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1 Introduction

Let S be a connected, orientable, finite-type surface. The curve complex is the simplicial complex C(S) whose
k-simplices are sets of to k + 1 distinct isotopy classes of essential simple curves on S that are pairwise disjoint.
The extended mapping class group, denoted by Mod*(S), acts naturally on the set of curves up to isotopy
on S. This action preserves disjointness of curves, and therefore extends to an action on the complex C(S). Via
this action, the curve complex works as a combinatorial model to study properties of Mod*(S). For instance,
a celebrated theorem of Ivanov in [12] asserts that, for sufficiently complex surfaces, the group Mod*(S) is iso-
morphic to the group of simplicial automorphisms of the curve complex, a result commonly known as simplicial
rigidity. In turn, this result is a key ingredient in establishing the isomorphism Aut(Mod*(S)) = Mod*(S).

The curve complex, and its applications to the mapping class group, has motivated the study of similar
complexes associated to surfaces. For example, simplicial rigidity has been established for the arc complex [11],
the non-separating curve complex [8], the separating curve complex [3, 13], the Hatcher—-Thurston complex [10],
and the pants graph [14] (see [16] for a survey on complexes associated to surfaces).

Another notion of rigidity which has been of recent interest is that of finite rigidity: the simplicial com-
plex C(S) is said to be finitely rigid if there exists a finite subcomplex X such that any locally injective simplicial
map

¢ X — COS)

is induced by a unique mapping class, that is, there exists a unique h € Mod*(S) such that the simplicial action
h: C(S) — C(S) satisfies h|x = ¢. Such X is called a finite rigid set of C(S) with trivial pointwise stabilizer.

The finite rigidity of the curve complex was proven by Aramayona and Leininger in [1], thus answering
a question by Lars Louder. Furthermore, they constructed in [2] an exhaustion of C(S) by finite rigid sets with
trivial pointwise stabilizers, thus recovering Ivanov’s result [12] on the simplicial rigidity of C(S).

Following the result of Aramayona and Leininger, finite rigidity has been proven for other complexes:
Shinkle proved it for the arc complex [17] and the flip graph [18], Herndndez, Leininger and Maungchang proved
a slightly different notion for the pants graph [5, 15], and Huang and Tshishiku proved a weaker notion for the
separating curve complex [6].
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The main goal of this article is to prove the finite rigidity of the non-separating curve complex N(S), which
is the subcomplex of C(S) spanned by the non-separating curves. To prove the finite rigidity of N(S), one would
like to restrict the finite rigid set of C(S) in [1] to N(S); however; it is not clear why this restriction would yield a
finite rigid setin N(S) as their proof uses separating curves in a fundamental way. Below, we construct a different
subcomplex of N(S) and prove its rigidity.

Our main result is compiled in the next theorem.

Theorem 1.1. Let S be a connected, orientable, finite-type surface of genus g > 3. There exists a finite simplicial
complex X ¢ N(S) such that any locally injective simplicial map

o : X - N(S)
is induced by a unique h € Mod*(S).
Our second result produces an exhaustion of the non-separating curve complex by finite rigid sets.
Theorem 1.2. Let S be an orientable finite-type surface of genus g > 3. There exist subcomplexes
X1 cXyc---cN(S)

such that
(&9
Jxi=N)
i=1

and each X; is a finite rigid set with trivial pointwise stabilizer.

From Theorem 1.2 we can recover the simplicial rigidity of N(S) (see [9, Theorem 1.1]).

Corollary 1.3. Let S be a connected, orientable, finite-type surface of genus g > 3. Any locally injective simplicial
map ¢ : N(S) — N(S) is induced by a unique h € Mod*(S). In particular; this yields an isomorphism between
Mod*(S) and the group of simplicial automorphisms of N(S).

Plan of the paper. In Section 2, we introduce some basic definitions that will be required. In Section 3, we
introduce the notion of finite rigid sets. Sections 4 and 5 deal with the proofs of Theorems 1.1 and 1.2 for closed
surfaces. Lastly, Sections 6 and 7 present the proofs of Theorems 1.1 and 1.2 for punctured surfaces.

2 Preliminaries

Let S be a connected, orientable surface without houndary. We will further assume that S has finite type, i.e.,
71(S) is finitely generated. As such, S is homeomorphic to Sg n, the result of removing n points from a genus
g surface. We refer to the removed points as punctures. If S has no punctures, we will say that S is closed.
Otherwise, we will refer to S as a punctured surface.

Before fervently jumping into the proofs, we warn the reader that the classification of surfaces, the change
of coordinates principle and the Alexander method will be frequently used in proofs, sometimes without men-
tion. For these and other fundamental results on mapping class groups, we refer the reader to [4].

2.1 Curves

By a curve c¢ in S we will mean the isotopy class of an unoriented simple closed curve that does not bound
a disk or a punctured disk. Throughout the article, we will make no distinction between curves and their
representatives. We will say that c is non-separating if any representative y of ¢ has connected complement
inS.

The intersection number i(a, b) between two curves a and b is the minimum intersection number between
representatives of a and b. If i(a, b) = 0, we will say that the curves a and b are disjoint. Given two representa-
tives a € aand 8 € b, we say that they are in minimal position if i(a, b) = |a n p|. A fact that will be often used is
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that for any set of curves we may pick a single representative for each curve such that the representatives are
pairwise in minimal position (see [4, Chapter 1.2]).

Given a set of curves {cy, ..., Cx}, consider representatives y; € ¢; pairwise in minimal position. We will
denote a regular neighborhood of | y; by N({ yi). The set of curves in the boundary of N(| J y;) will be denoted
by

a(ct,...,Ck).

We emphasize that implicit in the definition of b € d(cy, . .., cx) is that b is an isotopy class of a simple closed
curve which does not bound a disk or a punctured disk.

2.2 Non-separating curve complex

The non-separating curve complex N(S) is the simplicial complex whose k-simplices are sets of k + 1 isotopy
classes of pairwise disjoint curves.

Note that we can endow N(S) with a metric by declaring each k-simplex to have the standard euclidean
metric and considering the resulting path metric on N(S).

2.2.1 Pants decompositions

The dimension of N(Sg ) is 3¢ — 3 + n, and the vertex set of a top-dimensional simplex in N(S, ) is called a non-
separating pants decomposition of Sg . If P = {cy, ..., ¢} is a pants decomposition of S, then S\ [ J ¢; is a union
of pairs of pants (i.e., a union of subsurfaces homeomorphic to Sg 3).
Let P = {cy, ..., Cx} be a pants decomposition of the surface S. Two curves ¢;, ¢; € P are said to be adjacent
rel to P if there exists a curve cx € P such that ¢;, ¢j, ¢ bound a pair of pants in S; see Figure 1a for an example.
We record the following observation for future use.

