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Abstract: Let p be an odd prime andlet p : Z/p — GLy(Z) be an action of Z/p on alattice andlet T := Z" x, Z/p
be the corresponding semidirect product. The torus bundle M := T xzp S¢ over the lens space S¢/Z/p has fun-
damental group I'. When Z/p fixes only the origin of Z", Davis and Liick (2021) compute the L-groups LU (Zz[T])
and the structure set Sge" »$(M). In this paper, we extend these computations to all actions of Z/p on Z". In par-
ticular, we compute L (Z[ 1) and 88%%5(M) in a case where ET has a non-discrete singular set.

Keywords: Torus bundle, lens space, Farrell-Jones conjecture, topological K-theory

MSC 2020: 57R67, 19164

Communicated by: Clara Léh

1 Introduction

In [9] and [10], Davis and Liick study groups of the form
I'=7"x,27Z]p,

where p is an odd prime and p : Z/p — GLp(Z) has no nonzero fixed points. They compute the topological
K-theory of the real and complex group C*-algebras of I' in [9]. Along the way, they compute K* (BI') and several
other K-theory groups. Letting T denote the torus with Z/p-action determined by p and letting S¢ denote a
sphere with a free Z/p-action, define M := T} xz,p §¢. The manifold M is a torus bundle over a lens space and
the assumption that Z/p acts freely on Z" \ {0} implies that the action of Z/p on T has discrete fixed points.
In [10], Davis and Liick use the computations from [9] to determine the L-groups of Z[T'] and the structure set
of M in the sense of surgery theory.
For the L-theory computation, Davis and Liick use the Farrell-Jones Conjecture for I' to conclude

L™ (2IT)) = Hy(EG LS ™).

Then they compute the homology group by inverting p and inverting 2. After inverting p, H,(ET; L(Z_ 00>)
becomes part of a split short exact sequence. After inverting 2, there is an isomorphism

a1 e

and one applies the computations of [9].

In this paper, we study the case where the action of Z/p on Z" is not necessarily free on Z" \ {0}. A free abel-
ian group with a Z/p-action can be written as Z" = M & N & Z¢, where M ® Q = Q({)® and N ® Q = Q[Z/p]".
Here, we use ¢ to denote a primitive p-th root of unity. We say that such a module is of type (a, b, ¢) in which
casen = a(p — 1) + bp + c. The Z[Z/p]-module Z" will be denoted L. As in [10] define I' := L x, Z/p and define
M :=Tp xz;p S¢. The fixed points of the corresponding Z/p-action on T} is a disjoint union of a(p - 1) many
(b + ¢)- dlmensmnal tori rather than a discrete set when L is of type (a b, ¢). Proving that L< ©0) (z[1)) is
p-torsion free is one of the main difficulties in applying the machinery of [10] to our case. In order to do this,
we invert 2 and study topological K-theory. One of our main results is the following.
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Theorem 4.1. Suppose T is of type (a, b, ¢). Then:
(1) The differentials d,’ in the Atiyah—Hirzebruch-Serre spectral sequence for the fibration BT — BZ./p vanish
forr>2.
(2) Ifb # 0orc # 0, then there is an isomorphism of abelian groups
K™(BT) = K™(TRy*P & 2§ VP
Ifb=c=0, then
K™(THZP & Zl(f_l)pa, m even,

K™(BT) =
K’"(T;,‘)Z/P, m odd.

Using the techniques in [10], we are then able to compute the L-groups of Z[I'] and the structure sets of M. The
description of the simple structure sets in [10] are nice because the torsion comes from L(2Z). In our case, we will
inevitably encounter 2-torsion coming from Lé’m(Z[Z/p]). Fortunately, we are still able to obtain the integral
results below (as opposed to results that only hold after inverting 2). This is essentially due to the splitting
after inverting p of the maps in Proposition 3.2 and our understanding of the Whitehead groups (in particular,
[12, Theorem 1.10]).

