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Abstract:Let p be an odd prime and let ρ : ℤ/p → GLn(ℤ) be an action ofℤ/p on a lattice and let Γ := ℤn ⋊ρ ℤ/p
be the corresponding semidirect product. The torus bundleM := Tnρ ×ℤ/p Sℓ over the lens space Sℓ/ℤ/p has fun-
damental group Γ.Whenℤ/p fixes only the origin ofℤn , Davis and Lück (2021) compute the L-groups L⟨j⟩m (ℤ[Γ])
and the structure set Sgeo,s(M). In this paper, we extend these computations to all actions of ℤ/p on ℤn . In par-
ticular, we compute L⟨j⟩m (ℤ[Γ]) and Sgeo,s(M) in a case where EΓ has a non-discrete singular set.

Keywords: Torus bundle, lens space, Farrell–Jones conjecture, topological K-theory

MSC 2020: 57R67, 19L64


Communicated by: Clara Löh

1 Introduction

In [9] and [10], Davis and Lück study groups of the form

Γ = ℤn ⋊ρ ℤ/p,

where p is an odd prime and ρ : ℤ/p → GLn(ℤ) has no nonzero fixed points. They compute the topological

K-theory of the real and complex group C∗-algebras of Γ in [9]. Along the way, they compute K∗(BΓ) and several
other K-theory groups. Letting Tnρ denote the torus with ℤ/p-action determined by ρ and letting Sℓ denote a
sphere with a free ℤ/p-action, define M := Tnρ ×ℤ/p Sℓ. The manifold M is a torus bundle over a lens space and

the assumption that ℤ/p acts freely on ℤn \ {0} implies that the action of ℤ/p on Tnρ has discrete fixed points.
In [10], Davis and Lück use the computations from [9] to determine the L-groups of ℤ[Γ] and the structure set
of M in the sense of surgery theory.

For the L-theory computation, Davis and Lück use the Farrell–Jones Conjecture for Γ to conclude

L⟨−∞⟩m (ℤ[Γ]) ≅ HΓ

m(EΓ;L
⟨−∞⟩
ℤ ).

Then they compute the homology group by inverting p and inverting 2. After inverting p, HΓ

m(EΓ;L
⟨−∞⟩
ℤ )

becomes part of a split short exact sequence. After inverting 2, there is an isomorphism

HΓ

m(EΓ;L
⟨−∞⟩
ℤ )[

1

2
] ≅ KOΓ

m(EΓ)[
1

2
]

and one applies the computations of [9].

In this paper, we study the casewhere the action ofℤ/p onℤn is not necessarily free onℤn \ {0}. A free abel-
ian group with a ℤ/p-action can be written as ℤn = M ⊕ N ⊕ ℤc , where M ⊗ ℚ ≅ ℚ(ζ)a and N ⊗ ℚ ≅ ℚ[ℤ/p]b .
Here, we use ζ to denote a primitive p-th root of unity. We say that such a module is of type (a, b, c) in which
case n = a(p − 1) + bp + c. Theℤ[ℤ/p]-moduleℤn will be denoted L. As in [10] define Γ := L ⋊ρ ℤ/p and define
M := Tnρ ×ℤ/p Sℓ. The fixed points of the corresponding ℤ/p-action on Tnρ is a disjoint union of a(p − 1) many
(b + c)-dimensional tori rather than a discrete set when L is of type (a, b, c). Proving that L⟨−∞⟩m (ℤ[Γ]) is
p-torsion free is one of the main difficulties in applying the machinery of [10] to our case. In order to do this,

we invert 2 and study topological K-theory. One of our main results is the following.
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Theorem 4.1. Suppose Γ is of type (a, b, c). Then:
(1) The differentials di,jr in the Atiyah–Hirzebruch–Serre spectral sequence for the fibration BΓ → Bℤ/p vanish

for r ≥ 2.
(2) If b ̸= 0 or c ̸= 0, then there is an isomorphism of abelian groups

Km(BΓ) ≅ Km(Tnρ )ℤ/p ⊕ ℤ̂
(p−1)pa2b+c−1
p .

If b = c = 0, then

Km(BΓ) ≅
{
{
{

Km(Tnρ )ℤ/p ⊕ ℤ̂
(p−1)pa
p , m even,

Km(Tnρ )ℤ/p , m odd.

Using the techniques in [10], we are then able to compute the L-groups ofℤ[Γ] and the structure sets of M. The

description of the simple structure sets in [10] are nice because the torsion comes from L(ℤ). In our case, wewill
inevitably encounter 2-torsion coming from Lh

2m(ℤ[ℤ/p]). Fortunately, we are still able to obtain the integral
results below (as opposed to results that only hold after inverting 2). This is essentially due to the splitting

after inverting p of the maps in Proposition 3.2 and our understanding of the Whitehead groups (in particular,

[12, Theorem 1.10]).

In the theorems below P will denote the set of conjugacy classes of nontrivial finite subgroups of Γ (all of

which are isomorphic toℤ/p). We let NΓP denote the normalizer of P in Γ and we letWΓP := NΓP/P denote the
Weyl group. The groups L⟨j⟩m (ℤ[Γ]) are Ranicki’s surgery groups with decoration and S

per,⟨j⟩
n+ℓ+1 (M) is Ranicki’s alge-

braic structure set. The set S
geo,⟨j⟩
n+ℓ+1 (M) is the geometric structure set obtained from the surgery exact sequence

by using connective L-theory. We refer to Section 6 for more details.

Theorem 5.5. For j = 2, 1, 0, . . . , −∞, there is an isomorphism

L⟨j⟩m (ℤ[Γ]) ≅ Hm(Tnρ ; L(ℤ))ℤ/p ⊕ ⨁
(P)∈P

L⟨j⟩m (ℤ[NΓP])/L
⟨j⟩
m (ℤ[WΓP]).

Theorem 6.10. For j = 2, 1, 0, . . . , −∞, there is an isomorphism

S
per,⟨j⟩
n+ℓ+1 (M) ≅ Hn(Tnρ ; L(ℤ))ℤ/p ⊕ ⨁

(P)∈P
L⟨j⟩n+ℓ+1(ℤ[NΓP])/L

⟨j⟩
n+ℓ+1(ℤ[WΓP]).

Theorem 6.12. For j = 2, 1, 0, . . . , −∞, there is an isomorphism

S
geo,⟨j⟩
n+ℓ+1 (M) ≅ Hn(Tnρ ; L(ℤ)⟨1⟩)ℤ/p ⊕ ⨁

(P)∈P
L⟨j⟩n+ℓ+1(ℤ[NΓP])/L

⟨j⟩
n+ℓ+1(ℤ[WΓP]).

When j = 2 (resp. 1), Theorem 6.12 specializes to a computation of the usual simple structure set (resp. homotopy

structure set) in the sense of surgery theory.

Theorem 1.1. There are isomorphisms

Sgeo,s(M) ≅ Hn(Tnρ ; L(ℤ)⟨1⟩)ℤ/p ⊕ ⨁
(P)∈P

Lsn+ℓ+1(ℤ[NΓP])/Lsn+ℓ+1(ℤ[WΓP])

and
Sgeo,h(M) ≅ Hn(Tnρ ; L(ℤ)⟨1⟩)ℤ/p ⊕ ⨁

(P)∈P
Lhn+ℓ+1(ℤ[NΓP])/Lhn+ℓ+1(ℤ[WΓP]).

The L-groups appearing in these computations are computable; the normalizers are isomorphic to ℤb+c × ℤ/p
and the Weyl groups are isomorphic to ℤb+c so Shaneson splitting allows us describe these groups in terms of
the L-groups of ℤ and ℤ[ℤ/p].

Remark. The isomorphisms in the theorems above do not come from “natural” maps. For instance, the map

NΓP → Γ induces a map L⟨j⟩m (ℤ[NΓP])/L
⟨j⟩
m (ℤ[WΓP]) → L⟨j⟩m (ℤ[Γ]). After composing with the isomorphism in

Theorem 5.5, the image is a p-power index subgroup of L⟨j⟩m (ℤ[NΓP])/L
⟨j⟩
m (ℤ[WΓP]).

Remark. To prove Theorem 5.5, it suffices to prove the case that Γ is of type (a, b, 0), i.e., Γ = L ⋊ ℤ/p, where L is
a free abelian group with noℤ-summands with trivialℤ/p action. Indeed, one can inductively apply Shaneson
splitting to obtain the more general case. It would be convenient to do this with the structure sets as well.

However, we are not aware of a reference that gives Shaneson splitting for the structure sets.
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1.1 Geometric interpretations of the structure set

In the situation of [10], the computation of the structure set is interpreted as follows. Suppose f : N → M is

a structure and let f : N → M ≅ Tn × Sℓ denote the ℤ/p-cover. The proof of [10, Theorem 10.6] applies in our

case so we have the following interpretation of the Hn(Tnρ ; L(ℤ)⟨1⟩)ℤ/p summand of the structure set.

Theorem 1.2. The following are equivalent:
(1) The structure [f : N → M] ∈ Sgeo,s(M) vanishes under projection to Hn(Tnρ ; L(ℤ)⟨1⟩)ℤ/p .
(2) f : N → M is homotopic to a homeomorphism.
(3) For a nonempty J ⊆ {1, . . . , n}, let T J ⊆ Tn denote the obvious subtorus. Aftermaking f transverse to T J × {pt} ⊆

Tn × Sℓ, we obtain a surgery problem

f : f
−1
(T J × {pt}) → T J × {pt}.

This has a vanishing surgery obstruction in L|J|(ℤ[ℤ|J|]) for all nonempty J ⊆ {1, . . . , n}.

Understanding the ⨁(P)∈P Lsn+ℓ+1(ℤ[NΓP])/Lsn+ℓ+1(ℤ[WΓP]) summand is more difficult. Shaneson splitting

implies that Lh
2m(ℤ[ℤ/p]) will appear as summands of L

s
n+ℓ+1(ℤ[NΓP]). These groups have 2-torsion which

involves the ideal class groups. Rationally, there is an isomorphism

⨁
(P)∈P

Lsn+ℓ+1(ℤ[NΓP])/Lsn+ℓ+1(ℤ[WΓP]) ⊗ ℚ ≅ ⨁
(P)∈P

⨁
k≤b+c

k+ℓ+1 even

(R(−1)
k+ℓ+1/2

ℂ (ℤ/p)/⟨reg⟩)(
b+c
k ) ⊗ ℚ.

In the above expression, R±ℂ(ℤ/p) denotes the group of virtual complexℤ/p-representations whose characters
are of the form χ ± χ−1 and reg denotes the regular representation.

We give a heuristic description of this summand in the case Γ = ℤn × ℤ/p (i.e., when M is the product of

a torus and a lens space Lℓ). Note that the inner sum on the right-hand side is indexed by the standard subtori

Tk ⊆ Tn , where k + ℓ + 1 is even. Suppose f : N → M is a structure and let Tk ⊆ Tn be a subtorus such that

k + ℓ + 1 is even. Suppose f is transverse to the submanifold Tk × Lℓ. Then f −1(Tk × Lℓ) has a ℤ/p-cover so
we may take its ρ-invariant to obtain an element of (R(−1)

k+ℓ+1/2

ℂ (ℤ/p)/⟨reg⟩) ⊗ ℚ. This gives an element in the
summand corresponding to the torus Tk . This description is not technically correct; without somemodifications,
we do not knowhow to show it is well-defined. A rigorous interpretation of these ρ-invariants will be the subject
of future work.

1.2 Outline

In Section 2, we review properties of the ℤ[ℤ/p]-module L and we state relevant properties of the group Γ.

In Section 3, we introduce some machinery from [10]; our L-theory computations rely on the Farrell–Jones

conjecture and a description of EΓ as a homotopy pushout. Section 4 is themain computational part of the paper.
It is devoted to computing the topological K-theory of BΓ and recording some consequences of the computation.
The main computational tool we use is the Atiyah–Hirzebruch–Serre spectral sequence. In Sections 5 and 6, we

compute the L-groups of ℤ[Γ] and the structure set of M. These computations follow the computations in [10]

very closely. For Section 6, in particular, our results follow from the proofs of [10] with only slight modifications.

2 Group theoretic preliminaries

Weare interested in groups Γ of the form L ⋊ ℤ/p, where L is a finitely generated free abelian group. Throughout
this paper, p will always be an odd prime. Curtis and Reiner classified these groups in [7, Theorem 74.3].

Theorem 2.1. Let ζ be a primitive p-th root of unity. If L is an indecomposable integral ℤ/p representation, then
L is either of the following:
(1) B ⊆ ℚ(ζ) a fractional ideal with action given by multiplication by ζ .
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(2) B ⊕ ℤ, where B ⊆ ℚ(ζ) is a fractional ideal, and t ⋅ (b,m) = (ζb + mb0 ,m), where b0 ∈ B \ (1 − ζ)B. We will
denote this by B ⊕b0 ℤ. Two such representations of this form are isomorphic if the fractional ideals represent
the same element in the ideal class group.