Remark 2.1. Let P be a non-separating pants decomposition of Sg ,, where g > 3.
« Ifn <1, thenevery curvein P is adjacent rel to P to at least three other curves.
o Ifn > 1, then every curve is adjacent to at least two other curves.

Consider A c P, where P is a pants decomposition of S. We say that a set of curves A substitutes A in P if
(AuP)\ A

is a pants decomposition. In words, we say that A substitutes A in P if both sets have no curves in common and
we can replace the curves in A by the curves in A and still get a pants decomposition.

3 Finite rigid sets
For a simplicial subcomplex X c N(S), amap ¢ : X — N(S) is said to be a locally injective simplicial map if ¢ is
simplicial and injective on the star of each vertex. A first elementary observation is the following lemma.

Lemma 3.1. Let ¢ : X — N(S) be a locally injective simplicial map. If P c X is a pants decomposition, then ¢(P)
is a pants decomposition.

Proof. Take avertex p € P.Since ¢ is injective in the star of p and P is a simplex, ¢ is injective on P. Thus, ¢(P) is
a maximal-dimensional simplex, i.e., ¢(P) is a pants decomposition. O

As mentioned in Section 1, the main goal of this article is to construct a finite subcomplex X ¢ N(S) with the
following properties.
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Definition 3.2 (Finite rigid set). A finite rigid set X of N(S) is a finite subcomplex such that any locally injective
simplicial map ¢ : X — N(S) is induced by a mapping class, i.e., there exists h € Mod*(S) with h|x = ¢.
In addition, if & is unique, we say that X has trivial pointwise stabilizer.

Observe that a subcomplex X c N(S) has trivial pointwise stabilizer if and only if the inclusion X < N(S) is
induced uniquely by the identity 1 € Mod*(S), hence the name.

Remark 3.3. By the change of coordinates principle (see [4, Chapter 1.3]), every vertex {v} ¢ N(S) is a finite rigid
set. However, the stabilizer of {v} is not trivial.

Remark 3.4. If X is a finite rigid set and X c Y, then Y may not be a finite rigid set

For example, consider two disjoint curves vq, vy such that S\ [Jv; is connected, and two disjoint curves
v, vy such that § \ [J v} is disconnected. Now, take X = {v1}, ¥ = {v1, v;} and the locally injective simplicial map
o(vi) = vﬁ. Clearly, ¢ is not induced by a mapping class, and so Y is not a finite rigid set of N(S). Note that X is
a finite rigid set of N(S) by the remark above.

Following Aramayona and Leininger in [1], we will say that a subcomplex X c N(S) detects the intersection of
two curves a, b € X if every locally injective simplicial map ¢ : X — N(S) satisfies

i(a,b) #+0 ifandonlyif i(¢(a), (b)) #0.

4 Finite rigid sets for closed surfaces

In this section, we construct finite rigid sets for closed surfaces and prove their rigidity. This will establish
Theorem 1.1 for closed surfaces.

4.1 Constructing the finite rigid set

Let S be a closed surface of genus g > 3. We will start by defining the curves in the finite rigid set. The reader
should keep Figures 1(a)—-(e) in mind throughout the section.

Fixaset{py,c1,...,Pg, Cg, Pg+1} Of nON-separating curves such that i(c;, p;) = i(c;, pi+1) = 1 and the rest of
the curves are pairwise disjoint (see Figures 1(a) and 1 (b)). Such a set of curves is unique up to homeomorphism.
Let cgy1 be a curve such that i(p1, Cg41) = i(Pg+1, Cg+1) = 1 and it is disjoint from every other curve in the set
above. We define

C= {C1, ey Cg+1}.

Notice that S\ | J p; has two connected components (S \ [ p:)* and (S\ |Jpi)~; we will call (S\ |Jp:)* the
top component and (S \ | pi)~ the bottom component. In the same fashion, S\ | J ¢; has two connected compo-
nents (S\ Jc)*tand (S\ |Jci); wewillcall (S \ | ¢;)* the front component and (S \ | J ¢;)~ the back component.

Foreachk=2,...,g-1,thesetd(p1,c1,..., Pk, Ck) consists of two curves: one of them in (S \ | pi)* and
the other one in (S\ |J pi)~. We will call p; the curve of d(p1, c1, ..., Pk, Ck) contained in (S \ U p:)*, and we
will call p; the curve of d(p1, c1, ..., Pk, Ck) In (S\ U pi)~. We set

P={p1...,pge1}U{Dy, D3,  Pg 1 Pg1}-

Notice that P is a pants decomposition (see Figure 1(a)).

For each k=2,...,g -1, the set 0(pk-1, Ck, px) has two curves, one in (§\ [Jpi)" and the other one in
(S\ Upi)~. We will denote by uy the curve in (S \ | pi)* and by dx the curve in (S \ | pi)~ (see Figure 1(c)). We
set

U= {llz, ey ug,l}

and
D = {dz, ceey dg_l}.
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(a) Pants decomposition P of surface S;. As an (b) Circular curves C.
example, note that p; and p, are adjacent rel to P,
while p1 and p3 are not adjacent rel to P.

(e) Non-symmetrical down curve nd. (f) Non-symmetrical left and right curves n/, nr.

Figure 1: Curves in F; for a closed surface.

Given k € {2, ..., g - 1}, the set d(py, ck, p),) contains two curves, and only one of them is also a curve in P.
We will denote by Ix the curve in d(px, ck, p;) not already in P (see Figure 1(d)). We set

L={l,..., g2}
Analogously, let R = {ry, ..., rz_»} be the set of curves where ry is the unique curve in 0(px4+1*, Ck+1, Pr+2) that
isnot in P (see Figure 1(d)).
The set d(pa, €2, ..., Pg-1, Cg-1, Pg) has two curves, one curve in each component of S\ | J p;. Let b be the

curve contained in the bottom component (S \ | p;)~. Then the set d(c1, b, ¢z) has exactly two curves, one curve
contained in (S\ | ¢;)* and the other in (S \ | ¢;)~. Denote by nd the curve in (S \ | ¢;)* (see Figure 1 (e)).
Lastly, consider the torus T; that contains p; and is bounded by the curves p3, p;. Let nl be the unique
curve contained in Ty \ (nd U c¢7) distinct from ¢; and p;. In the same way, p;_l, P§—1 bound a torus T such
that pg ¢ Tg, let nr be the unique curve in T, \ (nd U cg) distinct from cg and p,_; (see Figure 1(f)). We set

N = {nl, nr, nd}.
We set Fg to be the subcomplex of N(S) spanned by the vertices in
PUCUUUDULURUN.