In the theorems below P will denote the set of conjugacy classes of nontrivial finite subgroups of T (all of
which are isomorphic to Z/p). We let Ny P denote the normalizer of P in I and we let WrP := NrP/P denote the
Weyl group. The groups Lf{g (Z[T']) are Ranicki’s surgery groups with decoration and Sflefeiﬁ) (M) is Ranicki’s alge-

braic structure set. The set Sﬁioéfﬁ (M) is the geometric structure set obtained from the surgery exact sequence

by using connective L-theory. We refer to Section 6 for more details.

Theorem 5.5. Forj=2,1,0,...,—c0, there is an isomorphism
LY(ZIT) = Hn(TH L(2)"? & (D LY (ZINeP))/LY, (ZIWrP).
(P)eP
Theorem 6.10. Forj=2,1,0,...,—00, there is an isomorphism
e () = Hy(T L) o @ LY, (ZINeP)/LY ., (ZI W1 P).
(P)eP
Theorem 6.12. Forj =2,1,0,...,—oo, there is an isomorphism
SEGU (M) = Ho(TH LZ)(1) P o @ LY, (ZINtP)/LY. ., (ZIWrP)).
(P)eP

Whenj = 2 (resp. 1), Theorem 6.12 specializes to a computation of the usual simple structure set (resp. homotopy
structure set) in the sense of surgery theory.

Theorem 1.1. There are isomorphisms

855 (M) = Hn(Tp; L)) *P © D) Ljy 041 (ZINeP)/Ly, 0,1 (ZIWrP))
(P)eP
and
8N (M) = Hy(Th; LZ)Y(1)*? & €] L1, .1 (ZINtP)/L}, ,,,(ZIWrP)).
(PP
The L-groups appearing in these computations are computable; the normalizers are isomorphic to Z*¢ x Z/p
and the Weyl groups are isomorphic to Z?*¢ so Shaneson splitting allows us describe these groups in terms of
the L-groups of Z and Z[Z/p].

Remark. The isomorphisms in the theorems above do not come from “natural” maps. For instance, the map
NrP — T induces a map Lﬁ,’f (Z[NFP])/L,(,’I) (z[wWrP)]) — L},’l) (Z[T]). After composing with the isomorphism in
Theorem 5.5, the image is a p-power index subgroup of Lﬁ{l) (Z[NtP)) /Lf{g (z[WrP)).

Remark. To prove Theorem 5.5, it suffices to prove the case that I'is of type (a, b, 0),i.e., I = L x Z/p, where L is
a free abelian group with no Z-summands with trivial Z/p action. Indeed, one can inductively apply Shaneson
splitting to obtain the more general case. It would be convenient to do this with the structure sets as well.
However, we are not aware of a reference that gives Shaneson splitting for the structure sets.
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1.1 Geometric interpretations of the structure set

In the situation of [10], the computation of the structure set is interpreted as follows. Suppose f: N — M is
a structure and let f : N — M = T" x S¢ denote the Z/p-cover. The proof of [10, Theorem 10.6] applies in our
case so we have the following interpretation of the H,(T%; L(Z)(1))%/P summand of the structure set.

Theorem 1.2. The following are equivalent:

@ Z"he structure [f : N — M] € 88°%5(M) vanishes under projection to Hn(T,’}; L(Z)(1))%Ip,

(2) f:N — M is homotopic to a homeomorphism.

(3) Foranonempty] <{1,...,n},let T/ c T" denote the obvious subtorus. After making f transverse to T/ x {pt}
T" x S¢, we obtain a surgery problem

—
fiof (T xipth) — T/ x {pt).
This has a vanishing surgery obstruction in L (z[Z"]) for all nonempty J < {1, ..., n}.

Understanding the @(P)e? L} ,1(ZINTP))/L}, p.1(Z[WrP]) summand is more difficult. Shaneson splitting
implies that Lgm(Z[Z/p]) will appear as summands of L, ,.,(Z[NrP]). These groups have 2-torsion which

n+é+
involves the ideal class groups. Rationally, there is an isomorphism

P Lo @INeP)/LE, WP o= (B D @Y @/p)reg) 0 @
Per P k+lé<’ill);\c/en

In the above expression, R¢.(Z/p) denotes the group of virtual complex Z/p-representations whose characters
are of the form y + y~! and reg denotes the regular representation.