(3) ℤ with a trivial action.

Example 1. Let ζ be a p-th root of unity. Then ℤ[ζ] is an example of a module of the form (1) in Theorem 2.1.

The group ring ℤ[ℤ/p] is an example of a module of the form (2); it is of the form ℤ[ζ] ⊕1 ℤ. When p = 3, for
instance, the assignment

(a0 + a1ζ,m) 󳨃→ a0(−a0 + a1 + m)t + (−a1 + m)t2

defines an isomorphism of ℤ[ℤ/p]-modules.

The group Γ determines a torus bundleM over a lens spacewith fundamental groupℤ/p. Note that themanifold
corresponding to (L ⊕ ℤ) ⋊ ℤ/p is a product M × S1. As taking products with S1 is a well understood operation
in topology, we will sometimes make the simplification that L does not have any ℤ summands.

Definition 2.2. We say that aℤ/p-module L is of type (a, b, c) if it is of the form L = (⨁a
i=1Mi) ⊕ (⨁b

j=1 Nj) ⊕ ℤc ,
where Mi is in form (1) and Nj is of the form (2) in Theorem 2.1. We say that L ⋊ ℤ/p is of type (a, b, c) if L is of
type (a, b, c).

Lemma 2.3. Suppose Γ = L ⋊ ℤ/p is of type (a, b, c). Then the following hold:
(1) The virtually cyclic subgroups of Γ are isomorphic to either the trivial group, ℤ/p, ℤ or ℤ × ℤ/p.
(2) Let P denote the set of conjugacy classes of maximal finite subgroups of Γ. Then |P| = pa .
(3) If P is a finite subgroup of order p, then the normalizer NΓP is isomorphic to ℤb+c × P and the Weyl group

WΓP := NΓP/P is isomorphic to ℤb+c .

Proof. The elements of our group canbewritten as xyi , where x ∈ L and y is a generator ofℤ/p. Let ρ(−) : L → L
denote the action of ℤ/p on L.

To show the first statement, if xy and x󸀠y are in a subgroupH, then x(x󸀠)−1must be inH. Hence, ifH is finite,

x = x󸀠. It follows that the nontrivial finite subgroups are isomorphic to ℤ/p. Suppose V is an infinite virtually

cyclic subgroup that is not infinite cyclic. Then V must surject onto ℤ with kernel ℤ/p and V ∩ L is an infinite
cyclic group. Let xy be a torsion element of V and let v ∈ V ∩ L. Then xyvy−1x−1 = ρ(v) ∈ V ∩ L. But if ρ(v) ̸= v,
V ∩ Lwould contain a subgroup isomorphic toℤ2. Therefore, V ∩ L is fixed by ρ. It follows that V is isomorphic

to ℤ × ℤ/p.
For the second statement, observe that (xy)p = ∑p−1i=0 y

i ⋅ x. Therefore, xy is torsion if and only if x is in the
kernel of the norm map Norm : L → L. Moreover, if x and z are in the kernel of the norm map, one checks

that the group generated by xy is conjugate to the group generated by zy if an only if x − z is in the image of
1 − y : L → L. Therefore,P is in bijection with H1(ℤ/p; L). It follows from Proposition 4.3, which we prove later,

that this is isomorphic to H1(ℤ/p;ℤ[ζ]a). By [9, Lemma 1.10 (i)], this group is isomorphic to (ℤ/p)a .
The third statement follows from the beginning of the proof of [12, Theorem 1.10].

3 Equivariant homology and the Farrell–Jones conjecture

In this section, we introduce some preliminary material on equivariant homology following [8] and on the

Farrell–Jones conjecture, which will allow us to compute L and K-groups.

3.1 Equivariant homology

Let G be a discrete group. Given a covariant functor E : Grpd→ Sp from the category of small groupoids to

spectra, define the equivariant homology groups of a G-CW-complex X to be

HG
m(X;E) := πm(X−+ ∧Or(G) E(G/−)),
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where Or(G) is the orbit category of G and G/H is the groupoid associated to the G-set G/H and − ∧Or(G) −
denotes a coend. The functor X−+ sends an orbit G/H to the fixed point set XH+ . If f : X → Y is amap of G-CW-com-

plexes, then we write

HG
m(X → Y;E) := HG

m(cone(f);E).

In this paper, wewill take E to beK−∞ℤ and L⟨j⟩ℤ for j = 2, 1, 0, . . . , −∞. The corresponding homology theories
have the property that HG

m(G/H;K−∞ℤ ) ≅ Km(ℤ[H]) and HG
m(G/H;L

⟨j⟩
ℤ ) ≅ L

⟨j⟩
m (ℤ[H]) for all m ∈ ℤ. We also use

equivariant topological K-theory, which sends G/H to the representation ring Rℂ(H) when G is finite.

Equivariant cohomology is defined analogously. We refer to [8] for more details.

Remark. The notation HG
m(X;L

⟨j⟩
ℤ ) denotes the Davis–Lück equivariant homology as mentioned above whereas

the notation Hm(X; L⟨j⟩(ℤ)) denotes the generalized homology of X with coefficients in the spectrum L⟨j⟩(ℤ).

3.2 Classifying spaces

Definition 3.1. Let G be a group. A family of subgroups is a nonempty set F of subgroups closed under taking

subgroups and conjugation. A classifying space for F, denoted EFG, is a G-CW-complex satisfying

(EFG)H ≃
{
{
{

pt, H ∈ F,
0, H ∉ F.

Example 2. If {e} is the family consisting of only the trivial group, then E{e}G = EG. The primary families we
will consider are Vcyc, the collection of virtually cyclic subgroups, and Fin, the collection of finite subgroups.

We will use the following notation:

EG := EVcycG, EG := EFinG.

Specifying to the casewhere Γ = L ⋊ ℤ/p, [13, Corollary 2.10] shows that there is the following homotopy pushout
diagram:

∐(P)∈P Γ ×NΓP ENΓP EΓ

∐(P)∈P Γ ×NΓP EWΓP EΓ.

(3.1)

Proceeding as in [9, Lemma 7.2] and using that EWΓP is a model of ENΓP as an NΓP-space, we obtain the

following long exact sequences.

Proposition 3.2. For an equivariant homology theoryHΓ

∙ (−), there is a long exact sequence

⋅ ⋅ ⋅ 󳨀󳨀󳨀󳨀󳨀→ Km
φm
󳨀󳨀󳨀󳨀󳨀→ HΓ

m(EΓ)
indΓ→1󳨀󳨀󳨀󳨀󳨀→ Hm(BΓ) 󳨀󳨀󳨀󳨀󳨀→ Km−1 󳨀󳨀󳨀󳨀󳨀→,

where Km := ⨁(P)∈P ker(HNΓP
m (ENΓP) → Hm(BNΓP)). After inverting p, the mapHΓ

m(EΓ) → Hm(BΓ) is a split
surjection.

For an equivariant cohomology theoryH∙
Γ
(−), there is a long exact sequence

⋅ ⋅ ⋅ 󳨀󳨀󳨀󳨀󳨀→ Cm−1 󳨀󳨀󳨀󳨀󳨀→ Hm(BΓ)
indΓ→1󳨀󳨀󳨀󳨀󳨀→ Hm

Γ
(EΓ)

φm
󳨀󳨀󳨀󳨀󳨀→ Cm 󳨀󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅ ,

where Cm := ⨁(P)∈P coker(Hm(BNΓP) → Hm
NΓP
(ENΓP)). After inverting p, the mapHm(BΓ) → Hm

Γ
(EΓ) is a split

injection.
The maps φm are induced by the inclusions P → Γ.

Remark. Since NΓP ≅ ℤb+c × ℤ/p, we have ENΓP ≃ ℝb+c with a trivial ℤ/p-action. In particular, BNΓP is

just Tb+c . For the homology theory HΓ

∙ (−;L
⟨j⟩
ℤ ) we can make the identifications

Hℤ
b+c×ℤ/p

m (Eℤb+c;L⟨j⟩ℤ ) ≅ H
ℤ/p
m (Tb+c;L

⟨j⟩
ℤ ) ≅ Hm(Tb+c; L⟨j⟩(ℤ[ℤ/p])),

Hℤb+cm (Eℤb+c;L
⟨j⟩
ℤ ) ≅ Hm(Tb+c; L⟨j⟩(ℤ))
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and we can describeKm as

⨁
(P)∈P

Hm(Tb+c; L̃⟨j⟩(ℤ[ℤ/p])).

Here, the spectrum L̃⟨j⟩(ℤ[ℤ/p]) is the cofiber of the map L⟨j⟩(ℤ) → L⟨j⟩(ℤ[ℤ/p]).

3.3 The Farrell–Jones conjecture

One of the primary computational tools that we use is the Farrell–Jones conjecture, which has been proved in

many cases. [4] proves the conjecture for our group Γ.

Theorem 3.3. The map EΓ → pt induces isomorphisms on HΓ

∙ (−;K−∞ℤ ) and H
Γ

∙ (−;L
⟨−∞⟩
ℤ ).

By Lemma 2.3, [11, Theorem 65] and [11, Proposition 75], we obtain the following.

Proposition 3.4. The map EΓ → pt induces isomorphisms on L⟨−∞⟩ℤ -homology. Hence,

H∗(EΓ;L⟨−∞⟩ℤ ) ≅ L
⟨−∞⟩
∗ (ℤ[Γ]).

4 Topological K-theory

This is the main computation section of the paper. The goal of this section is to prove the following theorem.

Theorem 4.1. Suppose Γ is of type (a, b, c). Then:
(1) The differentials di,jr in the Atiyah–Hirzebruch–Serre spectral sequence for the fibration BΓ → Bℤ/p vanish

for r ≥ 2.
(2) If b ̸= 0 or c ̸= 0, then there is an isomorphism of abelian groups

Km(BΓ) ≅ Km(Tnρ )ℤ/p ⊕ ℤ̂
(p−1)pa2b+c−1
p .

If b = c = 0, then

Km(BΓ) ≅
{
{
{

Km(Tnρ )ℤ/p ⊕ ℤ̂
(p−1)pa
p , m even,

Km(Tnρ )ℤ/p , m odd.

In Theorem4.1weuse ℤ̂p to denote the p-adic integers.Wewill reduce to the case c = 0 andproceed by induction
on b. The case where L is type (a, 0, 0) is [9, Theorem 3.1].

4.1 Some preliminaries

4.1.1 Group cohomology

We collect some important facts about group cohomology. For a finite group G and a ℤ[G]-module M, let

Ĥ∗(G;M) denote the Tate cohomology. For i ≥ 1, Ĥ i(G;M) = H i(G;M) and, for i ≤ −2, Ĥ i(G;M) = H−i−1(G;M).
There is an exact sequence

0 󳨀󳨀󳨀󳨀→ Ĥ−1(G;M) 󳨀󳨀󳨀󳨀→ MG
Norm

󳨀󳨀󳨀󳨀→ MG 󳨀󳨀󳨀󳨀→ Ĥ0(G;M) 󳨀󳨀󳨀󳨀→ 0,

where Norm(x) = ∑g∈G g ⋅ x.
LetM∗ denote the dual Homℤ(M,ℤ). This has a G-action via (g ⋅ f)(x) = f(g−1 ⋅ x). The following is [9, Lem-

ma A.1].

Lemma 4.2. Let G be a finite group and let M be a finitely generatedℤ[G]modulewith no p-torsion for all primes p
dividing the order of G. Then, for all i ∈ ℤ, there is an isomorphism

Ĥ i(G;M) ≅ Ĥ−i(G;M∗).
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Proposition 4.3. Suppose L is amodule of type (a, b, 0). Then there is an isomorphism of Tate cohomology groups

Ĥ∗(ℤ/p; ΛrL) ≅ Ĥ∗(ℤ/p; Λr(ℤ[ζ]a ⊕ ℤ[ℤ/p]b)).

Proof. We follow the proof of [9, Lemma 1.10 (i)] where the case b = 0 is done. As Ĥ(ℤ/p;M) ≅ Ĥ(ℤ/p;M ⊗ ℤ(p)),
it suffices to check that Λ

rL ⊗ ℤ(p) ≅ Λr(ℤ[ζ]a ⊕ ℤ[ℤ/p]b) ⊗ ℤ(p). Since it has been shown in the proof of [9, Lem-
ma 1.10 (i)] that L ⊗ ℤ(p) ≅ ℤ[ζ]a ⊗ ℤ(p) for L of type (a, 0, 0), it suffices to show that L ⊗ ℤ(p) ≅ ℤ[ℤ/p]b ⊗ ℤ(p)
for L of type (0, b, 0).