Remark 4.1. Note that the subcomplex Fp has diameter two. Therefore, any locally injective simplicial map
¢ : Fp — N(S) is injective.

4.2 Proving the rigidity of Fp
The first step is to check that the locally injective simplicial map ¢ : Fr — N(S) preserves the non-adjacency rel
to P. To do so, we require the following technical lemma.

Lemma 4.2. Let S be a finite-type surface, let Fr ¢ N(S) be a subcomplex, let P ¢ Fy be a pants decomposition,
and let a, b € P be two curves. Suppose that there exist subsets A, B ¢ P and A, B c Fy, satisfying the following
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Q

=

Figure 2: There can be no arc b n Q that intersects b and does not intersect & U a.

assertions:

e a€Aandb € B.

o A substitutes A in P.

« B substitutes Bin P.

« A UB substitutes AU B in P.

e« ANB=0.

Then a, b are not adjacent rel to P.

Proof. We will proceed by contradiction. Suppose that the curves a, b are adjacent in a pair of pants Q bound
by a, b, c. Since A N B = @, either ¢ ¢ A or ¢ ¢ B. Without loss of generality, suppose ¢ ¢ A.

If A is a substitution of A and A N B = ¢, then there is a curve @ € A such that i(@, a) # 0, i(@, b) = 0 and
i(@, ¢) = 0. Now, note that, since B and A U B are substitutions, there exists b € B with i(h, b) # 0, i(h,a) = 0
and i(b, @) = 0. However, it is impossible to have arcs @ n Q and b n Q satisfying the intersections above (see
Figure 2). O

Now, we prove that ¢ preserves non-adjacency rel to P.

Lemma 4.3. Let S be a closed surface of genus g > 3 and let ¢ : Fr — N(S) be a locally injective simplicial map.
Ifa, b € P are not adjacent rel to P, then ¢(a), ¢(b) are not adjacent rel to ¢(P).

Proof. Assume that for two curves a, b € P we have subsets A, B ¢ Pand A, B c FpasinLemma4.2. Under these
conditions, the lemma ensures that a and b are not adjacent rel to P. Moreover, these properties are carried to
the image, that is, the curves ¢(a), ¢(b) € ¢(P) satisfy the conditions of Lemma 4.2 for the sets ¢(A), ¢(B) c ¢(P)
and ¢(A), ¢(B). As a consequence, we deduce that ¢(a) and ¢(b) are not adjacent rel to ¢(P).
By means of the method above, we are only left to find appropriate subsets A, A, B, B for any non-adjacent
curves a, b € P. We will find such subsets for certain a, b € P, as the rest of the cases are similar.
Ifa=prand b = py41 for k € {3,..., g — 3}, we can consider
A ={py_1, bx}, A = {ljq, dr1},
B = {pk+1, Db B = {ri, dis1}.
It is straightforward to check that these subsets satisfy the conditions of Lemma 4.2, and so ¢(a), ¢(b) are not
adjacent rel to ¢(P).
If a = py, consider A = {p1, p} and A = {nl, c1}.
o Ifb € {pg, pgi1}, take B = {pg, pgs1} and B = {nr, c,}.
o Ifbe{pk,p,tforke(3,...,g-1} consider B = {pg, p)} and B = {ck, I'k-1}.
« Ifb=pj;forke{3,...,g -1} consider B = {p;} and B = {ux}.
This concludes the proof. O

Using the previous result, we prove that ¢ preserves adjacency rel to P.

Lemma 4.4. Let S be a closed surface of genus g > 3 and let ¢ : Fg — N(S) be a locally injective simplicial map.
Ifa, b € P are adjacent rel to P, then ¢(a), ¢(b) are adjacent rel to ¢(P).
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Proof. Take ¢(p1) € ¢(P). From the non-adjacency rel to ¢(P), it follows that ¢(p;) has at most three adjacent
curves. On the other hand, Remark 2.1 implies that ¢(p;) has at least three adjacent curves. Thus, we conclude
that ¢(p1) has exactly three adjacent curves, namely ¢(pz), ¢(p3), ¢(p;). The same argument applies to ¢(p2),
so it is adjacent rel to ¢(P) to exactly three curves, namely ¢(p1), ¢(p3), d(p;).

We now determine the curves adjacent to ¢(p;) and ¢(p5). First, note that the adjacency rel to ¢(P) of ¢(p1)
and ¢(p,) implies that ¢(p3) and ¢(p;) bound a subsurface homeomorphic to Sy . Since both curves ¢(p3)
and ¢(p;) are non-separating, it follows that both have four adjacent curves rel to ¢(P). Finally, considering the
non-adjacency rel to ¢(P), it follows that the curves adjacent to ¢(p;) are

{d(p1), d(p2), d(p3), d(P3)}

and the curves adjacent to ¢(p;) are

{9(p1), ¢(p2), 9(p3), ¢(p3)}-
In the same style, we can argue inductively to determine the adjacency of each curve in ¢(P). O
As a corollary, we obtain that ¢ preserves the topological type of P.

Corollary 4.5. Let S be a finite-type surface and let ¢ : Fp — N(S) be a map that preserves adjacency rel to P.
There exists h € Mod*(S) such that h|p = ¢|p.

Proof. We construct a homeomorphism h inductively by gluing abstract pairs of pants.

Consider the pairs of pants Q1, ..., Qx ¢ S bound by curves in P and denote by Q}, ..., Q;( c S the pairs of
pants satisfying 6Q; = ¢(8Q;). Any two pairs of pants are homeomorphic, and thus we can consider homeo-
morphisms h;(Q;) = Q;. Since ¢ preserves the adjacency rel to P, we can ensure that these homeomorphisms
agree on the boundary curves. Then, by gluing the maps h;, we obtain a homeomorphism h of the surface such
that h|p = ¢|p. O

The next three lemmas prove that Fr detects intersection among certain curves. Recall that Fp detects the
intersection between a and b if for any locally injective simplicial map ¢ : Fx — N(S) we have that

i(a,b) #0 ifandonlyif i(¢(a), p(b)) # 0.

Lemma 4.6. The subcomplex Fgr c N(S) detects the following intersections for everyk =2,...,8 - 1:

() uy with py.

(i) dk with p;.

Proof. Let ¢ : Fr — N(S) be a locally injective simplicial map. We need to check that i(¢(ux), ¢(py)) # 0 and
(¢ (dk), ¢(py)) # 0.

Seeking a contradiction to case (i), we assume i(¢(ux), ¢(py)) = 0. Since ¢ is locally injective, it sends dis-
joint curves to disjoint curves. Thus, ¢(ux) is disjoint from every curve in the pants decomposition ¢(P), which
implies ¢(ux) € ¢(P). However, this contradicts the injectivity of ¢ (see Remark 4.1).