We give a heuristic description of this summand in the case I' = Z" x Z/p (i.e., when M is the product of
a torus and a lens space L¢). Note that the inner sum on the right-hand side is indexed by the standard subtori
TK ¢ T", where k + € + 1 is even. Suppose f: N — M is a structure and let TX ¢ T" be a subtorus such that
k + € +1 is even. Suppose f is transverse to the submanifold TX x L. Then f~1(TX x L¢) has a Z/p-cover so
we may take its p-invariant to obtain an element of (REEDMWZ (Z/p)/(reg)) ® Q. This gives an element in the
summand corresponding to the torus TX. This description is not technically correct; without some modifications,
we do not know how to show it is well-defined. A rigorous interpretation of these p-invariants will be the subject
of future work.

1.2 Outline

In Section 2, we review properties of the Z[Z/p]-module L and we state relevant properties of the group T.
In Section 3, we introduce some machinery from [10]; our L-theory computations rely on the Farrell-Jones
conjecture and a description of ET as a homotopy pushout. Section 4 is the main computational part of the paper.
It is devoted to computing the topological K-theory of BT and recording some consequences of the computation.
The main computational tool we use is the Atiyah—Hirzebruch-Serre spectral sequence. In Sections 5 and 6, we
compute the L-groups of Z[T'] and the structure set of M. These computations follow the computations in [10]
very closely. For Section 6, in particular, our results follow from the proofs of [10] with only slight modifications.

2 Group theoretic preliminaries

We are interested in groups I of the form L x Z/p, where L is a finitely generated free abelian group. Throughout
this paper, p will always be an odd prime. Curtis and Reiner classified these groups in [7, Theorem 74.3].

Theorem 2.1. Let { be a primitive p-th root of unity. If L is an indecomposable integral Z./p representation, then
L is either of the following:
(1 B < Q({) afractional ideal with action given by multiplication by (.
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(2) B@®Z, where B < Q({) is a fractional ideal, and t - (b, m) = ({b + mby, m), where by € B\ (1 — {)B. We will
denote this by B &y, Z. Two such representations of this form are isomorphic if the fractional ideals represent
the same element in the ideal class group.

(3) Z with a trivial action.

Example 1. Let { be a p-th root of unity. Then Z[(] is an example of a module of the form (1) in Theorem 2.1.
The group ring Z[Z/p] is an example of a module of the form (2); it is of the form Z[{] &; Z. When p = 3, for
instance, the assignment

(ag + a1, m) — ap(—ag + as + m)t + (—ay + m)t?

defines an isomorphism of Z[Z/p]-modules.

The group I' determines a torus bundle M over a lens space with fundamental group Z/p. Note that the manifold
corresponding to (L & Z) x Z/p is a product M x S'. As taking products with S' is a well understood operation
in topology, we will sometimes make the simplification that L does not have any Z summands.

Definition 2.2. We say thata Z/p-module L is of type (a, b, c) if itis of the form L = (D}, M;) ® (@]’-’zl Nj) e ZS,
where M; is in form (1) and N; is of the form (2) in Theorem 2.1. We say that L x Z/p is of type (a, b, ¢) if L is of
type (a, b, ¢).

Lemma 2.3. SupposeT = L x Z/p is of type (a, b, c). Then the following hold:

(1) The virtually cyclic subgroups of T' are isomorphic to either the trivial group, Z./p, Z. or Z. x Z./ p.

(2) Let P denote the set of conjugacy classes of maximal finite subgroups of T. Then |P| = p®.

(3) IfP is a finite subgroup of order p, then the normalizer NyP is isomorphic to Z"*¢ x P and the Weyl group
WrP = NyP/P is isomorphic to ZP+¢.

Proof. The elements of our group can be written as xy’, where x € L and y isa generator of Z/p. Letp(-) : L — L
denote the action of Z/p on L.