Wemay assume b = 1 so L = B0 ⊕b0 ℤ andℤ[ℤ/p] = B1 ⊕b1 ℤ, where B0 and B1 are fractional ideals ofℤ[ζ]
and bi ∉ (1 − ζ)Bi . As ℤ(p)[ζ] is a PID, its ideal class group is trivial. Hence, any fractional ideal I of ℤ(p)[ζ]
is of the form αℤ(p)[ζ] ⊆ ℚ(ζ) for some α ∈ ℚ(ζ). In particular, there are numbers α0 , α1 ∈ ℤ(p)[ζ] such that

α0B0 ⊗ ℤ(p) = α1B1 ⊗ ℤ(p). The ℤ[ℤ/p]-module structures of L and ℤ[ℤ/p] do not change if we change the

choice of b0 and b1 so long as they remain outside (1 − ζ)Bi . By multiplying b0 with some integer prime to p, we
may assume b0 ∈ B0 \ (1 − ζ)B0 and α−11 α0b0 ∈ B1 \ (1 − ζ)B1. Let b1 = α−11 α0b0. Then

(B0 ⊕b0 ℤ) ⊗ ℤ(p) ≅ (B0 ⊗ ℤ(p)) ⊕b0 ℤ(p)
≅ (α0B0 ⊗ ℤ(p)) ⊕α0b0 ℤ(p)
≅ (α1B1 ⊗ ℤ(p)) ⊕α1b1 ℤ(p)
≅ (B1 ⊗ ℤ(p)) ⊕b1 ℤ(p) ≅ (B1 ⊕b1 ℤ) ⊗ ℤ(p) .

Here, the second line is obtained by the isomorphism (b,m) 󳨃→ (α0b,m) and the fourth line follows from a sim-

ilar isomorphism. The third line follows from the fact that α0B0 ⊗ ℤ(p) ≅ α1B1 ⊗ ℤ(p) and from our choice of b1.

The following is [9, Lemma 1.10].

Proposition 4.4. Suppose L is a module of type (a, 0, 0). Then

Ĥ i(ℤ/p;H j(L)) ≅ ⨁
ℓ1+⋅⋅⋅+ℓk=j
0≤ℓq≤p−1

Ĥ i+j(ℤ/p;ℤ) ≅
{
{
{

(ℤ/p)aj , i + j even,
0, i + j odd,

where aj is the number of partitions of j.

We will also need the following lemma, which appears in the proof of [9, Lemma 1.10].

Lemma 4.5. For 1 ≤ m ≤ p − 1, Λmℤ[ℤ/p] is free as a ℤ[ℤ/p]-module.

The following result computes the fixed sets of the ℤ/p-action on the torus corresponding to a module of type
(a, b, c).

Proposition 4.6. Suppose L is a module of type (a, b, c). Let Tnρ denote the torus (L ⊗ ℝ)/L. Then

(Tnρ )ℤ/p ≅ (T(b+c))∐ a(p−1) .

Proof. In the case L is of type (a, 0, 0), this is [9, Lemma 1.9(v)]. The case where L is of type (0, 0, c) is straight-
forward. Since Tnρ is equivariantly a product, it suffices to show that, when L is of type (0, 1, 0), the fixed set is
a circle.

Suppose L is of type (0, 1, 0). Consider the following short exact sequence of ℤ/p-modules.

L → L ⊗ ℝ → Tpρ

This gives rise to the top exact sequence in the diagram below:

Lℤ/p (L ⊗ ℝ)ℤ/p (Tpρ)ℤ/p H1(ℤ/p; L)

ℤ[ℤ/p]ℤ/p ℝ[ℤ/p]ℤ/p S1 0.

≅
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By the proof of Proposition 4.3, there is an isomorphism ofℤ/p-modules L ⊗ ℝ ≅ ℝ[ℤ/p]which identifies Lwith
a finite index ℤ/p-submodule of ℤ[ℤ/p]. This gives the vertical maps. This also implies that H1(ℤ/p; L) = 0.
It follows that (Tpρ)ℤ/p ≅ S1.

4.1.2 Cohomology of Tnρ

In order to relate these algebraic results to the problem of computing topological K-theory, we record some

results on the cohomology of Tnρ as aℤ[ℤ/p]-module. Let L be a module of type (a, b, c) determining the repre-
sentation ρ. Then, as ℤ[ℤ/p]-modules, H1(Tnρ ) ≅ L and H1(Tnρ ) ≅ L∗. Moreover, H∗(Tnρ ) ≅ Λ∗L∗. It is clear that
L∗ is also a module of type (a, b, c).

We will need to use the topological K-theory of Tnρ considered as aℤ[ℤ/p]-module. The Atiyah–Hirzebruch
spectral sequence collapses for tori so, as an abelian group, Km(Tn) ≅ ⨁ℓ∈ℤ Hm+2ℓ(Tn). The proof of [9, Lem-
ma 3.3] shows this is also true as ℤ[ℤ/p]-modules.

Lemma 4.7. Let Tnρ be a torus with a ℤ/p-action as above. Then as a ℤ[ℤ/p]-module,

Km(Tnρ ) ≅⨁
ℓ∈ℤ

Hm+2ℓ(Tn).

4.1.3 Facts about spectral sequences

Suppose E → B is a fibration with connected base space and with fiber F. LetH∗ be a generalized cohomology
theory and letH∗ be a generalized homology theory. There are Atiyah–Hirzebruch–Serre spectral sequences

Ei,j
2
= H i(B;Hj(F)) ⇒ Hi+j(E), (4.1)

E2i,j = Hi(B;Hj(F)) ⇒ Hi+j(E). (4.2)

In the cohomology spectral sequence above, we have

E0,j
2
= H0(G;Hj(F)) = Hj(F)G

when B is path connectedwith fundamental groupG. Thus, E0,j∞ is a subgroupofHj(F)G . In thehomology spectral
sequence,

E2
0,j = H0(G;Hj(F)) = Hj(F)G

so E∞
0,j is a quotient ofHj(F)G .
The following is in the appendix of [9].

Theorem 4.8. The compositeHj(E) → E0,j∞ 󳨅→ Hj(F)G is equal to themapon cohomology induced by the inclusion
F 󳨅→ E. In particular,Hj(E) → Hj(F)G is surjective if and only if the differentials d0,jr vanish for r ≥ 2.

The compositeHj(F)G → E∞
0,j → Hj(E) is equal to the map on homology induced by the inclusion F 󳨅→ E. In

particular,Hj(F)G → Hj(E) is injective if and only if the differentials drr,j−r−1 vanish for r ≥ 2.

The fibrations we use will come from group extensions N → G → G/N , where G/N is finite. We have the

inclusion of BN as the fiber of BG → B(G/N). This map induces the inclusion N 󳨅→ G so, up to homotopy we

may think of BN → BG as a covering space with fibers G/N . If G/N is finite, then there is a transfer map

τ∗ : Hm(BN) → Hm(BG) such that the composition

Hm(BN) τ
∗

󳨀󳨀→ Hm(BG) → Hm(BN)G/N

is the norm map.

For a generalized homology theory there is a transfer map τ∗ : Hm(BG) → Hm(BN) such that the compo-
sition

Hm(BN)G/N 󳨀󳨀→ Hm(BG)
τ∗󳨀󳨀→ Hm(BN)

is the norm map. To summarize, we have the following result.
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Proposition 4.9. Suppose N → G → G/N is a group extension with G/N finite. In the cohomological Atiyah–
Hirzebruch–Serre spectral sequence for the fibration BN → BG → B(G/N), an element x ∈ E0,j

2
is nonzero in E0,j∞

if it is in the image of the normmap. In the homological spectral sequence, an element x ∈ E2
0,j represents a nonzero

element in E∞
0,j if the norm of x is nonzero.

We specialize [5, Theorem 13.2] to the following statement.

Theorem 4.10. If there is an N > 0 such that the differentials di,jr in the spectral sequence (4.1) vanish for r > N,
then this converges strongly in the following sense. For the filtration

⋅ ⋅ ⋅ Fs ⊆ Fs−1 ⊆ ⋅ ⋅ ⋅ ⊆ F1 ⊆ F0 = Hm(X),

the following hold:
(1) ⋂∞s=0 Fs = 0,
(2) Hm(X) = lim

←󳨀󳨀s
Hm(X)/Fs .

4.2 Vanishing of differentials

We now prove Theorem 4.1 (1). First, we reduce to the case where Γ is of type (a, b, 0).

Lemma 4.11. Suppose 4.1 (1) is true for groups Γ of type (a, b, c). Then it is true for groups of type (a, b, c + 1).

Proof. If Γ is of type (a, b, c + 1), then it is isomorphic to Γ󸀠 × ℤ, where Γ󸀠 is of type (a, b, c). Since BΓ ≅ S1 × BΓ󸀠,
there is a morphism of spectral sequences coming from the map of fibrations BΓ󸀠 → BΓ over Bℤ/p. Let
Bℤ/p(s) denote the s-skeleton of Bℤ/p. Let Ys denote the preimage of Bℤ/p(s) under the map BΓ󸀠 → Bℤ/p. The
exact couple giving rise to the spectral sequence for BΓ󸀠 is given by the abelian groups As,m−s

1
= Km(Ys) and

Es,m−s
1
= Km(Ys , Ys−1) with maps

Km−1(Ys) → Km(Ys+1 , Ys) → Km(Ys+1) → Km(Ys).

The exact couple giving rise to the spectral sequence for BΓ is given by abelian groups Km(Ys × S1) and
Km(Ys × S1 , Ys−1 × S1).We canwrite the groups in this exact couple as a As,m−s

1
⊕ As,m−s−1

1
and Es,m−s

1
⊕ Es,m−s−1

1
.

The maps between these groups are sums of the maps between the exact couple for BΓ󸀠. Our inductive
hypothesis therefore implies that the differentials vanish after the first page of the spectral sequence.

Remark. When c > 0, we do not need to know Theorem 4.1 (1) in order to prove 4.1 (2) provided we have the

c = 0 case.

Suppose Theorem 4.1 (1) is true for groups of type (a, b − 1, 0). We will show this is true for L a representation
of type (a, b, 0). First we introduce some notation.

Notation. ∙ Given L = M1 ⊕ ⋅ ⋅ ⋅ ⊕ Ma ⊕ N1 ⊕ ⋅ ⋅ ⋅ ⊕ Nb , we make the following abbreviations:

ML := M1 ⊕ ⋅ ⋅ ⋅ ⊕ Ma , NL := N1 ⊕ ⋅ ⋅ ⋅ ⊕ Nb .

∙ For d = 1, . . . , b, define Ld to be the representation of type (a, b − 1, 0), where the d-th summand of NL is
removed. We have group homomorphisms

ϕd : Ld ⋊ ℤ/p → L ⋊ ℤ/p, ψd : L ⋊ ℤ/p → Ld ⋊ ℤ/p.

Clearly, the composition ψd ∘ ϕd is the identity. We will henceforth denote Ld ⋊ ℤ/p by Γd . It follows that
there is the retraction of bundles below:

BΓd BΓ BΓd

Bℤ/p Bℤ/p Bℤ/p.

Bϕd Bψd

= =
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The maps Bϕd and Bψd induce maps on cohomology, which we denote by ϕ∗d and ψ
∗
d . The terms of the

Atiyah–Hirzebruch–Serre spectral sequence for BΓd will be denoted E
i,j
r,d .

∙ By abuse of notation, we will define ϕd : ℤb−1 → ℤb and ψd : ℤb → ℤb−1 similarly.
∙ Let r = (r1 , . . . , rb) ∈ ℤb be a b-tuple. Define Ar := Λr1N∗1 ⊗ ⋅ ⋅ ⋅ ⊗ ΛrbN

∗
b .

∙ For a module M, let Λ
evenM be the sum of all Λ

2rM and define Λ
oddM similarly.

∙ When one of the ri is neither 0 nor p, then Ĥ∗(ℤ/p; Ar) = 0. Indeed, Lemma 4.5 shows that Λmℤ[ℤ/p] is
free when 1 ≤ m ≤ p − 1 and the vanishing of the Tate cohomology follows from Proposition 4.3. As we are

not interested in all r ∈ ℤb , we define the following:

Rb,m := {(r1 , . . . , rb) ∈ {0, p}b|r1 + ⋅ ⋅ ⋅ + rb ≡ mmod 2}.

For a subset d ⊆ {1, . . . , b}, define Rb,m,d ⊆ Rb,m to be those b-tuples such that rd = 0 if d ∈ d.

Proof of Theorem 4.1 (1). We proceed by induction on b with the case b = 0 having been done in [9, Lemma 3.3].
Recall we are considering the Atiyah–Hirzebruch–Serre spectral sequence

Ei,j
2
= H i(ℤ/p; K j(Tnρ )) ⇒ K i+j(BΓ).

We first check that, if i > 0, then di,j
2
: Ei,j

2
→ Ei+2,j−1

2
is trivial. Suppose that j is even. The term

Ei,j
2
= H i(ℤ/p; ΛevenL∗)

can be decomposed as a sum

⨁
r∈Rb,0

H i(ℤ/p; ΛevenM∗L ⊗ A
r) ⊕ ⨁

r∈Rb,1

H i(ℤ/p; ΛoddM∗L ⊗ A
r)

and the term Ei+2,j−1
2

can be decomposed as a sum

⨁
r∈Rb,1

H i+2(ℤ/p; ΛevenM∗L ⊗ A
r) ⊕ ⨁

r∈Rb,0

H i+2(ℤ/p; ΛoddM∗L ⊗ A
r).