To prove case (ii), the same argument works. O

Remark 4.7. Notice that from the previous lemma we actually know that Fr detects the intersection of uy with
every curve in P. Indeed, uy is disjoint from any curve in P \ {p,} and ¢ preserves disjointness. In the same way,
Fp detects the intersection of dy with every curve in P.

Lemma 4.8. The subcomplex Fr c N(S) detects the intersection of ¢y with p, and p,, for every k € {2,...,g - 1}.

Proof. Let ¢ : Fr — N(S) be a locally injective simplicial map. By Corollary 4.5, there exists h € Mod*(S) such
that h - ¢ fixes the pants decomposition P. Observe that detecting intersection is equivalent for ¢ and for h - ¢,
since we have

i(p(a), p(b)) #0 ifandonlyif i(he ¢(a), ho ¢(b)) # 0.

So, we can rename h o ¢ to @, and prove the statement assuming that ¢ fixes every p € P.
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Figure 4: Pair of pants bounded by p;_,, px and p;.

With the previous simplification, the proof boils down to check that ¢(cx) intersects p; and p,. In this
direction, consider the torus Tx bounded by the curves p, ,, py_;, Px,, and py,, (see Figure 3). Further, define
the top of the torus by T = T, n (S \ U pi)*, and the bottom of the torus by T, = T, N (S\ Upi)~.

By Lemma 4.6, ¢(uy) is a curve in T, intersecting p;, and ¢(dy) is a curve in T, intersecting p, (see Figure 3).
Notice that @(ck) is a curve in T distinct and disjoint from ¢(dx) and ¢(ux). It follows that @ (ck) intersects both
Ty and T,.

To finish, note that ¢(cx) N T;; is disjoint from ¢ (ux), so ¢(cx) must intersect p;. Indeed, an arc disjoint from
a curve in a sphere with four boundary components must intersect every other curve in the sphere. Similarly,
@(ck) N T is disjoint from ¢(dy), so ¢(ck) must intersect p,,. O

Lemma 4.9. The subcomplex Fr c N(S) detects the intersection of cx € C with every curve in P.

Proof. Let ¢ : Frp — N(S) be a locally injective simplicial map. As in the previous proof, we may assume that ¢
fixes every curve in P.

Now, we start by proving the cases 2 < k < g — 1. Note that, with the simplification above and Lemma 4.8,
we only need to check that ¢(ck) intersects px and pi1.

To prove that ¢(ck) intersects py, consider the pair of pants Q bounded by the curves p,_,, px and py.
By Lemma 4.8, there are disjoint arcs Q N ¢(ckx-1) and Q N ¢(cx) with at least one endpoint in le and p;,
respectively (see Figure 4). Using that ¢(cx_1), pj, are disjoint and ¢(c), p;_, are also disjoint, we conclude that
any such arc configuration requires ¢(cx) to intersect px. The same argument yields that ¢(cx) intersects px41.

It is left to prove the cases k € {1, g, g + 1}. First, we prove that ¢(c;) intersects p,. Consider the torus Ty
bounded by the curves p; and p;, and denote by T, the pair of pants bounded by p1, p2 and p; (see Figure 5).
Noting that ¢(cy) is a curve in Ty distinct from p, p,, p; and pg, it follows that ¢(c;) intersects T{“ . Thus, we have
disjoint arcs ¢(c1) N T} and ¢(c) n T§, the latter one having an endpoint in p; (see Figure 5). Since ¢(c1), p;
are disjoint and ¢(c3), p; are disjoint, we conclude that ¢(c;) must intersect p,. Again, the same argument with
slight changes yields that ¢(cg) intersects py.
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Figure 5: Pair of pants 7.

a

Figure 6: Torus T;.

Py

Before proving that ¢(c1) intersects p; and ¢(c,) intersects p,.1, we need to check that ¢(c,.1) intersects
both py, p; and every p;, D;.- Surely, ¢(cg.1) intersects at least one of these curves, since otherwise ¢(cg.1) would
be disjoint and distinct from every curve in the pants decomposition ¢(P). Suppose that ¢(cg.1) intersects py,
and consider the pair of pants Q bound by p,_,, px and p;. Using the intersections above, we deduce that there
are disjoint arcs ¢(cx-1) N Q and ¢(cg+1) N Q, so that ¢(cg.1) must also intersect p;;fl. Repeating the argument
iteratively, we can detect the intersection of ¢(cg.1) with every curve in P.

To finish the proof, we check that ¢(cq) intersects p;. Consider the disjoint arcs a; = ¢(cz) N T; and
agi1 = P(Cgi1) N T, where a; has an endpoint in p; and ag.1 has an endpoint in p;. These two arcs exist
by the above intersections. Moreover, a, is disjoint from pq, and ag, is disjoint from p;. Recall that ¢(cq)
intersects Tf and, since it is disjoint from both a4, ay, it follows that ¢(c1) intersects p1. A similar argument
yields that ¢(cg) intersects pg.1. O

So far we have seen that the map ¢ : Fr — N(S) can be taken to agree with a homeomorphism on P c Fg, and
that it detects some intersections. In the next lemma, we extend it so that ¢ agrees with a homeomorphism on
Fr\N.

Lemma 4.10. Let S be a closed surface of genus g > 3 and let ¢ : Fp — N(S) be a locally injective simplicial map.
There exists h € Mod*(S) such that h|p,\n = @lr,\n-

Proof. By Corollary 4.5, there exists h € Mod*(S) such that h o ¢ fixes every p € P; we rename h o ¢ to ¢. Recall
that by Remark 4.1 we know that ¢ is injective.

First, we find a homeomorphism that agrees with ¢ on ¢; € C. Observe that ¢(c;) is contained in the torus T;
bounded by p; and p; (see Figure 6). Moreover, Lemma 4.9 implies that there exist disjoint arcs a € ¢(cz) N Ty
and @ € ¢(cg.1) N T1. Notice that both arcs have endpoints in p; and p;, as otherwise ¢(c;) would not inter-
sect pj, contradicting Lemma 4.9. It follows that ¢(c;) is the curve contained in the annulus T4 \ (a U @). Even
more, there exists a twist h’ € Mod*(S) along p; and p, such that h’ - ¢(c1) = ¢;. We rename h' o ¢ to ¢.

The same argument with minor changes yield homeomorphisms that agree with ¢ on every ¢, € C\ {cg1}.
Thus, we may assume that ¢ fixes every curve in P U C \ {Cg41} C Fp.
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To finish the proof, we are going to check that ¢ is fixing c¢,1 and every curvein UUD UL UR:

+  Notice that ¢(cg.1) is contained in the torus with boundary T’ = S\ Uiz pi. In fact, ¢(cg1) is the unique
curve contained in the annulus S’ \ Uizl Ck, 1.e., P(Cgr1) = Cgy1.