To show the first statement, if xy and x'y are in a subgroup H, then x(x’ Y~ must be in H. Hence, if H is finite,
x = x'. Tt follows that the nontrivial finite subgroups are isomorphic to Z/p. Suppose V is an infinite virtually
cyclic subgroup that is not infinite cyclic. Then V must surject onto Z with kernel Z/p and V n L is an infinite
cyclic group. Let xy be a torsion element of V and let v € V n L. Then xyvy 'x~! = p(v) € V n L. Butif p(v) # v,
V n L would contain a subgroup isomorphic to Z?2. Therefore, V n L is fixed by p. It follows that V is isomorphic
toZx7Z/p.

For the second statement, observe that (xy)? = Zf;ol y'- x. Therefore, xy is torsion if and only if x is in the
kernel of the norm map Norm : L — L. Moreover, if x and z are in the kernel of the norm map, one checks
that the group generated by xy is conjugate to the group generated by zy if an only if x — z is in the image of
1-y:L — L.Therefore, P is in bijection with H'(Z/p; L). It follows from Proposition 4.3, which we prove later,
that this is isomorphic to H'(Z/p; Z[{]%). By [9, Lemma 1.10 (i)], this group is isomorphic to (Z/p)®.

The third statement follows from the beginning of the proof of [12, Theorem 1.10]. O

3 Equivariant homology and the Farrell-Jones conjecture

In this section, we introduce some preliminary material on equivariant homology following [8] and on the
Farrell-Jones conjecture, which will allow us to compute L and K-groups.

3.1 Equivariant homology

Let G be a discrete group. Given a covariant functor E : Grpd — Sp from the category of small groupoids to
spectra, define the equivariant homology groups of a G-CW-complex X to be

HS(X;E) := (X7 Mor) E(G/-)),



DE GRUYTER 0. H. Wang, Torus bundles over lens spaces == 919

where Or(G) is the orbit category of G and G/H is the groupoid associated to the G-set G/H and — Nor(G) —
denotes a coend. The functor X; sends an orbit G/H to the fixed point set X2, If f: X — ¥ is a map of G-CW-com-
plexes, then we write

HS(X — Y;E) := HS(cone(f); E).

In this paper, we will take E to be K,° and L% forj=2,1,0,...,-co.The corresponding homology theories
have the property that H,‘,i(G/H; K, ) = Kjn(Z[H]) and H,?I(G/H; L%) = L,(,’l>(Z[H]) for all m € Z. We also use
equivariant topological K-theory, which sends G/H to the representation ring R¢c(H) when G is finite.

Equivariant cohomology is defined analogously. We refer to [8] for more details.

Remark. The notation HS (X; Lg)) denotes the Davis—Liick equivariant homology as mentioned above whereas
the notation H,,(X; LY’ (Z)) denotes the generalized homology of X with coefficients in the spectrum L% (Z).

3.2 Classifying spaces

Definition 3.1. Let G be a group. A family of subgroups is a nonempty set & of subgroups closed under taking
subgroups and conjugation. A classifying space for &, denoted E 4G, is a G-CW-complex satisfying

t, Hed,
EsG = {P
0, He¢T.

Example 2. If {e} is the family consisting of only the trivial group, then E(;G = EG. The primary families we
will consider are Vcye, the collection of virtually cyclic subgroups, and Jin, the collection of finite subgroups.
We will use the following notation:
EG = EveycG, EG := E5inG.
Specifying to the case whereI' = L x Z/p, [13, Corollary 2.10] shows that there is the following homotopy pushout
diagram:
H(P)EfP T XNpP ENI‘P —F > ET

J j 6D

H(P)efP T XNrP EWrP _— 51".

Proceeding as in [9, Lemma 7.2] and using that EWrP is a model of ENpP as an NrP-space, we obtain the
following long exact sequences.
Proposition 3.2. For an equivariant homology theory H! (-), there is a long exact sequence

[ indr_,q

v —— Ky —— Hp(ET) —— Hn(BT) Km-1 ,

where X := D p)ep ker(ﬂfﬁrp (ENtP) — Hm(BNTP)). After inverting p, the map 35 (ET) — 3 (BT) is a split
surjection.
For an equivariant cohomology theory 3(1.(-), there is a long exact sequence

indr_,q

o @M FM(BT) L M (ET) I em

where C™ := P pcp coker(H™(BNrP) — iJ-CI’{}FP (ENrP)). After inverting p, the map H™(BI') — H['(ET) is a split
injection.