Moreover, we may identify the image of ψ∗d in E
i,j
2
with

⨁
r∈Rb,0,{d}

H i(ℤ/p; ΛevenM∗L ⊗ A
r) ⊕ ⨁

r∈Rb,1,{d}

H i(ℤ/p; ΛoddM∗L ⊗ A
r).

By the inductive hypothesis and the fact that ϕ∗d ∘ ψ
∗
d : E

i,j
r,d → Ei,jr,d is the identity, these terms are in E

i,j
∞. It

therefore remains to consider the effect of di,j
2
on the subgroup corresponding to r = (p, . . . , p). Thuswe consider

either a map

H i(ℤ/p; ΛevenM∗L ) → H i+2(ℤ/p; ΛoddM∗L )

or

H i(ℤ/p; ΛoddM∗L ) → H i+2(ℤ/p; ΛevenM∗L )

depending on the parity of i and b. In either case, Proposition 4.4 implies that these maps are 0. This completes
the proof that di,j

2
= 0 when i > 0 and when j is even. The case that j is odd follows identically.

Now, suppose that i = 0. It follows from [9, Lemma 1.10 (i)] that H2(ℤ/p; ΛoddM∗L ⊗ A(p,...,p)) = 0 so we just
need to show that the restriction

H0(ℤ/p; ΛoddM∗L ⊗ A
(p,...,p)) → H2(ℤ/p; ΛevenM∗L ⊗ A

(p,...,p))

of the differential must be trivial. But by Proposition 4.9 and the fact that

Ĥ0(ℤ/p; ΛoddM∗L ⊗ A
(p,...,p)) = 0,

the left-hand side must be in E0,j∞ .
The cases r > 2 follows from a similar analysis.
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4.3 Convergence

In this subsection, we prove the second part of Theorem 4.1 in the case Γ is of type (a, b, 0). The general case
follows from this computation. We induct by assuming that the second part is true for groups of type (a, b󸀠 , 0),
where b󸀠 < b.

Define the filtration for Km(BΓ) given by the spectral sequence by

⋅ ⋅ ⋅ ⊆ F2 ⊆ F1 ⊆ F0 = Km(BΓ).

Since F0/F1 = Km(Tnρ )ℤ/p is a free abelian group, it suffices to compute F1.
We first make a simplification. Suppose that NL has rank bp as an abelian group. Let Γ

󸀠
be the group

Γ
󸀠
:= (ML × ℤ[ℤ/p]b) ⋊ ℤ/p. Let ⋅ ⋅ ⋅ ⊆ G2 ⊆ G1 ⊆ G0 = Km(BΓ󸀠) denote the filtration on Km(BΓ󸀠).

Lemma 4.12. There is an isomorphism F1 ≅ G1.

Proof. Let Tbpℤ[ℤ/p] denote the torus Tbp with a ℤ/p-action corresponding to the action of ℤ/p on the lat-

tice ℤ[ℤ/p]b . Similarly, let TbpNL
denote the torus with ℤ/p-action corresponding to the lattice NL . Since

(NL)(p) ≅ ℤ[ℤ/p](p), there is someN prime to p such that TbpNL
is anN-sheeted regular cover of Tbpℤ[ℤ/p]. From this,

we obtain an N-sheeted regular cover BΓ → BΓ󸀠. This is a map of bundles over Bℤ/p so this induces a map on
the spectral sequences. The induced maps Hs(ℤ/p; Km−s(Ta(p−1) × Tbpℤ[ℤ/p])) → Hs(ℤ/p; Km−s(Ta(p−1) × TbpNL

))
are isomorphisms for s ≥ 1 since N is prime to p. Induction on s via the diagram

Gs/Gs+1 G1/Gs+1 G1/Gs

Fs/Fs+1 F1/Fs+1 F1/Fs

shows that lim
←󳨀󳨀

F1/Fs ≅ lim
←󳨀󳨀

G1/Gs . It follows from Theorem 4.10 that F1 ≅ G1.

For the remainder of the section, we will assume

Γ = (ML × ℤ[ℤ/p]b) ⋊ ℤ/p.

In the computation of F1, induction on bwill address the termsH i(ℤ/p; ΛM∗L ⊗ Ar)when r ̸= (p, . . . , p). In order
to deal with the terms with r = (p, . . . , p), we will need to consider a sphere bundle quotient of BΓ. Recall we
have assumed that NL ≅ ℤ[ℤ/p]b so Tbp ≅ ℝ[ℤ/p]b/NL . Let x0 ∈ Tbp denote the image of 0 ∈ ℝ[ℤ/p]b and let
D denote aℤ/p-invariant disk neighborhood of x0. Then the quotient Tbp/(Tbp \ D) is the representation sphere
of the regular representation ℝ[ℤ/p]b . Using this, we construct a map

BΓ = Tbp ×ℤ/p (Ta(p−1) × Eℤ/p) → Sbp ×ℤ/p (Ta(p−1) × Eℤ/p)

of bundles over Bℤ/p. Let E denote the sphere bundle Sbp ×ℤ/p (Ta(p−1) × Eℤ/p).

Lemma 4.13. There is an isomorphism

Km(E) ≅ Km(B(ML ⋊ ℤ/p)) ⊕ K̃m+b(B(ML ⋊ ℤ/p)).

Moreover,the spectral sequence

Ei,j
2
= H i(ℤ/p; K j(Ta(p−1) × Sbp)) ⇒ K i+j(E)

has trivial differentials di,jr for r ≥ 2.

Proof. There is a section B(ML ⋊ ℤ/p) → E such that Th0 := E/B(ML ⋊ ℤ/p) is the Thom space of the real vector

bundle ℝ[ℤ/p]b ×ML⋊ℤ/p (EML × Eℤ/p) = ℝ[ℤ/p]b ×ℤ/p (Ta(p−1) × Eℤ/p). This gives us an exact sequence

⋅ ⋅ ⋅ → K̃0(Th0) → K0(E) → K0(B(ML ⋊ ℤ/p)) → K̃1(Th0) → K1(E) → ⋅ ⋅ ⋅

in which the maps Km(E) → Km(B(ML ⋊ ℤ/p)) are split surjective. We obtain

Km(E) ≅ Km(B(ML ⋊ ℤ/p)) ⊕ K̃m(Th0).
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Note thatℝ ⊗ NL ≅ ℝ[ℤ/p]b soℝ ⊗ NL ≅ ℝb ⊕ V , whereℝb has trivialℤ/p action and V is a realℤ/p-repre-
sentation obtained by forgetting the complex structure of a complex ℤ/p-representation. Writing Th1 as the

Thom space of V ×ℤ/p (Ta(p−1)×Eℤ/p), we have Th0 = ΣbTh1.We need to show that K̃m(B(ML⋊ℤ/p)) ≅ K̃m(Th1).
Define En := V ×ℤ/p (Ta(p−1) × Eℤ/p(n)), where Eℤ/p(n) denotes the n-skeleton of Eℤ/p and let Thn1 denote

the Thom space of En considered as a vector bundle over Ta(p−1) ×ℤ/p Eℤ/p(n). The Thom isomorphism for

K-theory implies
Km(Thn

1
) ≅ Km(Ta(p−1) ×ℤ/p Eℤ/p(n)).

This induces an isomorphism on inverse systems indexed by n. In particular, Km(Thn
1
) is Mittag-Leffler. Thus,

K̃m(Th1) ≅ lim←󳨀󳨀n
K̃m(Thn

1
) ≅ K̃m(B(ML ⋊ ℤ/p)).

The proof of the second part is similar to the proof of the first part of Theorem 4.1.

Proof of Theorem 4.1 (2), case b = 1. Denote the filtration on Km(E) coming from the fibration E → Bℤ/p by

⋅ ⋅ ⋅ ⊆ G2 ⊆ G1 ⊆ G0 = Km(E).

It follows from Lemma 4.13 and the b = 0 case of Theorem 4.1 that G1 ≅ ℤ̂(p−1)p
a

p .

Suppose i ≥ 1 and j is odd. The Ei,j
2
term for the Atiyah–Hirzebruch–Serre spectral sequence for K-theory

of the fibration BΓ → Bℤ/p is

Ei,j
2
≅ H i(ℤ/p; ΛevenM∗L ⊗ Λ

pℤ[ℤ/p]) ⊕ H i(ℤ/p; ΛoddM∗L ⊗ Λ
0ℤ[ℤ/p]).

On the other hand, the corresponding term for the fibration E → Bℤ/p is

Ei,j
2
≅ H i(ℤ/p; ΛevenM∗L ⊗ H

p(Sp)) ⊕ H i(ℤ/p; ΛoddM∗L ⊗ H
0(Sp)).

The decompositions of the coefficients above follow from the Künneth formula for K-theory [1]. Naturality of the
Künneth formula shows that these decompositions respect theℤ/p-module structures and that BΓ → E induces
isomorphisms on Ei,j

2
. A similar argument shows that this is an isomorphism when j is even as well. Therefore,

Theorem 4.10 implies that G1 ≅ F1.

4.3.1 The b > 1 case

Assume now that b > 1 and that Theorem 4.1 is true for groups of type (a, b󸀠 , 0), where b󸀠 < b. We will need to

make some more observations.

Lemma 4.14. Suppose we have filtered abelian groups

⋅ ⋅ ⋅ ⊆ Fs ⊆ Fs−1 ⊆ ⋅ ⋅ ⋅ ⊆ F1 , ⋅ ⋅ ⋅ ⊆ Gs ⊆ Gs−1 ⊆ ⋅ ⋅ ⋅ ⊆ G1

with a filtration preserving split injection G1 → F1 whose splitting also preserves the filtration. Then

⋅ ⋅ ⋅ ⊆ Fs/Gs ⊆ Fs−1/Gs−1 ⊆ ⋅ ⋅ ⋅ ⊆ F1/G1

is a filtered abelian group with slices

(Fs/Gs)/(Fs+1/Gs+1) ≅ (Fs/Fs+1)/(Gs/Gs+1).

Proof. The splitting implies G1 ∩ Fs = Gs , where we take intersections in F1 and identify the Gs with their

images in F1. The result follows by considering the filtration

⋅ ⋅ ⋅ ⊆ Fs/(G1 ∩ Fs) ⊆ Fs−1/(G1 ∩ Fs−1) ⊆ ⋅ ⋅ ⋅ ⊆ F1/G1 .

Denote the filtration on Km(BΓd) corresponding to the spectral sequence for BΓd by

⋅ ⋅ ⋅ ⊆ F2d ⊆ F
1

d ⊆ F
0

d = K
m(BΓd).
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The maps Fsd → Fs are split injections. In particular, Fs
1
→ Fs → Fs/F1 is a split short exact sequence. Now

consider the square

Fs
2 Fs

Fs
2
/(Fs

2
∩ Fs

1
) Fs/Fs

1
.

The right vertical map and the top map split which gives a splitting for the bottom map. Therefore, there is

a split short exact sequence

0→ Fs
2
/(Fs

2
∩ Fs

1
) → Fs/Fs

1
→ Fs/(Fs

1
+ Fs

2
) → 0,

where Fs
1
+ Fs

2
denotes the subgroup of Fs generated by Fs

1
and Fs

2
. Continuing this way, we obtain split short

exact sequences

0→ Fsd/(F
s
d ∩ (F

s
1
+ ⋅ ⋅ ⋅ + Fsd−1) → Fs/(Fs

1
+ ⋅ ⋅ ⋅ + Fsd−1) → Fs/(Fs

1
+ ⋅ ⋅ ⋅ + Fsd) → 0.

This shows that Fs → Fs/(Fs
1
+ ⋅ ⋅ ⋅ + Fsb) is split. The group F

s/(Fs
1
+ ⋅ ⋅ ⋅ + Fsb) is a filtration for the subgroup of

Km(BΓ) with slices H i(ℤ/p; (ΛNL) ⊗ Ar), where at least one of r1 , r2 , . . . , rd is 0.

Lemma 4.15. There is an isomorphism

F1
1
+ ⋅ ⋅ ⋅ + F1b ≅ ℤ̂

(p−1)(pa)νb
p ,

where
νb := (

b
1
)2b−2 − (

b
2
)2b−3 + ⋅ ⋅ ⋅ + (−1)(b−1)+1(

b
b − 1)

2
0 + κb,m .

Here, κb,m = (−1)b+1 when m is even and κb,m = 0 when m is odd.

Proof. Let us abbreviate F1α1 ,...,αd := F
1

α1 ∩ ⋅ ⋅ ⋅ ∩ F
1

αd , where α1 , . . . , αd are distinct integers in {1, . . . , b} and
where the intersection occurs in F1 ⊆ Km(BΓ). For d < b, each F1α1 ,...,αd is the image of the p-adic part of
Km(B((ML ⊕ ℤ[ℤ/p]b−d) ⋊ ℤ/p)) under an appropriate retraction BΓ→ B((ML ⊕ℤ[ℤ/p]b−d) ⋊ ℤ/p). For d = b,
the group F1

1,...,b is the image of the p-adic part of K
m(B(ML ⋊ ℤ/p)) under the projection BΓ → B(ML ⋊ ℤ/p).