«+ Toprove that ¢ fixes U, consider uy € U. Observe that ¢ (uy) is contained in the sphere S, bounded by the
curves py_;, Pk, Pk+1 and py, ;. Moreover, ¢(uy) must be the only curve in the annulus S \ (cx U ¢g41), Le.,
P(uk) = Ux.

- To prove that ¢ fixes D, consider dx € U. Notice that ¢(d) is contained in the sphere S, bounded by
the curves p; _;, Pk, Pk+1 and p,,,. Now, ¢(dy) must be the only curve in the annulus S \ {ck, g1}, i€,
¢(dy) = dx.

o To prove that ¢ fixes L, consider the curve [ € L. The image @(lx) is a curve in the subsurface S; bounded
by py_y» Pro p;, Dy.q> and PZ +1- Since @(l) is disjoint from curves in C, we know that ¢(ly) is contained in
the pair of pants Q = S; \ (ck U ck+1). Note that Q has only one boundary component not already in P, and
so we conclude @(lx) = lx. Naturally, a similar argument yields that ¢ fixes rx € R.

Summarizing, we have proven that there exists a mapping class f € Mod*(S) such that f o ¢ fixes Fg \ N.In
other words,

fHFew = Ol
This concludes the proof. O

To finish the proof of Theorem 1.1, we need to check that we can take ¢ to agree with a homeomorphism
on N c Fg, and that such homeomorphism is unique. Before doing so, we require one more definition: The
back-front (orientation reversing) involution is the unique non-trivial mapping class ¢ € Mod*(S) fixing every
curvec € PUC.

Proof of Theorem 1.1 for closed surfaces. Let ¢ : Frg — N(S) be alocally injective simplicial map. By Lemma 4.10,
there exists h € Mod*(S) such that h o ¢ fixes Fz \ N; we rename h o ¢ to ¢.

Consider nd € N and notice that ¢(nd) is a curve in the genus two surface T bounded by the curves
pg, P3;Pa..,PDg1, P;l- Since ¢(nd) is disjoint from C, we have that ¢(nd) is a curve in Q = T\ | ¢. Note
that Q is the disjoint union of two pairs of pants and it has only two boundary components not contained
in C, namely nd and ((nd), where ¢ is the back-front involution. It follows that ¢(nd) € {nd, t((nd)}. Thus, by
precomposing by ¢ if necessary, we may assume that ¢ fixes Fg \ {nl, nr}.

We continue by proving that ¢ fixes nl. Note that ¢(nl) is a curve in the torus T; bounded by p; and p;.
Even more, ¢(nl) is contained in Q = Ty \ (¢1 U nd), which is the union of an annulus and a pair of pants. Note
that only one curve in Q is not a curve in P U C, and so we deduce ¢(nl) = nl. An analogous argument leads to
the conclusion ¢(nr) = nr.

So far, we have found a composition of mapping classes f € Mod*(S) such that f o ¢ is the identity in Fp.
Therefore, ¢ is induced by the mapping class f~'.

To prove the uniqueness of the inducing mapping class, suppose that f, f € Mod*(S) both induce the same
¢ : Fr — N(S).Since g = f o f! fixes the curves (P U C) ¢ Fy, the Alexander method implies that g is either the
identity or the back-front orientation reversing involution. However, since g also fixes the curve nd, we have
that g is the identity and f = . O

5 Finite rigid exhaustion for closed surfaces

In this section, we prove that, for any closed surface S of genus g > 3, there exist subcomplexes
Fi cFyc---cN(S)

such that each F; is a finite rigid set with trivial pointwise stabilizer and

3

1]
—_

Fi = N(S).
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The strategy to produce an exhaustion is to first extend Fp to a larger finite rigid set F; with desirable
properties. Then the set F; will work as base case for an induction that enlarges F; into F;.1. This method heavily
resembles the proof given by Aramayona and Leininger in [2] to produce an exhaustion of the curve complex.

The plan of the proof is summarized in the following lemma (cf. [2, Lemma 3.13]).

Lemma 5.1. Let S be a finite-type surface, let F1 ¢ N(S) be a finite rigid set with trivial pointwise stabilizer, and
let{R1, ..., hi} be a set of generators of Mod™ (S). If F1 U hj(Fy) is a finite rigid set with trivial pointwise stabilizer
for every j, then the sets
k
Fin1 = Fi U U1<hj(Fi) U hy(FY)
]:
satisfy that F; c Fp c --- ¢ N(S), | Fi = N(S) and every F; is finite rigid with trivial pointwise stabilizer.

Proof. First, notice that if Fq U hj(F1) is a finite rigid set with trivial stabilizer, then the same holds for
Fiu hj_l(Fl).

We will now check that F, is finite rigid with trivial stabilizer: Take ¢ : F; — N(S) and observe that by
hypothesis there exists f; € Mod*(S) such that

Blrumyry) = filFun(Ey)

for everyj e {1, ..., k}. Since F; has trivial pointwise stabilizer and

f}lF1 = ¢|F1 :fk|F11

we deduce f; = fx for all j, k. Clearly, the same argument holds when considering F; U hj’l(Fl). It follows that
¢ = f for f € Mod*(S) and F; is a finite rigid set with trivial pointwise stabilizer.
For F;.1, we proceed by induction. Consider ¢ : Fi,1 — N(S). By induction, we have ¢|r, = fI, € Mod*(S)
and
Plnyry = filny(r)
for some fj € Mod*(S). Observe that F; ¢ F; n h;j(F;) and Fy is trivially stabilized. Thus f = f; for every j, and so
Fi;1 is finite rigid with trivial stabilizer. O

To produce the finite rigid exhaustion of N(S), we are going to use the previous lemma. In this direction, we
enlarge Fp into a set F1 and provide a set of generators for Mod*(S).

5.1 Enlarging the finite rigid set

Let ¢ € Mod*(S) be the back-front orientation reversing involution. We define the set of curves A := Aj U Ay,

where
g-1
Ay = a(ck, i1, Cr)-
k=1

Note that the set 0(ck, pk+1, Ck+1) has two curves, one curve in the front component and one curve in the back
component of the surface. We will call ¢k k1 the curve in the front component, so

O(Cks Pk+1> Ck+1) = {Ch kv 1, L(Chkr1)}-

We proceed to define A;. Consider the torus T bounded by Dy_1> Py and ug. Now, there is only one curve
in the pair of pants T\ (cx-1 U ¢k U t(Ck-1,k)) that is not already in P U C; we denote this curve by nly (see Fig-
ure 7(a)). Analogously, let nry be the unique curve in T\ (cx U Ck+1 U t(Ck, k+1)) that is not already a curve in
P U C (see Figure 7 (b)). We set

Ay ={nl,nr | ke{2,...,g-1}}.