The maps @, are induced by the inclusions P — T.
Remark. Since NpP =27 x Z/p, we have ENpP = RP*¢ with a trivial Z/p-action. In particular, BNTP is
just T?*¢, For the homology theory H! (~; Lg)) we can make the identifications

b+c ; . .
m P EZGLY) = Hy P (1 L)) = H(T0 L9 212/p),

HE" (EZ)*; Lg) = Hp (T LY (7))

H
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and we can describe X, as

P Hn (1" L9 (Z[2/p)).
(P)eP

Here, the spectrum L (z[Z/p]) is the cofiber of the map LY (z) — L9 (z[Z/p)).

3.3 The Farrell-Jones conjecture

One of the primary computational tools that we use is the Farrell-Jones conjecture, which has been proved in
many cases. [4] proves the conjecture for our group I

Theorem 3.3. The map ET — pt induces isomorphisms on H: (~; K,°) and HI (- Lg o),
By Lemma 2.3, [11, Theorem 65] and [11, Proposition 75], we obtain the following.

Proposition 3.4. The map ET' — pt induces isomorphisms on L(Z_ 00)-homology. Hence,

H.(ET;LS ™) = LT Z[T)).

4 Topological K-theory

This is the main computation section of the paper. The goal of this section is to prove the following theorem.

Theorem 4.1. Suppose T is of type (a, b, ¢). Then:

(1) The differentials d,’ in the Atiyah—Hirzebruch-Serre spectral sequence for the fibration BT — BZ./p vanish
forr > 2.

(2) Ifb #0orc + 0, then there is an isomorphism of abelian groups

a2b+cfl

~ (p-1
K™(BL) = K™ (TP o 207

Ifb=c=0,then
K’"(TS)Z/P ® Zl(,,p_l)pa, m even,

K™(BT) =
K™(Tp)%/P, m odd.

In Theorem 4.1 we use Zp to denote the p-adic integers. We will reduce to the case ¢ = 0 and proceed by induction
on b. The case where L is type (a, 0, 0) is [9, Theorem 3.1].

4.1 Some preliminaries

4.1.1 Group cohomology

We collect some important facts about group cohomology. For a finite group G and a Z[G]-module M, let
H*(G; M) denote the Tate cohomology. For i > 1, H(G; M) = H'(G; M) and, for i < -2, H{(G; M) = H_;_1(G; M).
There is an exact sequence

Norm

0 —— HYG: M) Mg M€ HG: M) — 0,

where Norm(x) = Yo 8- X
Let M* denote the dual Homy(M, Z). This has a G-action via (g - f)(x) = f(g*1 - X). The following is [9, Lem-
ma A.1].

Lemma 4.2. Let G be afinite group and let M be a finitely generated Z.[G] module with no p-torsion for all primes p
dividing the order of G. Then, for all i € Z, there is an isomorphism

H(G: M) = H(G; M™).
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Proposition 4.3. Suppose L is a module of type (a, b, 0). Then there is an isomorphism of Tate cohomology groups
H*(Z/p; N'L) = H* (2/p; N(Z[{)" ® Z[Z/p)")).

Proof. We follow the proof of [9, Lemma 1.10 ()] where the case b = 0is done. As H(z/ p; M) = H(z/ ;M Zp),
itsuffices to checkthat A"L ® Zyy = A"(Z[({]* © Z[Z/ piHe Z,p). Since it has been shown in the proof of [9, Lem-
ma 1.10 ()] that L ® Zy = Z[{]* ® Z,) for L of type (a, 0, 0), it suffices to show that L ® Z,) = Z[Z/p]b ® Zp)
for L of type (0, b, 0).