One checks that there is the following resolution:

0→ F1
1,...,b →

b
⨁
α=1

F1
1,...,α̂,...,b → ⋅ ⋅ ⋅ →⨁

α<β
F1α,β →

b
⨁
α=1

F1α →
b
∑
α=1

F1α → 0.

Note that the F1α1 ,...,αd are finitely generated free ℤ̂p-modules. Moreover, any abelian group homomorphism of

such modules is a ℤ̂p-module homomorphism.¹ As an abelian group, ∑bα=1 F1α is torsion-free; the retractions
∑bα=1 F1α → F1α give an injective homomorphism ∑bα=1 F1α →⨁

b
α=1 F1α whose target is torsion-free. Since ℤ̂p is

a principal ideal domain, we see that ∑bα=1 F1α is a finitely generated free ℤ̂p-module.
The result follows from tensoring with ℚ̂p and counting dimensions. For d = 1, . . . , b − 1, the induction

hypothesis implies

F1α1 ,...,αd ≅ ℤ̂
(p−1)pa2d−1
p .

For d = b, we have
F1
1,...,b ≅ ℤ̂

(p−1)pa
p ⊆ K̃m(B(ML ⋊ ℤ/p)),

which accounts for the term κb,m .

1 One examines the bijections

Homℤ(ℤ̂p , ℤ̂p) = lim←󳨀󳨀n
Homℤ(ℤ̂p ,ℤ/pn) = lim←󳨀󳨀n

Homℤ(ℤ/pn ,ℤ/pn) = lim
←󳨀󳨀n

Homℤ(ℤ,ℤ/pn) = Homℤ(ℤ, ℤ̂p) = Homℤ̂p
(ℤ̂p , ℤ̂p),

where the second bijection follows from the fact that ℤ̂p has a unique subgroup of index pn .
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Lemma 4.16. If b ̸≡ m modulo 2, then νb = 2b−1. If b ≡ m modulo 2, then νb = 2b−1 − 1.

Proof. This follows from expanding 1 = (2 − 1)b .

Proof of Theorem 4.1 (2), case b > 1. Suppose that b ̸≡ m modulo 2. Then F1/(∑bα=1 F1α) is filtered with slices

(Fs/(
b
∑
α=1

Fsα))/(Fs+1/(
b
∑
α=1

Fs+1α )) ≅
{
{
{

Hs(ℤ/p; ΛevenML), s odd,
Hs(ℤ/p; ΛoddML), s even.

In either case, we see that these slices are trivial. Since ∩∞s=0Fs = 0, we see that F1 ≅ ∑
b
α=1 F1α .

Now, suppose that b ≡ m modulo 2. Then we have slices

(Fs/(
b
∑
α=1

Fsα))/(Fs+1/(
b
∑
α=1

Fs+1α )) ≅
{
{
{

Hs(ℤ/p; ΛevenML ⊗ A(p,...,p)), s even,
Hs(ℤ/p; ΛoddML ⊗ A(p,...,p)), s odd.

Recall that we have assumed the submodule NL is isomorphic toℤ[ℤ/p]b so there is the sphere bundle quotient
E discussed in Lemma4.13. As before,we let {Gs}denote thefiltration onKm(E). Note that there is a split injection
of filtered abelian groups F1

1,...,b → G1. One checks that

G1/F1
1,...,b ≅ ℤ̂

(p−1)pa
p

and that the map of filtered abelian groups G1 → F1 → F1/(∑bα=1 F1α) factors through G1/F1
1,...,b . The map

G1/F1
1,...,b → F1/(∑bα=1 F1α) induces an isomorphism on slices. Using that

G1 ≅ lim
←󳨀󳨀s

G1/Gs and Gs ≅ Fs
1,...,b ⊕ G

s/Fs
1,...,b ,

we get

G1/F1
1,...,p ≅ lim←󳨀󳨀s

(G1/F1
1,...,p)/(G

s/Fs
1,...,p)

The isomorphism

F1/(
b
∑
α=1

F1α) ≅ lim←󳨀󳨀s
(F1/(

b
∑
α=1

F1α))/(Fs/(
b
∑
α=1

Fsα))

follows similarly. Therefore, we obtain an isomorphism

ℤ̂(p−1)p
a

p ≅ G1/F1
1,...,p ≅ F

1/(
b
∑
α
F1α).

Using Lemma 4.15 and Lemma 4.16, we obtain F1 ≅ ℤ̂(p−1)p
a
2
b−1

p as desired.

4.4 Corollaries of the K-theory computation

We record some consequences of Theorem 4.1 that we will need for computing the L-groups and the structure
sets. These results are proven for groups of type (a, 0, 0) in [9] so we will assume that either b ̸= 0 or c ̸= 0 in
this section. We need to import the following results, which can be found in [9].

Lemma 4.17. For a finite group G, there is an isomorphism

Ext
i
Rℂ(G)(M, Rℂ(G)) ≅ Extiℤ(M,ℤ)

for i ≥ 0.

Theorem 4.18 (Universal Coefficients Theorem). For any CW-complex and all m ∈ ℤ, there is an short exact
sequence

0→ Ext
1

ℤ(Km−1(X),ℤ) → Km(X) → Homℤ(Km(X),ℤ) → 0.

Furthermore, when X is finite, there is a an exact sequence

0→ Ext
1

ℤ(K
m+1(X),ℤ) → Km(X) → Homℤ(Km(X),ℤ) → 0.

These sequences are natural in X.
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Theorem 4.19 (Equivariant Universal Coefficients Theorem). Suppose that H is a finite group and that X is an
H-CW-complex. For m ∈ ℤ, there is a short exact sequence of Rℂ(H)-modules

0→ Ext
1

Rℂ(H)(K
H
m−1(X), Rℂ(H)) → KmH (X) → HomRℂ(H)(KHm(X), Rℂ(H)) → 0.

Furthermore, when X is finite, there is an exact sequence

0→ Ext
1

Rℂ(H)(K
m+1
H (X), Rℂ(H)) → KHm(X) → HomRℂ(H)(KmH (X), Rℂ(H)) → 0.

These sequences are natural in X.

Corollary 4.20. The differentials in the following Atiyah–Hirzebruch–Serre spectral sequence vanish:

E2i,j = Hi(ℤ/p; Kj(Tnρ )) ⇒ Ki+j(BΓ).

Proof. The proof of this result is similar to the proof of Theorem 4.1 so we only sketch it. First, note that we may

reduce to the case that Γ is type (a, b, 0) as in Lemma 4.11.
As a ℤ[ℤ/p]-module, Kj(Tnρ ) is isomorphic to the dual K j(Tnρ )∗. Since dualization commutes with taking

direct sums and dualization sends modules of type (a, b, c) to modules of type (a, b, c), the induction argument
in the proof of Theorem 4.1 proves that the differentials d2i,j vanish when i > 2.

Now, we check that the differentials

d2
2,j : H2(ℤ/p; Km(Tnρ )) → H0(ℤ/p; Km(Tnρ ))

mapping to the left column vanish. By the induction hypothesis, it suffices to show that the restriction of the

differential summands of the form

H2(ℤ/p; (ΛoddM∗L ⊗ A
(p,...,p))∗) → H0(ℤ/p; (ΛevenM∗L ⊗ A

(p,...,p))∗)

and

H2(ℤ/p; (ΛevenM∗L ⊗ A
(p,...,p))∗) → H0(ℤ/p; (ΛoddM∗L ⊗ A

(p,...,p))∗)

vanish. Since

H2(ℤ/p; (ΛevenM∗L ⊗ A
(p,...,p))∗) ≅ H1(ℤ/p; ΛevenM∗L ⊗ A

(p,...,p)) ≅ 0,

we only need to check the differentials vanish in the first case. The left column consists of terms Kj(Tnρ )ℤ/p . In
order to show the differentials vanish, it suffices to show that the transgression Kj(Tnρ )ℤ/p → Kj(BΓ) is injective.
The norm map Kj(Tnρ )ℤ/p → Kj(Tnρ )ℤ/p factors through the transgression. Since

Ĥ−1(ℤ/p; (ΛevenM∗L ⊗ A
(p,...,p))∗) ≅ Ĥ1(ℤ/p; ΛevenM∗L ⊗ A

(p,...,p)) ≅ 0

the norm map is injective on the summand H0(ℤ/p; (ΛevenM∗L ⊗ A(p,...,p))∗). Hence, this term is in E∞
0,j .

The proof that dri,j vanishes for r > 2 is similar.

Corollary 4.21. There is an isomorphism

Km(BΓ) ≅ Homℤ(Km(Tnρ )ℤ/p ,ℤ) ⊕ (ℤ/p∞)(p−1)p
a
2
b+c−1

where Homℤ(Km(Tnρ )ℤ/p ,ℤ) is the image of the map induced by the inclusion of the fiber Tnρ → BΓ.

Proof. Define Bs := Tnρ ×ℤ/p Eℤ/p(s). We have the following direct system of short exact sequences:

.

.

.

.

.

.

.

.

.

Ext
1

ℤ(Km+1(Bs),ℤ) Km(Bs) Homℤ(Km(Bs),ℤ)

Ext
1

ℤ(Km+1(Bs+1),ℤ) Km(Bs+1) Homℤ(Km(Bs+1),ℤ)

.

.

.

.

.

.

.

.

.
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Taking the colimit, we obtain

0→ lim
󳨀󳨀→

Ext
1

ℤ(K
m+1(Bs),ℤ) → Km(BΓ) → lim

󳨀󳨀→
Homℤ(Km(Bs),ℤ) → 0.

By considering the Atiyah–Hirzebruch–Serre spectral sequence for the fibration Bs → Bℤ/p(s) and comparing
it to that of the fibration BΓ → Bℤ/p, we see that Km(Bs) ≅ Km(Tnρ )ℤ/p ⊕ As ⊕ Cs , where As is some p-group
and Cs is a (possibly trivial) finitely generated free abelian group. Indeed, the limit of the As is exactly F1 in
the filtration of Km(BΓ). Moreover, by considering morphisms of spectral sequences, Cs is not in the image

of Km(Bs+1). Therefore, the right hand term is isomorphic to Homℤ(Km(Tnρ )ℤ/p ,ℤ) ≅ Km(Tnρ )ℤ/p .
The left-hand term is isomorphic to lim

󳨀󳨀→
Ext

1

ℤ(As ,ℤ) (we abuse notation here and let As denote the p-group
in Km+1(Bs)). We obtain isomorphisms

lim
󳨀󳨀→

Ext
1

ℤ(A
s
;ℤ) ≅ lim
󳨀󳨀→

Âs ≅ l̂im
←󳨀󳨀

As ≅ (ℤ̂(p−1)p
a
2
b+c−1

p )
̂
≅ (ℤ/p∞)(p−1)pa2b+c−1 ,

where Â denotes the Pontryagin dual of a locally compact abelian group A. We refer to the proof of [9, Theo-

rem 4.1] and [16] for details regarding Pontryagin duality.

It remains to check that the subgroup Homℤ(Km(Tnρ )ℤ/p ,ℤ) is the image of the map induced by Tnρ → BΓ.
The inclusion induces the composition

Km(Bs) → Km(Tnρ )ℤ/p 󳨅→ Km(Tnρ ).

By the commutativity of the diagram

Km(Tnρ ) Homℤ(Km(Tnρ ),ℤ)

Km(BΓ) lim
󳨀󳨀→

Homℤ(Km(Bs),ℤ)

the result follows.

In the future, we will write Km(Tnρ )ℤ/p rather than Homℤ(Km(Tnρ )ℤ/p ,ℤ).

Corollary 4.22. After inverting 2, KOm(BΓ) is the sum of a finitely generated free ℤ[ 1
2
]-module and a p-torsion

group. Moreover, the inclusion Tnρ → BΓ induces a surjection on the finitely generated free ℤ[ 1
2
]-module.

Proof. Consider the following diagram:

KOm(Tnρ ) Km(Tnρ ) KOm(Tnρ )

KOm(BΓ) Km(BΓ) KOm(BΓ).

i∗ r∗

i∗ r∗

The horizontal composites aremultiplication by 2. Thus, after inverting 2, i∗ is injective. Applying Corollary 4.21
proves the first part.

For the second part, let x ∈ KOm(BΓ) be an element in the finitely generated free ℤ[ 1
2
]-submodule of

KOm(BΓ). Then i∗x is in the image of the middle vertical map by Corollary 4.21. It pulls back to an element

y ∈ Km(Tnρ ). But then x is the image of 1

2
r∗y under the outer vertical maps.

Corollary 4.23. The groups Km
Γ
(EΓ), KOm

Γ
(EΓ) and KOΓ

m(EΓ) are p-torsion free.