Lemma 5.2. Let S be a closed surface of genus g > 3. The subcomplex spanned by Fr U A c N(S) is a finite rigid
set with trivial pointwise stabilizer.
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(a) Curves in A;. (b) Curves in A,.

Figure 7: Curves in A for a closed surface.

Remark 5.3. In the argument below, we sometimes abuse notation using p; = p; = p1 and pg = p; = Pg+1.

Proof. Take alocally injective simplicial map ¢ : Fr UA — N(S). By Theorem 1.1 in the closed case, there is an
h € Mod*(S) such that h o ¢ fixes Fz; we rename h o ¢ to ¢. Furthermore, the subcomplex Fr U A has diameter
two, S0 ¢ is injective.

First, we check that ¢ fixes A;. Note that ¢(t(c1,2)) is contained in the torus T bounded by the curves p, pg
and p;. Since ¢(t(c1,2)) is disjoint from the curves in C, we have that ¢(t(c1,2)) is contained in the pair of pants
Q =T\ (c1UczUcs). Notice that only one curve in Q is non-separating and disjoint from nd, namely t(c12),
and so ¢(i(c1,2)) = t(c1,2). Now, ¢(c12) is the unique non-separating curve in Q distinct from ¢(cy ), that is,
¢(c1,2) = C12.

By an obvious modification of the above argument, we check that

O(Chkr1) = Cike1 and  P(U(Crk+1)) = UCkk+1)

fork<g-1.

It is left to check that A, is also fixed by ¢. Take nry € Aj; we have that ¢(nry) is contained in the torus T
bounded by the curves p, _;, p;, and ux. Also, ¢(nry) is disjoint from c, ck+1 and ¢(ck k+1), and thus @¢(nry) is
a curve in the pair of pants

Q =T\ (Ck U Crs1 U t(Chk41))-
Notice that the only curve in Q distinct from curves in P U C is the curve nri, and thus we have ¢(nry) = nr.
For nly € Ay, the argument is analogous.
We have proven that if ¢ fixes Fp, then it fixes Fg U A. The statement follows immediately. O

We define F; := Fr U A and proceed to prove that it satisfies the hypotheses of Lemma 5.1.

5.2 Constructing the exhaustion for closed surfaces

Let ¢ be the back-front orientation reversing involution and let §, be the right Dehn twist along the curve a. The
set of Dehn twists

H:={8p,, 6py»- -+ 6pyu» p;} U {8y, -, 8cid
are known as the Humphries generators, which are known to generate the group of orientation preserving
mapping classes Mod(S) (see [7]). Hence, H U {t} generates Mod™*(S).

Lemma 5.4. Let h € H U {t}. The set F1 U h(F1) is a finite rigid set with trivial pointwise stabilizer.

Proof. First, we prove it for h = &p,. Let ¢ : F1 U h(F1) — N(S) be any locally injective simplicial map.
Since F; is a finite rigid set, we may assume that ¢ fixes F; by precomposing with a mapping class. Moreover,
since h(Fy) is also finite rigid, there exists a mapping class f € Mod*(S) such that

Plnry) = fnry)-

Proving that F; U h(F7) is a finite rigid set with trivial pointwise stabilizer boils down to proving that
f =1 ¢ Mod*(S).

Recall that pq is the associated curve to the Dehn twist h = &,,. Now, let §" =S\ p1 and consider the
well-known cutting homomorphism (see [4, Proposition 3.20])

1 - (8p,) — Mod(S, p1) — Mod(S"),
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where Mod(S") ¢ Mod*(S’) is the subgroup of orientation preserving classes, and Mod(S, p;) ¢ Mod*(S) is the
subgroup of orientation preserving classes that fix p;. Notice that f fixes all curves in F; n h(F;) which fill ’. In
particular, f is orientation preserving and fixes p;. Furthermore, by means of the Alexander method, the image
of f by the cutting homomorphism is trivial and the above sequence implies that f = 6’51 for some k € Z. 1t is
left to see that k = 0.

Note that i(nl, §p, (cg+1)) = 0. As ¢ is locally injective, we know that

i(‘/’(nl)’ ¢(6p1(cg+1))) =0,

which is equivalent to
i(nl, 8571 (cge1)) = 0, G.1)

since ¢|r, = id and @ln(r,) = 8,
It can be directly checked that equation (5.1) is satisfied if and only if k = 0, thus proving the statement of
the lemma for h = &p, .
The rest of the cases h € H are proved in exactly the same way, but changing the curves in equation (5.1).
We list all cases for completeness:
« Ifh =6y, change (nl, ¢g1) in (5.1) by (cg41, N1).
o Ifh=6p forie{2,...,g-2} change (nl, cg1) by (nl;, ciiv1).
« Ifh=6p,,, change (nl, cg41) by (Cg-2,6-1, NI'g-1).
o Ifh= 61,;, change (nl, cg41) by (cgi1, nr2).
e Ifth=6, forke{l,...,g—1} change (nl, cgi1) by (Pri1, NTr11).
e Ifh= SCg, change (nl, cg41) by (nlg_1, pg).

To finish the proof, we need to consider the case h = ¢. In this case, F; N h(F;) contains the trivially pointwise
stabilized set P U C U Ay, so it follows immediately that f = 1 € Mod*(S). O

Proof of Theorem 1.2 for closed surfaces. Let S be a closed surface of genus g > 3. Consider F; := Fg U A and the
set of generators H U {1} of the extended mapping class group Mod*(S). By Lemma 5.1, we have the desired
exhaustion, where the hypotheses have been checked in Lemmas 5.2 and 5.4. O

6 Finite rigid sets for punctured surfaces

Let S = Sgn with n > 1 and g > 3. In this section, we construct a finite rigid set Fﬁe ¢ N(S) with trivial pointwise
stabilizer. As we will see, the argument to prove the rigidity of FI'? is morally the same as the one in Section 4,
although more involved as it requires to manipulate more curves.

6.1 Constructing the finite rigid set

We start by naming some curves in the punctured surface S.

Consider the closed surface Sg and the pair of pants Q bounded by py, p2, p;. Note that Q \ d; has two
connected components; denote by A the connected component intersected by cg.1. Now, A \ (¢1 U ¢g41) is the
union of two disks, one in the front component and one in the back component of Sg; denote by B the disk in the
back component (Sg \ [ J ¢;)~. By removing n points from the interior of B, we obtain the punctured surface S.
Via this procedure, we get natural analogues in S of the sets of curves P, C, U, D, L, R, and N.