We may assume b = 150 L = By @y, Z and Z[Z/p] = B1 @p, Z, where By and B, are fractional ideals of Z[{]
and b; ¢ (1 - 0)B;. As Z)[{] is a PID, its ideal class group is trivial. Hence, any fractional ideal I of Z)[(]
is of the form aZ)[{] < Q({) for some a € Q({). In particular, there are numbers ag, ay € Z)[{] such that
aoBo ® Zp) = a1B1 ® Zp. The Z[Z/p]-module structures of L and Z[Z/p] do not change if we change the
choice of by and b; so long as they remain outside (1 — {)B;. By multiplying by with some integer prime to p, we
may assume bg € By \ (1 - {)Bo and a; aphg € By \ (1 - {)Bi. Let by = a;'apho. Then

(Bo ®p, Z) ® Zp) = (Bo ® Zp)) ®p, Z(p)
= (apBo ® Z(p)) ®ayby Z(p)
= (a1B1 ® Zp)) ®q,b, Z(p)
= (B1 ® Zp)) ®p, Z(p) = (B1 &y, Z) ® Zp).

Here, the second line is obtained by the isomorphism (b, m) — (agb, m) and the fourth line follows from a sim-
ilar isomorphism. The third line follows from the fact that agBy ® Z ) = a1B1 ® Z )y and from our choice of b;.
O

The following is [9, Lemma 1.10].
Proposition 4.4. Suppose L is a module of type (a, 0, 0). Then
Hz/pHL)= B HY2/p;2)=

O +-+li=f
0<e4<p-1

(Z/p)Y, 1i+jeven,
0, i+jodd,

where a; is the number of partitions of j.
We will also need the following lemma, which appears in the proof of [9, Lemma 1.10].

Lemma4.5. For1 <m<p -1, A"Z[Z/p] is free as a Z[Z[p]-module.

The following result computes the fixed sets of the Z/p-action on the torus corresponding to a module of type
(a, b, c).
Proposition 4.6. Suppose L is a module of type (a, b, c). Let TZ,‘ denote the torus (L ® R)/L. Then

(Tg)z/p = (T ap-1),
Proof. In the case L is of type (a, 0, 0), this is [9, Lemma 1.9(v)]. The case where L is of type (0, 0, ¢) is straight-
forward. Since T;} is equivariantly a product, it suffices to show that, when L is of type (0, 1, 0), the fixed set is

a circle.
Suppose L is of type (0, 1, 0). Consider the following short exact sequence of Z/p-modules.

L->LeR—Th

This gives rise to the top exact sequence in the diagram below:

1ZIp (LeRZP ——0M (Tz)z/p ——  HY(Z/p; L)

n

Z[2p/*P —————— R[Z/p|*/P st 0.
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By the proof of Proposition 4.3, there is an isomorphism of Z/p-modules L ® R = R[Z/p] which identifies L with
a finite index Z/p-submodule of Z[Z/p]. This gives the vertical maps. This also implies that H'(Z/p; L) = 0.
It follows that (T5)%/? = S. O

4.1.2 Cohomology of Ty

In order to relate these algebraic results to the problem of computing topological K-theory, we record some
results on the cohomology of T as a Z[Z/p]-module. Let L be a module of type (a, b, ¢) determining the repre-
sentation p. Then, as Z[Z/p]-modules, Hl(Tg) =L and Hl(Tg) = L*. Moreover, H*(T;}) = A*L*.Itis clear that
L* is also a module of type (a, b, ¢).

We will need to use the topological K-theory of Tj) considered as a Z[Z/p]-module. The Atiyah-Hirzebruch
spectral sequence collapses for tori so, as an abelian group, K™(T") = @D, H™**(T"). The proof of [9, Lem-
ma 3.3] shows this is also true as Z[Z/p]-modules.

Lemma4.7. Let T;,‘ be a torus with a Z/p-action as above. Then as a Z.[Z./p]-module,

K™(Tp) = @ H™(T").
teZ

4.1.3 Facts about spectral sequences

Suppose E — B is a fibration with connected base space and with fiber F. Let H{* be a generalized cohomology
theory and let . be a generalized homology theory. There are Atiyah—Hirzebruch-Serre spectral sequences

EY = H(B; 30(F)) = H™(E), 4.1)

E}; = Hi(B; 3(F)) = Hiyj(E). 4.2)
In the cohomology spectral sequence above, we have

Ey = HY(G; 30(P)) = 30(F)°

when B is path connected with fundamental group G. Thus, ES;{ is a subgroup of 7/ (F)¢. In the homology spectral
sequence,
E§ ; = Ho(G; H;(F)) = H;(F)g
S0 Egj. is a quotient of J(;(F)g.
The following is in the appendix of [9].