Proof. First, we show that Km
Γ
(EΓ) is p-torsion free. Let R̃ℂ(ℤ/p) denote the reduced complex representation

ring of the group ℤ/p. Proposition 3.2 gives us the top row of the following diagram:

⋅ ⋅ ⋅ ⨁(P)∈P R̃ℂ(ℤ/p)2
b+c−1 Km(BΓ) Km

Γ
(EΓ) ⨁(P)∈P R̃ℂ(ℤ/p)2

b+c−1 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⨁(P)∈P ℤ̂
2
b+c−1
p Km(BΓ) Km(BΓ) ⨁(P)∈P ℤ̂

2
b+c−1
p ⋅ ⋅ ⋅ .

φ
=
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The bottom row comes from applying K-theory to the homotopy pushout diagram obtained from the quotient

of diagram 3.1 by Γ. The vertical map⨁(P)∈P R̃ℂ(ℤ/p)2
b+c−1
→⨁(P)∈P ℤ̂

2
b+c−1
p is p-adic completion.

Let x ∈ Km
Γ
(EΓ) be an element of order p. Then x must pull back to an element in Km(BΓ)which then pulls

back to and element x ∈ ⨁(P)∈P ℤ̂2
b+c−1
p (here we use that Km(BΓ) is torsion free). Using the transfer, one can

check that Km(BΓ) is the sum of a finitely generated free abelian group with a finite p-group. The image of φ
must be contained in the p-group (it is the entire p-group as Km(BΓ) is torsion free). Thus φ factors through

⊕(P)∈Pℤ̂2
b+c−1
p /pNℤ̂2

b+c−1
p for some N . But every element in this quotient can be represented by an element in the

image of⨁(P)∈P R̃ℂ(ℤ/p)2
b+c−1

. Let x̃ ∈ ⨁(P)∈P R̃ℂ(ℤ/p)2
b+c−1

be an element lifting the projection of x. Then we
obtain that x̃ maps to x ∈ Km

Γ
(EΓ) but exactness implies that x = 0. This shows that Km

Γ
(EΓ) has no p-torsion.

Lemma 4.17 and Theorem 4.19 imply that KΓ

m(EΓ) has no p-torsion. Since multiplication by 2 in KOΓ

m(EΓ)
factors through KΓ

m(EΓ), it follows that KOΓ

m(EΓ) has no p-torsion.

5 L-theory computations

For geometric applications, one is typically interested in the groups Lsm(ℤ[Γ]) and Lhm(ℤ[Γ]). The group Lsm(ℤ[Γ])
contains obstructions to obtaining simple homotopy equivalences through surgery and the group Lhm(ℤ[Γ]) con-
tains obstructions to obtaining homotopy equivalences through surgery. There is a map Lsm(ℤ[Γ]) → Lhm(ℤ[Γ]).
More generally, one can define the lower L-groups L⟨j⟩m (ℤ[Γ]), where j = 2, 1, 0, . . . with the convention

L⟨2⟩m (ℤ[Γ]) = Lsm(ℤ[Γ]), L⟨1⟩m (ℤ[Γ]) = Lhm(ℤ[Γ]).

There are maps

L⟨j⟩m (ℤ[Γ]) → L⟨j−1⟩m (ℤ[Γ])

and we define

L⟨−∞⟩m (ℤ[Γ]) := lim󳨀󳨀→
L⟨j⟩m (ℤ[Γ]).

This theory is developed in [14]. The group L⟨j⟩m (ℤ[Γ]) is πmL⟨j⟩(ℤ[Γ]) for a spectrum L⟨j⟩(ℤ[Γ]). Also, the functors
L⟨j⟩ℤ : Grpd→ Sp send a group G (regarded as a groupoid) to L⟨j⟩(ℤ[G]).

We begin by computing L⟨−∞⟩m (ℤ[Γ]). This is easier to work with as the Farrell–Jones conjecture holds

for L⟨−∞⟩. Using Rothenberg sequences [14, Section 17], we then compute L⟨j⟩m (ℤ[Γ]) for all j. One of the pri-
mary L-groups that appear in our computations are the groups L⟨j⟩m (ℤ[NΓP]) and L

⟨j⟩
m (ℤ[WΓP]) so we take

some time to discuss these groups here. Recall that NΓP ≅ ℤb+c × ℤ/p and WΓP ≅ ℤb+c . Shaneson splitting

[14, Theorem 17.2] gives isomorphisms

L⟨j⟩m (ℤ[NΓP]) ≅
b+c
⨁
i=0

L⟨j−i⟩m−i (ℤ[ℤ/p])(
b+c
i ) , L⟨j⟩m (ℤ[WΓP]) ≅

b+c
⨁
i=0

L⟨j−i⟩m−i (ℤ)
(b+ci ) .

When j = −∞, the Farrell–Jones conjecture says that the first group can be repackaged as the homology

group Hm(Tb; L⟨−∞⟩(ℤ[ℤ/p])). The second group can always be rewritten as Hm(Tb+c; L(ℤ)) since the maps
L⟨j⟩m (ℤ) → L⟨j−1⟩m (ℤ) are isomorphisms for all j. Since the map NΓP → WΓP splits in our case, we have an

inclusion

L⟨j⟩m (ℤ[WΓP]) → L⟨j⟩m (ℤ[NΓP]).

The quotient is

L⟨j⟩m (ℤ[NΓP])/L
⟨j⟩
m (ℤ[WΓP]) ≅

b+c
⨁
i=0

L̃⟨j−i⟩m−i (ℤ[ℤ/p])(
b+c
i ) .

So, these groups can be computed in terms of the L-groups of the group ℤ/p.
Finally, we record the L-groups of ℤ/p. The following theorem can be found in [3] and [2].

Theorem 5.1. There are isomorphisms

L̃sm(ℤ[ℤ/p]) ≅
{
{
{

ℤ(p−1)/2 , m even,
0, m odd,

and L̃hm(ℤ[ℤ/p]) ≅
{
{
{

ℤ(p−1)/2 ⊕ H(ℤ/p), m even,
0, m odd,
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where H(ℤ/p) is finitely generated abelian group of exponent 2. For j ≤ 0, there is an isomorphism

L̃⟨j⟩m (ℤ[ℤ/p]) ≅
{
{
{

ℤ(p−1)/2 , m even,
0, m odd.

Remark. Although L̃sm(ℤ[ℤ/p]) and L̃
⟨j⟩
m (ℤ[ℤ/p]) are isomorphic for j ≤ 0, the map

L̃sm(ℤ[ℤ/p]) → L̃⟨j⟩m (ℤ[ℤ/p])

is not an isomorphism.

5.1 The L⟨−∞⟩ computation

Theorem 5.2. There is an isomorphism

L⟨−∞⟩m (ℤ[Γ]) ≅ (⨁
(P)∈P

Hm((Tnρ )P; L̃⟨−∞⟩(ℤ[ℤ/p]))) ⊕ Hm(Tnρ ; L(ℤ))ℤ/p .

Proof. We show that the isomorphism holds when p is inverted and when 2 is inverted. This suffices since the

groups are finitely generated.

Using Proposition 3.4 and Proposition 3.2, we have the following long exact sequence:

⋅ ⋅ ⋅ → Km
φm
󳨀󳨀→ L⟨−∞⟩m (ℤ[Γ]) → Hm(BΓ; L(ℤ)) → Km−1 → ⋅ ⋅ ⋅ . (5.1)

By the remark after Proposition 3.2, we can make the identification

Km ≅ ⨁
(P)∈P

Hm((Tnρ )P; L̃⟨−∞⟩(ℤ[ℤ/p])).

After inverting p, the sequence splits into short exact sequences

0→ Km → L⟨−∞⟩m (ℤ[Γ]) → Hm(BΓ; L(ℤ)) → 0.

But when p is inverted, the right-hand term is isomorphic to Hm(Tnρ ; L(ℤ))ℤ/p by a transfer argument [9, Propo-
sition A.4]. This is free so the sequence splits. Note that Km is a free abelian group since L̃⟨−∞⟩m (ℤ[ℤ/p]) is
free abelian.

Now it remains to show that the groups are isomorphic after inverting 2. By [10, Theorem 4.2], equivariant

L-theory homology and equivariant KO-homology agree after inverting 2. We obtain the resulting long exact

sequence.

⋅ ⋅ ⋅ 󳨀󳨀→ Km[
1

2
]

φm
󳨀󳨀→ KOΓ

m(EΓ)[
1

2
] 󳨀󳨀→ KOm(BΓ)[

1

2
] 󳨀󳨀→ Km−1[

1

2
] 󳨀󳨀→ ⋅ ⋅ ⋅ .

We can write KOm(BΓ)[ 12 ] ≅ F ⊕ A, where F is a free ℤ[ 1
2
]-module and A is a p-torsion group. The map

KOΓ

m(EΓ)[ 12 ] → KOm(BΓ)[ 12 ] is invertible after inverting p so there is a partial section defined on a p-power
index subgroup of KOm(BΓ)[ 12 ]. Since KO

Γ

m(EΓ) has no p-torsion, this subgroup must be a p-power index sub-
group of F, hence isomorphic to F. This partial splitting gives a subgroupKm[ 12 ] ⊕ F, which is p-power index in
KOΓ

m(EΓ)[ 12 ]. Therefore, there is an isomorphism

KOΓ

m(EΓ)[
1

2
] ≅ Km[

1

2
] ⊕ F.

It remains to check that F is isomorphic to Hm(Tnρ ; L(ℤ))ℤ/p[ 12 ]. But this is a consequence of the fact that

Hm(Tnρ ; L(ℤ))ℤ/p[ 12 ] is a free ℤ[
1

2
]-module isomorphic to a p-power index subgroup of Hm(BΓ; L(ℤ))[ 12 ].

5.2 Arbitrary decorations

For the groups studied in [10], the assembly map HG
m(EG;L

⟨j⟩
ℤ ) → L⟨j⟩m (ℤ[G]) is an isomorphism for all decora-

tions j. This is essentially because the normalizers of finite subgroups are isomorphic to ℤ/p and because the
analogous result holds forℤ/p. In our case, the normalizers are of the formℤb+c × ℤ/p so the situation becomes
more complicated.
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In order to study L-theory with arbitrary decorations, we need to use Whitehead groups.

Definition 5.3. For a group G and integer m, define the Whitehead group Whm(G) to be

Whm(G) := HG
m(EG → pt;Kℤ).

The isomorphism in the statement below is [12, equation 3.29]. That this isomorphism is induced by an inclusion

of subgroups follows from the proof of [12, Theorem 1.10].

Theorem 5.4. There is an isomorphism induced by the inclusions NΓP → Γ:

Whm(Γ) ≅ ⨁
(P)∈P

Whm(NΓP).

Since Whm(ℤb+c × ℤ/p) ≅ ⨁b+c
k=0Whm−k(ℤ/p)(

b+c
k ) and Whm(ℤ/p) = 0 when m ≤ −1, Whm(Γ) = 0 for m ≤ −1.

Theorem 5.5. For j = 2, 1, 0, . . . , −∞, there is an isomorphism

L⟨j⟩m (ℤ[Γ]) ≅ Hm(Tnρ ; L(ℤ))ℤ/p ⊕ ⨁
(P)∈P

L⟨j⟩m (ℤ[NΓP])/L
⟨j⟩
m (ℤ[WΓP]).

Proof. The homology group Hm((Tnρ )P; L̃⟨−∞⟩(ℤ[ℤ/p])) fits into the exact sequence

⋅ ⋅ ⋅ → Hm((Tnρ )P; L(ℤ)) → Hm((Tnρ )P; L⟨−∞⟩(ℤ[ℤ/p])) → Hm((Tnρ )P; L̃⟨−∞⟩(ℤ[ℤ/p])) → ⋅ ⋅ ⋅ ,

where the map L(ℤ) → L⟨−∞⟩(ℤ[ℤ/p]) splits. By the Farrell–Jones conjecture (or Shaneson splitting), we may
identify

Hm((Tnρ )P; L(ℤ)) ≅ Lm(ℤ[WΓP]), Hm((Tnρ )P; L⟨−∞⟩(ℤ[ℤ/p])) ≅ L
⟨−∞⟩
m (ℤ[NΓP]).

It follows from Theorem 5.2 and the resulting identification

Hm(Tnρ )P; L̃⟨−∞⟩(ℤ[ℤ/p])) ≅ L
⟨−∞⟩
m (ℤ[NΓP])/L⟨−∞⟩m (ℤ[WΓP])

that the result is true when 2 is inverted. Now, we need to check that the result is true when p is inverted. Since
Whj(NΓP), Whj(Γ) = 0 for j ≤ −1, the Farrell–Jones conjecture and Proposition 3.2 imply that

⨁
(P)∈P

L⟨j⟩m (ℤ[NΓP])/L
⟨j⟩
m (ℤ[WΓP]) 󳨀󳨀→ L⟨j⟩m (ℤ[Γ])

β⟨j⟩m
󳨀󳨀→ Hm(BΓ; L(ℤ))

is a split short exact sequence when p is inverted.
We claim the same is true for j > −1. To verify this claim, we induct on j, using j = −1 as the base case.