After this, we define the top of the surface, i.e., (S\ Jpi)*, the bottom (S \ | pi)~, the front (S \ | ¢;)*, and
the back (S \ | ¢;)7, in the same way we did in Section 4.

The set P is no longer a pants decomposition in S; to fix this we add some curves. First, rename p; to pzn and
consider the pair of pants Q bounded by p1, p, and pzn. Observe that Q \ ¢1 is an annulus with n punctures. Now,
fix a set of non-separating curves {p; o, D5 1, - - - » P2 n_1> P2.o} IN Q \ €1 satisfying that p; ; and py ;,, bound a once
punctured annulus. Adding the curves {p; o, P31, - -, P3 ,_1,P3,,} t0 the set P makes it a pants decomposition
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+
p;1 P22

(c) Up and down curves uy, d for Sy 3.

pri Pra p.T3

() Curves prq, pra, pr3 for Sy 3. (f) Curves ¢y, and ¢y,4 for Sy 3.

Figure 8: Curves in F,. Punctures are marked as small crosses on the top of the surface.

(see Figure 8 (a)). We will say that the puncture contained in the annulus bounded by p;’ k1 and p;, i is the k-th
puncture.

In this setting, we also define the back-front (orientation reversing) involution as the unique non-trivial
element ¢ € Mod*(S) that fixes every curve P U C.

Let pl; be the unique curve in the punctured pair of pants bounded by p1, p2, P§,1 that is disjoint from c;
and is not a curve already in P. Similarly, let plx be the unique curve in the punctured pair of pants bounded
by plk-1, p2, pzk that is disjoint from c¢; and is not already a curve in P (see Figure 8 (d)). We set

Pl:={ply,...,pln}.

Let pry be the unique curve in the punctured pair of pants bounded by p;,n—l’ p3, p; thatis disjoint from c;
and is not already a curve in P. Inductively, define pry to be the unique curve in the punctured pair of pants
bounded by pz k-1» P3, P3 thatis disjoint from ¢, and not already in P (see Figure 8 (e)). We set

Pr:={pry,...,pra}.
Lastly, we define the set
C. = 9(c1, P2, C2) UO(Ca, P2, .-+, Dg» Cg)-

Note that the set d(c1, p2, ¢2) has two curves, one curve in the front component which we will denote by ¢, ¢,
and one curve in the back component which we will denote by t(cy,¢). Also, the set (cz, p2, . . ., Pg, Cg) has two
curves; we denote by ¢, ¢ the curve in the front component and by t(cz, ¢) the curve in the back component (see
Figure 8 (f)).

The finite rigid set Fj, is the maximal subcomplex of N(S) spanned by the vertices

PUCUUUDULURUNUPIUPrucC,.

Remark 6.1. Note that the subcomplex Fj has diameter two. Therefore, any locally injective simplicial map
¢ : F — N(S) is injective.

The following lemmas prove the finite rigidity of Fp.

Lemma 6.2. Let S be a punctured surface of genus g > 3. For any locally injective simplicial map ¢ : F, — N(S),
there exists h € Mod™*(S) such that h|p = ¢|p.
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Proof. First, notice that we can extend Lemma 4.3 to the case of punctured surfaces, and the proof works with
minor changes.

Lemma 4.4 can also be extended to punctured surfaces. The proof for once punctured surfaces is similar to
the closed case. Here we prove it for surfaces with n > 1 punctures.

Using Remark 2.1, it is straightforward to deduce that the curve ¢(p;’l.) is adjacent rel to P to ¢(p,; ;) and
¢(paiv1) fori e {1,...,n—1}. As a consequence of these adjacencies, we deduce that ¢(p;’0) and ¢(p§,n) bound
a subsurface with two boundary components and n punctures. It follows that ¢(p;’0) is adjacent rel to P to at
least three curves. On the other hand, the non-adjacency rel to P of ‘P(PZO) implies that it is adjacent to at most
three curves. Thus, ¢(p§)0) is adjacent to exactly three curves, namely ¢)(p§’1), ¢(p1) and ¢(pz). The rest of the
adjacencies follow just as in the proof of Lemma 4.4.

Once we know that ¢ preserves adjacency rel to P, we can use Corollary 4.5 to produce a mapping class
h € Mod*(S) with h|p = ¢|p. O

The next lemma proves that we may choose h € Mod*(S) to coincide with ¢ on all curves of Fy,.

Lemma 6.3. Let S be a punctured surface of genus g > 3. For any locally injective simplicial map ¢ : F, — N(S),
there exists h € Mod*(S) such that ¢ = h| Fy

Proof. The idea is to progressively detect intersections between curves and, by composing with Dehn twists
along P, construct a mapping class that coincides with ¢ on Fp,.

First, by Lemma 6.2, there exists h € Mod*(S) such that h - ¢ fixes P pointwise; rename h o ¢ to ¢.

Next, using the same arguments as in Lemmas 4.6, 4.8 and 4.9, we detect the following intersections:

« Intersections of curves in U u D with curves in P.

« Intersections of curves in Pl with curves in P.

» Intersections of curves in Pr with curves in P.

o cxwithcurvesinPforke{2,...,g-1}

Notice that we can now use the proof of Lemma 4.10 to produce a mapping class that coincides with ¢ on the
curves of U, D and {c3, .. ., ¢g_1}. Thus, we may assume that these curves are fixed by ¢.

It follows that ¢ fixes the curves in PL To see this, note that ¢(ply) is a curve contained in the punctured
sphere S’ bounded by p1, uz, p} and that it is disjoint from p;,i for i > 0. Thus, ¢(ply) is contained in the once
punctured annulus which is a component of S’ \ P31 As there is only one curve in that annulus that is not
already in P, it follows that ¢(ply) = pl;. In the same way, ¢(plx) is contained in the punctured sphere S;(
bounded by plk-1, us, pg, and it is disjoint from p;’i fori > k — 1. Thus, @(plx) is contained in the once punctured
annulus which is a component of S;( \ pz 1 and since there is only one curve in that annulus which is not in P,
we conclude that ¢(plx) = plx. Naturally, an analogous argument works to prove that ¢ fixes every curve in Pr.

Now, note that ¢ detects the following intersections:

o Curvesin C, with curvesin P.

« Curvesin {c1, ¢z} with curves in P.

For instance, consider c1 2 € C, and p € P disjoint from ¢ 2. If ¢(c1,2) was disjoint from p, then ¢(c1,2) would have
to intersect either the curve ¢(c1), ¢(cz2) or ¢(1(cz,z)), leading to a contradiction. Thus, ¢(cy2) and p intersect.

