2) ∈ A1 are already in C∗ ⊂ F󸀠R , so they are
fixed by ϕ. For c2,3 ∈ A1, notice that ϕ(c2,3) is contained in the sphere S󸀠 bounded by p1, pln , c2, c3, p+4 , and p

−
4 .

Moreover, ϕ(c2,3) is contained in the pair of pants S󸀠 \ c1 ∪ p3 ∪ ι(c2,g). But there is only one curve in that pair
of pants that is non-separating, i.e., ϕ(c2,3) = c2,3. Slight modifications yield that ϕ(ι(c2,3)) = ι(c2,3). For the rest
of A1, one can proceed as in the closed case (see the proof of Lemma 5.2).

To prove that A2 is fixed, we can just repeat the argument as in the closed case (see Lemma 5.2).
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To finish the proof, we must show that ak ∈ A3 is fixed. To check this, note that ϕ(ak) is contained in the
torus T bounded by plk−1, prk+1 and d2. Note that ϕ(ak) is the unique curve in

T \ (c1 ∪ c2 ∪ c3 ∪ ι(c1,2))

that is not c2, that is, ϕ(ak) = ak . Thus, A󸀠 is fixed and F󸀠R ∪ A󸀠 is a finite rigid set with trivial pointwise stabilizer.

We define F󸀠1 := F
󸀠
R ∪ A󸀠.

7.2 Constructing the exhaustion for punctured surfaces

The goal of this section is to construct an exhaustion ofN(S) by finite rigid sets with trivial pointwise stabilizers.
In this direction, we will consider a set of generators of Mod±(S) such that the subcomplex F󸀠1 satisfies the
hypotheses of Lemma 5.1. We are going to assume S = Sg,n with n > 0 punctures.

Let ι be the back-front orientation reversing involution. Consider the usual Humphries generators

H󸀠 = {δp1 , . . . , δpg−1 , δp−2 } ∪ {δp+2,i | 0 ≤ i ≤ n} ∪ {δc1 , . . . , δck }

and the half twists
{h(k,k+1) | 1 ≤ k ≤ n − 1},

where h(k,k+1) is the half twist that permutes the puncture k with the puncture k + 1. It is well known that

H󸀠 ∪ {ι} ∪ {h(k,k+1) | 1 ≤ k ≤ n − 1}

generates Mod±(S) (see [4, Chapter 4.4.4]).

Lemma 7.2. For every
h ∈ H󸀠 ∪ {ι} ∪ {h(k,k+1) | 1 ≤ k ≤ n − 1},

the set F󸀠1 ∪ h(F
󸀠
1) is finite rigid with trivial pointwise stabilizer.

Proof. The proof is analogous to the closed case (see Lemma 5.4) and works directly for h = ι, h = δpj , h = δcj
and h = δp2−. We consider here the rest of the cases.

Recall that, given h = δx and ϕ : F󸀠1 ∪ h(F
󸀠
1) → N(S), we can assume that ϕ fixes F󸀠1 and

ϕ|h(F1) = δkx |h(F1) .

Thus, the proof is a matter of checking that k = 0.
For

h = δp+2,j with j ≤ n − 1,

we can consider the curves lj , aj and plug them into equation (5.1). It follows that this is satisfied if and only if
k = 0. For h = δp+2,n , one uses the curves rn , an in the same equation.

The last case to prove is h = h(k−1,k), which can be proved using the curves ak , rk in equation (5.1).

We now complete the proof of Theorem 1.2.

Proof of Theorem 1.2 for punctured surfaces. Lemmas 7.1 and 7.2 ensure that F󸀠1 satisfies the hypothesis of
Lemma 5.1, which in turn produces the desired exhaustion.
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