Consider the following diagram:

.

.

.

.

.

.

.

.

.

⨁(P)∈P Ĥm+1(ℤ/2;Whj(NΓP)) Ĥm+1(ℤ/2;Whj(Γ)) 0

⨁(P)∈P L
⟨j+1⟩
m (ℤ[NΓP])/L

⟨j+1⟩
m (ℤ[WΓP]) L⟨j+1⟩m (ℤ[Γ]) Hm(BΓ; L(ℤ))

⨁(P)∈P L
⟨j⟩
m (ℤ[NΓP])/L

⟨j⟩
m (ℤ[WΓP]) L⟨j⟩m (ℤ[Γ]) Hm(BΓ; L(ℤ))

.

.

.

.

.

.

.

.

.

β⟨j+1⟩m

=

β⟨j⟩m
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The left vertical column comes from the Rothenberg sequence and the observation thatWΓP is a free abel-
ian group which splits from NΓP. The middle column is a Rothenberg sequence. The map β⟨j+1⟩m is defined so

that the diagram commutes. If we invert p, the bottom row is split exact by hypothesis. Then the middle row

is exact.

Now, we must check that β⟨j+1⟩m is split when p is inverted. We have the commuting diagram

HΓ

m(EΓ;L
⟨j+1⟩
ℤ ) Hm(BΓ; L(ℤ))

HΓ

m(EΓ;L
⟨−∞⟩
ℤ ) Hm(BΓ; L(ℤ))

L⟨−∞⟩m (ℤ[Γ]) Hm(BΓ; L(ℤ))

L⟨j+1⟩m (ℤ[Γ]) Hm(BΓ; L(ℤ)).

β
⟨j+1⟩
m

A⟨−∞⟩m

β⟨j+1⟩m

A⟨j+1⟩m

where the maps A⟨−∞⟩m and A⟨j⟩m are assembly maps. The top map comes from Proposition 3.2 so it splits after

p is inverted. The vertical maps on the right are equalities. The map L⟨−∞⟩m (ℤ[Γ]) → Hm(BΓ; L(ℤ)) is chosen
so the middle square commutes which can be done since A⟨−∞⟩m is an isomorphism. The bottom square com-

mutes from the definition of β⟨j+1⟩m . The composite A⟨j+1⟩m ∘ (β⟨j+1⟩m )
−1
gives us the desired splitting of β⟨j+1⟩m .

Thus, when p is inverted, we have split short exact sequences

⨁
(P)∈P

L⟨j+1⟩m (ℤ[NΓP])/L
⟨j+1⟩
m (ℤ[WΓP]) 󳨀󳨀󳨀󳨀→ L⟨j+1⟩m (ℤ[Γ])

β⟨j+1⟩m
󳨀󳨀󳨀󳨀→ Hm(BΓ; L(ℤ)). (5.2)

As Hm(BΓ; L(ℤ))[ 1p ] ≅ (Hm(Tnρ ; L(ℤ))ℤ/p)[ 1p ], this finishes the proof of the theorem.

6 Computation of the structure set

6.1 A brief review of surgery

LetM be a simple Poincaré duality complex. Its geometric simple structure set, denoted Sgeo,s(M), is defined to be
the set of equivalence classes of simple homotopy equivalences f : N → M. Two simple homotopy equivalences

f : N → M and f 󸀠 : N󸀠 → M are equivalent if there is a homeomorphism g : N → N󸀠 such that f and f 󸀠 ∘ g are
homotopic. The geometric simple structure set is contained in geometric surgery exact sequence

⋅ ⋅ ⋅ → N(M × I) → Lsn+1(ℤ[π1(M)]) → Sgeo,s(M) → N(N) → Lsn(ℤ[π1(M)]).

This can be found in [17]. It is not clear from this description that there is an abelian group structure on Sgeo,s(M).
In [15], Ranicki defines an algebraic surgery exact sequence valid for any CW complex X.

⋅ ⋅ ⋅ 󳨀󳨀󳨀󳨀󳨀󳨀→ Hm+1(X; L(ℤ))
Am+1(X)󳨀󳨀󳨀󳨀󳨀󳨀→ Lsm+1(ℤ[π1X])

ξm+1(X)
󳨀󳨀󳨀󳨀󳨀󳨀→ S

per,s
m+1 (X)

ηm+1(X)
󳨀󳨀󳨀󳨀󳨀󳨀→ Hm(X; L(ℤ))

Am(X)󳨀󳨀󳨀󳨀󳨀󳨀→ Lsm(ℤ[π1X]) 󳨀󳨀󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅ .
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The groups S
per,s
m (X) are called the periodic simple structure groups. One can, for instance, define the assembly

map Am(X) and define S
per,s
m (X) to be the homotopy groups of the fiber. When X is an m-dimensional simple

Poincaré complex, elements of S
per,s
m+1 (X) can be represented by homotopy equivalences f : N → X, where N is

a homology manifold (see [6]).

If we define

S
per,⟨j⟩
m (X) := Hm(X → pt;L⟨j⟩ℤ )

then we have algebraic surgery exact sequences for all decorations. The techniques used to compute S
per,s
n+ℓ+1(M)

will also compute S
per,⟨j⟩
n+ℓ+1 (M) so we state our results in this level of generality.

Let L(ℤ)⟨1⟩ denote the 1-connective cover of L(ℤ). Then there is an algebraic surgery exact sequence

⋅ ⋅ ⋅ 󳨀󳨀󳨀󳨀󳨀󳨀→ Hm+1(X; L(ℤ)⟨1⟩))
A⟨1⟩
m+1(X)󳨀󳨀󳨀󳨀󳨀󳨀→ Lsm+1(ℤ[π1(X)])

ξ⟨1⟩m+1(X)󳨀󳨀󳨀󳨀󳨀󳨀→ S
⟨1⟩,s
m+1 (X)

η⟨1⟩m+1(X)󳨀󳨀󳨀󳨀󳨀󳨀→ Hm(X; L⟨1⟩)

A⟨1⟩
m (X)󳨀󳨀󳨀󳨀󳨀󳨀→ Lsm(ℤ[π1(X)]) 󳨀󳨀󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅ .

When X is an m-dimensional closed manifold, Ranicki shows that

Sgeo,s(X) ≅ S⟨1⟩,sm+1 (X).

Just as we did for the periodic structure sets, we may define structure sets S
geo,⟨j⟩
m (X) so that there is an

algebraic surgery exact sequence

⋅ ⋅ ⋅ 󳨀󳨀󳨀󳨀󳨀󳨀→ Hm(X; L(ℤ)⟨1⟩)
A⟨1⟩
m+1(X)󳨀󳨀󳨀󳨀󳨀󳨀→ L⟨j⟩m (ℤ[π1(X)])

ξ⟨1⟩m+1(X)󳨀󳨀󳨀󳨀󳨀󳨀→ S
geo,⟨j⟩
m (X) 󳨀󳨀󳨀󳨀󳨀󳨀→ ⋅ ⋅ ⋅

for all decorations. We opt to use the notation S
geo,⟨j⟩
m (X) rather than the more appropriate S⟨1⟩,⟨j⟩m (X) in order to

avoid confusion.

6.2 The Periodic Structure Set of BΓ

Here, we will record computations of periodic structure sets found in [10] and [12].

The following results are [10, Theorem 6.1] and [12, Theorem 1.13], respectively.

Theorem 6.1. Let p be an odd prime and let P be a finite p-group. Then the homomorphism

ξ∗(BP) : L
⟨j⟩
∗ (ℤ[P]) → S

per,⟨j⟩
∗ (BP)

induces a 1

p -localization
̃ξ∗(BP) : L̃

⟨j⟩
∗ (ℤ[P]) → S

per,⟨j⟩
∗ (BP).

In particular,

S
per,⟨j⟩
m (BP) ≅ L̃⟨j⟩m (ℤ[P])[

1

p ] ≅
{
{
{

ℤ[ 1p ]
(p−1)/2

, m even,
0, m odd,

when j ̸= 1.

Theorem 6.2. There is an isomorphism

⨁
(P)∈P

b+c
⨁
i=0

S
per,⟨j−i⟩
m−i (BP)(

b+c
i ) ≅ Sper,⟨j⟩m (BΓ).

Remark. Although [10, Theorem 6.1] is only stated for the decoration s, the proof is valid for all decorations.

Remark. In the proof of [12, Theorem 1.13], the authors use an isomorphism

⨁
P∈P

b+c
⨁
i=0

K̃j(ℤ[P])(
b+c
i ) ≅ K̃j(ℤ[Γ])
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rather than the correct isomorphism

⨁
(P)∈P

b+c
⨁
i=0

K̃j−i(ℤ[P])(
b+c
i ) ≅ K̃j(ℤ[Γ])

and conclude that there is an isomorphism

⨁
(P)∈P

b+c
⨁
i=0

S
per,⟨j⟩
n−i (BP)(

b+c
i ) ≅ Sper,⟨j⟩n (BΓ)

rather than the isomorphism in Theorem 6.2. The isomorphism in Theorem 6.2 can be obtained from the proof

of [12, Theorem 1.13] after resolving the indexing issue.

Remark. The isomorphism in Theorem 6.2 can be rewritten as

S
per,⟨j⟩
m (BΓ) ≅ ⨁

(P)∈P
L⟨j⟩m (ℤ[NΓP])/L

⟨j⟩
m (ℤ[WΓP])[

1

p ].

6.3 The periodic structure set of M

In order to compute the periodic structure sets S
per,⟨j⟩
n+ℓ+1 (M), we follow [10, Section 8]. Namely, we study a map

σ : Sper,⟨j⟩n+ℓ+1 (M) → Hn(Tnρ ; L(ℤ))ℤ/p

so that we get a well-behaved injection

σ × Sper,⟨j⟩n+ℓ+1 (f) : S
per,⟨j⟩
n+ℓ+1 (M) → Hn(Tnρ ; L(ℤ))ℤ/p × S

per,⟨j⟩
n+ℓ+1 (BΓ),

where f : M → BΓ is the inclusion.
First, we record a consequence of Corollary 4.20.

Proposition 6.3. The differentials in the Atiyah–Hirzebruch–Serre spectral sequences

E2i,j(BΓ) = Hi(ℤ/p;Hj(Tnρ ; L(ℤ))) ⇒ Hi+j(BΓ; L(ℤ))

and
E2i,j(M) = H

ℤ/p
i (S
ℓ
;Hj(Tnρ ; L(ℤ))) ⇒ Hi+j(M; L(ℤ))

vanish.

Proof. The proof is similar to the proof of [10, Lemma 8.3] so we give an outline.
We first show that the differentials in the first spectral sequence vanish. It suffices to show that the differen-

tials vanish after inverting p and after localizing p. After inverting p, the only nonzero terms are in the column
E2
0,j so the differentials must vanish.

After localizing at p and applying [10, Theorem4.2], it suffices to show that the differentials for the homology

theory KO∗(−)(p) vanish. But multiplication by 2 in the homology theory KO∗ factors through the map K∗. This
exhibits a KO∗(BΓ)(p) as a retract of K∗(BΓ)(p). The result follows from Corollary 4.20, which asserts that the

differentials in K∗(BΓ)(p) vanish.
To show that the differentials in the second spectral sequence vanishes, we consider the map f : M → BΓ.

This induces a map from the second spectral sequence to the first which is bijective on terms E2i,j for i < ℓ
and surjective on terms E2ℓ,j . Since the terms E

2

i,j(M) = 0 for i > ℓ, this implies that the differentials vanish
as desired.

Let Fℓ,n(−) and Erℓ,n(−) denote the filtration terms and Er terms of the spectral sequences in Proposition 6.3. Note
that Fℓ,n(M) = Hn+ℓ(M; L(ℤ)) because the base space is ℓ-dimensional. Note also that there is always a quotient
pr : Fℓ,n → E∞ℓ,n . Finally, Proposition 6.3 implies that E

∞
ℓ,n ≅ E

2

ℓ,n for both spectral sequences. This explains the
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second, third, fourth and fifth rows of the following diagram:

S
per,⟨j⟩
n+ℓ+1 (M) S

per,⟨j⟩
n+ℓ+1 (BΓ)

Hn+ℓ(M; L(ℤ)) Hn+ℓ(BΓ; L(ℤ))

Fℓ,n(M) Fℓ,n(BΓ)

E∞ℓ,n(M) E∞ℓ,n(BΓ)

E2ℓ,n(M) E2ℓ,n(BΓ)

Hℤ/pℓ (Sℓ;Hn(Tnρ ; L(ℤ))) Hℤ/pℓ (Eℤ/p;Hn(Tρ; L(ℤ))

Hn(Tnρ ; L(ℤ))ℤ/p Hℓ(ℤ/p;Hn(Tnρ ; L(ℤ)))

Ln(ℤ[ℤnρ])ℤ/p Hℓ(ℤ/p;Hn(Tnρ ; L(ℤ))).

