Startseite On the Fourier orthonormal bases of a class of self-similar measures on ℝ n
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the Fourier orthonormal bases of a class of self-similar measures on ℝ n

  • Wei Tang und Zhi-Yong Wang EMAIL logo
Veröffentlicht/Copyright: 1. Juli 2023

Abstract

Let μ M , D be a self-similar measure generated by an n × n expanding real matrix M = ρ - 1 I and a finite digit set D n , where 0 < | ρ | < 1 and I is an n × n unit matrix. In this paper, we study the existence of a Fourier basis for L 2 ( μ M , D ) , i.e., we find a discrete set Λ such that E Λ = { e 2 π i λ , x : λ Λ } is an orthonormal basis for L 2 ( μ M , D ) . Under some suitable conditions for D, some necessary and sufficient conditions for L 2 ( μ M , D ) to admit infinite orthogonal exponential functions are given. Then we set up a framework to obtain necessary and sufficient conditions for L 2 ( μ M , D ) to have a Fourier basis. Finally, we demonstrate how these results can be applied to self-similar measures.

MSC 2020: 28A80; 42C05

Communicated by Christopher D. Sogge


Award Identifier / Grant number: 11901187

Award Identifier / Grant number: 12001183

Award Identifier / Grant number: 11831007

Award Identifier / Grant number: 2020JJ5097

Funding statement: The research is supported in part by the NNSF of China (Nos. 11901187, 12001183 and 11831007) and the NSF of Hunan Province (No. 2020JJ5097).

Acknowledgements

The authors are grateful to the anonymous referee for some valuable suggestions and comments.

References

[1] L.-X. An, X.-G. He and K.-S. Lau, Spectrality of a class of infinite convolutions, Adv. Math. 283 (2015), 362–376. 10.1016/j.aim.2015.07.021Suche in Google Scholar

[2] L.-X. An, X.-G. He and H.-X. Li, Spectrality of infinite Bernoulli convolutions, J. Funct. Anal. 269 (2015), no. 5, 1571–1590. 10.1016/j.jfa.2015.05.008Suche in Google Scholar

[3] M.-L. Chen, J.-C. Liu and J. Su, Spectral property of the planar self-affine measures with three-element digit sets, Forum Math. 32 (2020), no. 3, 673–681. 10.1515/forum-2019-0223Suche in Google Scholar

[4] X.-R. Dai, When does a Bernoulli convolution admit a spectrum?, Adv. Math. 231 (2012), no. 3–4, 1681–1693. 10.1016/j.aim.2012.06.026Suche in Google Scholar

[5] X.-R. Dai, X.-G. He and K.-S. Lau, On spectral N-Bernoulli measures, Adv. Math. 259 (2014), 511–531. 10.1016/j.aim.2014.03.026Suche in Google Scholar

[6] Q.-R. Deng, Spectrality of one dimensional self-similar measures with consecutive digits, J. Math. Anal. Appl. 409 (2014), no. 1, 331–346. 10.1016/j.jmaa.2013.07.046Suche in Google Scholar

[7] Q.-R. Deng and K.-S. Lau, Sierpinski-type spectral self-similar measures, J. Funct. Anal. 269 (2015), no. 5, 1310–1326. 10.1016/j.jfa.2015.06.013Suche in Google Scholar

[8] D. E. Dutkay, J. Haussermann and C.-K. Lai, Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc. 371 (2019), no. 2, 1439–1481. 10.1090/tran/7325Suche in Google Scholar

[9] D. E. Dutkay and P. E. T. Jorgensen, Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z. 256 (2007), no. 4, 801–823. 10.1007/s00209-007-0104-9Suche in Google Scholar

[10] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101–121. 10.1016/0022-1236(74)90072-XSuche in Google Scholar

[11] T.-Y. Hu and K.-S. Lau, Spectral property of the Bernoulli convolutions, Adv. Math. 219 (2008), no. 2, 554–567. 10.1016/j.aim.2008.05.004Suche in Google Scholar

[12] P. E. T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal L 2 -spaces, J. Anal. Math. 75 (1998), 185–228. 10.1007/BF02788699Suche in Google Scholar

[13] M. N. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math. 18 (2006), no. 3, 519–528. 10.1515/FORUM.2006.026Suche in Google Scholar

[14] I. Łaba and Y. Wang, On spectral Cantor measures, J. Funct. Anal. 193 (2002), no. 2, 409–420. 10.1006/jfan.2001.3941Suche in Google Scholar

[15] J. C. Lagarias and Y. Wang, Tiling the line with translates of one tile, Invent. Math. 124 (1996), no. 1–3, 341–365. 10.1007/s002220050056Suche in Google Scholar

[16] N. Lev and M. Matolcsi, The Fuglede conjecture for convex domains is true in all dimensions, Acta Math. 228 (2022), no. 2, 385–420. 10.4310/ACTA.2022.v228.n2.a3Suche in Google Scholar

[17] Q. Li and Z.-Y. Wu, On spectral and non-spectral problem for the planar self-similar measures with four element digit sets, Forum Math. 33 (2021), no. 6, 1629–1639. 10.1515/forum-2021-0173Suche in Google Scholar

[18] F. P. Ramsey, On a Problem of Formal Logic, Proc. Lond. Math. Soc. (2) 30 (1929), no. 4, 264–286. 10.1112/plms/s2-30.1.264Suche in Google Scholar

[19] R. S. Strichartz, Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math. 81 (2000), 209–238. 10.1007/BF02788990Suche in Google Scholar

[20] T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2–3, 251–258. 10.4310/MRL.2004.v11.n2.a8Suche in Google Scholar

[21] Z.-Y. Wang and J.-C. Liu, Non-spectrality of self-affine measures, J. Funct. Anal. 277 (2019), no. 10, 3723–3736. 10.1016/j.jfa.2019.05.015Suche in Google Scholar

[22] Z.-Y. Wang, Z.-M. Wang, X.-H. Dong and P.-F. Zhang, Orthogonal exponential functions of self-similar measures with consecutive digits in , J. Math. Anal. Appl. 467 (2018), no. 2, 1148–1152. 10.1016/j.jmaa.2018.07.062Suche in Google Scholar

Received: 2023-01-11
Revised: 2023-05-21
Published Online: 2023-07-01
Published in Print: 2023-11-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0006/html?lang=de
Button zum nach oben scrollen