Using the above intersections and fixed curves, we now focus on finding a homeomorphism that agrees
with ¢ on the curves in C,.

Observe that ¢(c1) (resp. ¢(cg)) is contained in the subsurface S’ = Sy, bound by the curves p;, p; (resp.
by p, 4, pg1)- Additionally, since ¢(cq) is disjoint from the arcs a; = ' N ¢(c1,2) and az = S’ N (c2) (resp.
S'n@(cze) and S’ N d(cg-1)), we have that ¢(c1) (resp. ¢(c,)) is contained in the annulus §'\ (a3 U ap). It
follows that ¢(cq) (resp. ¢(cg)) is the unique curve in the annulus. We may again consider a mapping class
h € Mod*(S) that is a composition of twists along curves in P such that h - ¢(c) = ¢ for ¢ € {c1, Cg}; we rename
h o ¢ to ¢ (the same argument with more details is given in Lemma 4.10).

For ¢y 5 € C,, note that ¢(cy2) is contained in a subsurface S’ = S, ; bound by pry and p5 (or pyif g = 3).
Even more, ¢(c1 7) is contained in the pair of pants S’ \ (¢1 U ¢z U ¢3 U p3), and therefore it is one of the boundary
components. One of the boundaries is a separating curve, so either ¢(c1,2) = ¢1,2 or ¢(c1,2) = t(c1,2). These two
alternatives are related by the involution t. Thus, by precomposing with ¢, we can assume that ¢ fixes ¢ 3.
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Figure 9: Curves a1, a3 in A3 for 5, 3.

It is now easy (but lengthy) to check that the curves in
{t(ce,2), tlczg), nl,nr,nd} UL UR

are fixed by ¢. Thus, we have found a mapping class h € Mod*(S) such that h - ¢ fixes Fp, and the statement
follows. =

We have essentially completed the proof of Theorem 1.1.

Proof of Theorem 1.1 for surfaces with punctures. Let ¢ : Fp — N(S) be a locally injective simplicial map. Then
Lemma 6.3 provides the mapping class inducing ¢.
The uniqueness of the mapping class follows as in the closed case. O

7 Finite rigid exhaustion for punctured surface

Let S be a punctured surface of genus g > 3. In this section, we construct a sequence Fj ¢ F,, ¢ --- ¢ N(S) such
thateach F { is a finite rigid set with trivial pointwise stabilizer and

(e¢]
JF} =N).
i=1
The strategy to construct the exhaustion is the same as in the closed case (see Section 5). First, we are going
to enlarge the finite rigid set Fj, to F;, and then use Lemma 5.1 to construct the exhaustion.

7.1 Enlarging the finite rigid set

First, we enlarge Fy,.

Consider the set of curves A; and A, in the closed surface. Via the same procedure described in Section 6.1,
we remove n points from the interior of the closed surface S, and so we obtain the punctured surface S. This
produces natural analogues of the set of curves A; and A, in the surface S.

We define the set of curves As := {ay, ..., a,}, where ay is the unique curve in the torus bounded by plx_1,
pri+1 and dy, which is disjoint from ¢, ¢z, ¢3 and t(cy 2) (see Figure 9).

Weset A’ := A1 UAyUAs.

Lemma 7.1. The set F, U A’ is finite rigid with trivial pointwise stabilizer.

Proof. Let ¢ : lee U A’ — N(S) be alocally injective simplicial map. By precomposing with a mapping class, we
may assume that ¢ fixes Fj, pointwise.

First, we prove that A, is also fixed by ¢. The curves c1 2, t(c1,2) € A1 are already in C. ¢ F}, so they are
fixed by ¢. For ¢, 3 € Aj, notice that ¢(cz,3) is contained in the sphere S’ bounded by py, ply, ¢2, c3, pz, and p,.
Moreover, ¢(c, 3) is contained in the pair of pants S’ \ ¢; U ps U 1(c2,g). But there is only one curve in that pair
of pants that is non-separating, i.e., ¢(cz,3) = c3,3. Slight modifications yield that ¢(t(c23)) = t(cy,3). For the rest
of A1, one can proceed as in the closed case (see the proof of Lemma 5.2).

To prove that A, is fixed, we can just repeat the argument as in the closed case (see Lemma 5.2).
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To finish the proof, we must show that ay € As is fixed. To check this, note that ¢(ax) is contained in the
torus T bounded by plx-1, prix+1 and d. Note that ¢(ax) is the unique curve in

T\ (ctUcaUc3U(c1,2))

that is not ¢y, that is, ¢(ax) = ax. Thus, A’ is fixed and F1’e U A’ is a finite rigid set with trivial pointwise stabilizer.
O

We define F{ := F UA'.

7.2 Constructing the exhaustion for punctured surfaces

The goal of this section is to construct an exhaustion of N(S) by finite rigid sets with trivial pointwise stabilizers.
In this direction, we will consider a set of generators of Mod*(S) such that the subcomplex F{ satisfies the
hypotheses of Lemma 5.1. We are going to assume S = Sg , with n > 0 punctures.

Let ¢ be the back-front orientation reversing involution. Consider the usual Humphries generators

H' ={8p,, ..., 8p, s Sy} U{Sp; 10<i<nu{be,,.... 8¢

and the half twists
{h(k,k+1) |[1<k<n- 1},

where h k+1) is the half twist that permutes the puncture k with the puncture k + 1. It is well known that
H u{u{hgrsy | 1<k<sn-1}
generates Mod*(S) (see [4, Chapter 4.4.4]).

Lemma 7.2. For every
he H u{dUfhgksny | 1<ksn-1},

the set F; U h(F{) is finite rigid with trivial pointwise stabilizer.

Proof. The proof is analogous to the closed case (see Lemma 5.4) and works directly for h = ¢, h = 6, h =
and h = 6p,~. We consider here the rest of the cases.
Recall that, given h = 8 and ¢ : F; U h(F}) — N(S), we can assume that ¢ fixes F] and

k
Blnery) = Sxlnry)-

Thus, the proofis a matter of checking that k = 0.
For
h:6p2+J with j<n-1,

we can consider the curves lj, a; and plug them into equation (5.1). It follows that this is satisfied if and only if
k=0.Forh = 61,;", one uses the curves ry, a, in the same equation.
The last case to prove is h = h-1,k), which can be proved using the curves ay, ri in equation (5.1). O

We now complete the proof of Theorem 1.2.
Proof of Theorem 1.2 for punctured surfaces. Lemmas 7.1 and 7.2 ensure that F; satisfies the hypothesis of

Lemma 5.1, which in turn produces the desired exhaustion. O
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