S
per,s
n+ℓ+1(f)

ηn+ℓ+1(M) ηn+ℓ+1(BΓ)
Hn+ℓ(f; L(ℤ))

inc≅ inc

Fℓ,n(f)

pr pr

E∞ℓ,n(f)

id≅ id≅
E2ℓ,n(f)

id≅ id≅
gn+ℓ

id≅ id≅
gn+ℓ

An(Tnρ )ℤ/p≅ id≅
gn+ℓ ∘ An(Tρ)ℤ/p

The maps ηn+ℓ+1 are from the surgery exact sequence and An(Tnρ )ℤ/p is the assembly map. We define μ to

be the composite of the left vertical maps and we define σ to be the composite of μ with the isomorphism

Ln(ℤ[ℤnρ])ℤ/p ≅ Hn(Tnρ ; L(ℤ))ℤ/p . Our goal now is to show the following.

Lemma 6.4. The map ηn+ℓ+1 : S
per,⟨j⟩
n+ℓ+1 (M) → Hn+ℓ(M; L(ℤ)) induces an isomorphism

ker(Sper,⟨j⟩n+ℓ+1 (f)) → ker(Hn+ℓ(f; L(ℤ))).

Proof. Consider the following commutative diagram:

Hn+ℓ+1(M; L(ℤ)) Hn+ℓ+1(BΓ; L(ℤ))

L⟨j⟩n+ℓ+1(ℤ[Γ]) L⟨j⟩n+ℓ+1(ℤ[Γ])

S
per,⟨j⟩
n+ℓ+1 (M) S

per,⟨j⟩
n+ℓ+1 (BΓ)

Hn+ℓ(M; L(ℤ)) Hn+ℓ(BΓ; L(ℤ))

L⟨j⟩n+ℓ(ℤ[Γ]) L⟨j⟩n+ℓ(ℤ[Γ]).

id

S
per,⟨j⟩
n+ℓ+1 (f)

ηn+ℓ+1(M) ηn+ℓ+1(BΓ)
Hn+ℓ(f; L(ℤ))

id

Surjectivity of the map follows from the bottom three rows.
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Now, we show injectivity. Suppose α ∈ ker(Sper,⟨j⟩n+ℓ+1 (f)) ∩ ker(ηn+ℓ+1(M)). It suffices to show that α = 0 after
localizing at p and after inverting p.

After localizing at p, the top map becomes

KOn+ℓ+1(M)(p) → KOn+ℓ+1(BΓ)(p) .

Some diagram chasing shows that α pulls back to an element of L⟨j⟩n+ℓ+1(ℤ[Γ]) which then pulls back to an

element of β ∈ KOn+ℓ+1(BΓ)(p). It suffices to show that β is in the image of an element of KOn+ℓ+1(M)(p). Since
L⟨j⟩n+ℓ+1(ℤ[Γ]) is p-torsion free, it follows that β does not have p-power order. Now, consider the diagram

KOn+ℓ+1(Tnρ × Sℓ)(p) KOn+ℓ+1(M)(p)

KOn+ℓ+1(Tnρ )(p) KOn+ℓ+1(BΓ)(p).

The left vertical map is a surjection as it has a section. The bottom map surjects onto the p-torsion free

part of KOn+ℓ+1(BΓ)(p) by Corollary 4.22. Thus, the right vertical map surjects onto the p-torsion free part

of KOn+ℓ+1(BΓ)(p). This gives the desired result.
After inverting p, we pull α back to an element β ∈ Hn+ℓ+1(BΓ; L(ℤ))[ 1p ]. It suffices to prove that

Hn+ℓ+1(M; L(ℤ))[
1

p ] → Hn+ℓ+1(BΓ; L(ℤ))[
1

p ]

is surjective. Consider the following diagram:

Hn+ℓ+1(Tnρ × Sℓ; L(ℤ))[ 1p ] Hn+ℓ+1(M; L(ℤ))[ 1p ]

Hn+ℓ+1(Tnρ × S∞; L(ℤ))[ 1p ] Hn+ℓ+1(BΓ; L(ℤ))[ 1p ].

Again, the left vertical map is surjective since it has a section. It remains to show that the bottom map is

surjective. For this, note that the map factors through the isomorphism

(Hn+ℓ+1(Tnρ × S∞; L(ℤ))[
1

p ])ℤ/p
→ Hn+ℓ+1(BΓ; L(ℤ))[

1

p ].

Therefore, the right vertical map is surjective, which completes the proof.

Lemma 6.5. The composite
Hn+ℓ(M; L(ℤ)) → Fℓ,n(M) → E∞ℓ,n(M)

induces an isomorphism
ker(Hn+ℓ(f; L(ℤ))) → ker(E∞ℓ,n(f)).

Proof. The proof is the same as the proof of [10, Lemma 8.5].

From Lemma 6.4 and Lemma 6.5, we conclude that σ × Sper,⟨j⟩n+ℓ+1 (f) is injective.

Proposition 6.6. The map

σ × Sper,⟨j⟩n+ℓ+1 (f) : S
per,⟨j⟩
n+ℓ+1 (M) → Hn(Tnρ ; L(ℤ))ℤ/p × S

per,⟨j⟩
n+ℓ+1 (BΓ)

is injective.

Proposition 6.7. The cokernel of σ is a finite p-group.
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Proof. As in the proof of [10, Theorem 8.1(2)] we consider the following diagram:

Fℓ−1,n+1(M) Fℓ−1,n+1(BΓ)

Hn+ℓ(M; L(ℤ)) Hn+ℓ(BΓ; L(ℤ))

L⟨j⟩n+ℓ(ℤ[Γ]) Hn+ℓ(BΓ; L(ℤ)).

≅

≅ 1
p

An+ℓ(M) ≅ 1
p

β

An+ℓ(BΓ)

Unlike [10], the bottom map is only an surjection which splits after inverting p.
After inverting p, we have the following diagram (where inverting p is omitted from the notation):

0 0

Fℓ−1,n+1(M) Hn+ℓ(BΓ; L(ℤ))

S
per,⟨j⟩
n+ℓ+1 (M) Hn+ℓ(M; L(ℤ)) L⟨j⟩n+ℓ(ℤ[Γ])

Ln(ℤ[ℤnρ])ℤ/p

0.

≅ 1
p

ηn+ℓ+1

μ

An+ℓ(M)
γ

An(Tρ)ℤ/p ∘ pr

(6.1)

The image of An+ℓ(M) is contained in the image of γ since the assembly map factors through Hn+ℓ(M; L(ℤ)) →
Hn+ℓ(BΓ; L(ℤ)). Now, diagram chasing gives that μ[ 1p ] is surjective. This implies that σ[

1

p ] is surjective, which
completes the proof.

Proposition 6.8. Let v be the composite

v : ⨁
(P)∈P

L⟨j⟩n+ℓ+1(ℤ[NΓP])/L
⟨j⟩
n+ℓ+1(ℤ[WΓP]) → L̃⟨j⟩n+ℓ+1(ℤ[Γ])

ξn+ℓ+1(M)
󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ S

per,⟨j⟩
n+ℓ+1 (M)

where the first map comes from Equation (5.2) and the second map comes from the surgery exact sequence. Then
v is injective, im(v) ⊆ ker(σ) and ker(σ)/im(v) is a finite abelian p-group.

Proof. Consider the commutative diagram

0

⨁(P)∈P L
⟨j⟩
n+ℓ+1(ℤ[NΓP])/L

⟨j⟩
n+ℓ+1(ℤ[WΓP])

Hn+ℓ+1(BΓ; L(ℤ)) L⟨j⟩n+ℓ+1(ℤ[Γ]) S
per,⟨j⟩
n+ℓ+1 (M)

Hn+ℓ+1(BΓ; L(ℤ))

0,

v
An+ℓ+1(BΓ) ξn+ℓ+1(M)

Hn+ℓ+1(i; L(ℤ))
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where the column is split exact after inverting p. In the proof of Lemma 6.4 we showed that Hn+ℓ+1(M; L(ℤ)) →
Hn+ℓ+1(BΓ; L(ℤ)) is surjective after inverting p. Since the assembly map An+ℓ+1(M) factors through An+ℓ+1(BΓ),
the row is exact after inverting p. Moreover, after inverting p, the map Hn+ℓ+1(BΓ; L(ℤ)) → Hn+ℓ+1(BΓ; L(ℤ)) is
an isomorphism.

We first show that v is injective. Since⨁(P)∈P L
⟨j⟩
n+ℓ+1(ℤ[NΓP])/L

⟨j⟩
n+ℓ+1(ℤ[WΓP]) is p-torsion free, it suffices

to show that v is injective after inverting p. But this follows from the splitting in the vertical column of the

diagram above and exactness of the row.

We now show that im(v) ⊆ ker(σ) and that ker(σ)/im(v) is a finite abelian p-group. From the surgery

exact sequence, we get that im(v) ⊆ ker(ηn+ℓ+1(M)) ⊆ ker(μ) so it suffices to show that ker(ηn+ℓ+1(M))/im(v)
and ker(μ)/ker(ηn+ℓ+1(M)) are finite abelian p-groups. Some diagram chasing shows that the cokernel of

Hn+ℓ+1(i; L(ℤ)) is isomorphic to im(ξn+ℓ+1(M)/im(v). Since Hn+ℓ+1(BΓ; L(ℤ)) is a finitely generated abelian

group, we see that im(ξn+ℓ+1(BΓ)/im(v) is a finitely generated abelian p-group.
It follows from diagram (6.1) that ker(ηn+ℓ+1[ 1p ]) = ker(μ[

1

p ]). From this, we see that ker(μ)/im(ξn+ℓ+1(M))
is a finite abelian p-group. We have shown that ker(μ)/im(v) is a finite abelian p-group.

Proposition 6.9. After inverting p, the map

σ × Sper,⟨j⟩n+ℓ+1 (f) : S
per,⟨j⟩
n+ℓ+1 (M) → Hn(Tnρ ; L(ℤ))ℤ/p × S

per,⟨j⟩
n+ℓ+1 (BΓ)

is an isomorphism.

Proof. It follows from Proposition 6.6 that the map is injective. Surjectivity follows from Proposition 6.7 and

Proposition 6.8.

Now, using Proposition 6.6, Proposition 6.9 and the fact that Hn(Tnρ ; L(ℤ))ℤ/p × S
per,⟨j⟩
n+ℓ+1 (BΓ) has no p-torsion, we

obtain an integral computation.

Theorem 6.10. For j = 2, 1, 0, . . . , −∞, there is an isomorphism

S
per,⟨j⟩
n+ℓ+1 (M) ≅ Hn(Tnρ ; L(ℤ))ℤ/p ⊕ ⨁

(P)∈P
L⟨j⟩n+ℓ+1(ℤ[NΓP])/L

⟨j⟩
n+ℓ+1(ℤ[WΓP]).

6.4 The geometric simple structure set of M

Identifying Sgeo,s(M) with S
⟨1⟩,s
n+ℓ+1(M), we see that there is a map

j(M) : Sgeo,s(M) → Sper,s(M).

The proof of [10, Theorem 9.2] and the results above give the following theorem.

Theorem 6.11. There is a homomorphism

σgeo : Sgeo,s(M) → Hn(Tρ; L(ℤ)⟨1⟩)ℤ/p

such that the following hold:
(1) The map

σgeo × (Sper,sn+ℓ+1(f) ∘ j(M)) : S
geo,s(M) → Hn(Tρ; L(ℤ)⟨1⟩)ℤ/p × S

per,s
n+ℓ+1(BΓ)

is injective.
(2) The cokernel of σgeo is a finite abelian p-group.
(3) Consider the composite

νgeo : ⨁
(P)∈P

Hn+ℓ+1(Tb; L̃s(ℤ[P])) 󳨀󳨀󳨀󳨀→ L̃sn+ℓ+1(ℤ[Γ])
̃ξ⟨1⟩n+ℓ+1󳨀󳨀󳨀󳨀→ Sgeo,s(M)

where the first map comes from (5.2) and ̃ξ⟨1⟩n+ℓ+1 is the map from the geometric surgery exact sequence. Then
νgeo is injective, the image of νgeo is contained in the kernel of σgeo and ker(σgeo)/im(νgeo) is a finite abelian
p-group.

(4) After inverting p, the map σgeo × (Sper,sn+ℓ+1(f) ∘ j(M)) is an isomorphism.
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From this, we conclude:

Theorem 6.12. For j = 2, 1, 0, . . . , −∞, there is an isomorphism

S
geo,⟨j⟩
n+ℓ+1 (M) ≅ Hn(Tnρ ; L(ℤ)⟨1⟩)ℤ/p ⊕ ⨁

(P)∈P
L⟨j⟩n+ℓ+1(ℤ[NΓP])/L

⟨j⟩
n+ℓ+1(ℤ[WΓP]).
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