Theorem 4.8. The composite H/(E) — Eg’é — HI(F)C is equal to the map on cohomology induced by the inclusion
F > E. In particular, 3(E) — FU(F)C is surjective if and only if the differentials d>’ vanish for r > 2.

The composite 3{(j(F)¢ — Egj — H;(E) is equal to the map on homology induced by the inclusion F — E. In
particular, };(F)¢ — };(E) is injective if and only if the differentials d:’FH vanish forr > 2.

The fibrations we use will come from group extensions N — G — G/N, where G/N is finite. We have the
inclusion of BN as the fiber of BG — B(G/N). This map induces the inclusion N — G so, up to homotopy we
may think of BN — BG as a covering space with fibers G/N. If G/N is finite, then there is a transfer map
¢ : H™(BN) — H™(BG) such that the composition

HM(BN) s H™(BG) — H™(BN)/N

is the norm map.
For a generalized homology theory there is a transfer map 7. : H;(BG) — Hp(BN) such that the compo-
sition
Hn(BN)g /v — Hm(BG) = Hm(BN)

is the norm map. To summarize, we have the following result.
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Proposition 4.9. Suppose N — G — G/N is a group extension with G/N finite. In the cohomological Atiyah-
Hirzebruch—-Serre spectral sequence for the fibration BN — BG — B(G/N), an element x € Eg’] is nonzero in Eg;{
ifitis in the image of the norm map. In the homological spectral sequence, an element x € ES’ jrepresents anonzero
element in Egj. if the norm of x is nonzero.

We specialize [5, Theorem 13.2] to the following statement.

Theorem 4.10. Ifthereis an N > 0 such that the differentials di’j in the spectral sequence (4.1) vanish for r > N,
then this converges strongly in the following sense. For the filtration

P cFlc...cF' c ' = H™(X),

the following hold:
M N2 F* =0,
@ H™X) = lim H™(X)/F°.

4.2 Vanishing of differentials

We now prove Theorem 4.1 (1). First, we reduce to the case where T is of type (a, b, 0).
Lemma 4.11. Suppose 4.1(1) is true for groups T of type (a, b, c). Then it is true for groups of type (a, b, ¢ + 1).

Proof. IfTis of type (a, b, ¢ + 1), then itis isomorphic to I’ x Z, where I'" is of type (a, b, ¢). Since BT = S! x BI”,
there is a morphism of spectral sequences coming from the map of fibrations BT’ — BT over BZ/p. Let
BZ/p® denote the s-skeleton of BZ/p. Let Y, denote the preimage of BZ/p'® under the map BI' — BZ/p. The
exact couple giving rise to the spectral sequence for BT’ is given by the abelian groups Ai’m"s = K™(Ys) and
ET™® = K™(Ys, Ys_1) with maps

K™ (Ys) — K™(Ysy1, Ys) — K™(Ys41) — K™(Y5).

The exact couple giving rise to the spectral sequence for BT is given by abelian groups K™(Ys x S!) and
K™(Ys x S, Y51 x S). We can write the groups in this exact couple asa A7 @ A3™ > ' and E{™ ™ @ E™ 7.
The maps between these groups are sums of the maps between the exact couple for BI’. Our inductive
hypothesis therefore implies that the differentials vanish after the first page of the spectral sequence. O

Remark. When ¢ > 0, we do not need to know Theorem 4.1(1) in order to prove 4.1(2) provided we have the
¢ =0 case.

Suppose Theorem 4.1 (1) is true for groups of type (a, b — 1, 0). We will show this is true for L a representation
of type (a, b, 0). First we introduce some notation.

Notation. « GivenL =M; & --& M, ® N1 & --- & Np, we make the following abbreviations:
My, =Mi®---&Mg, Np:=Ni®&---&Np.

o Ford=1,...,b,define Ly to be the representation of type (a, b — 1, 0), where the d-th summand of Ny, is
removed. We have group homomorphisms
Oa:LgxZ|p—>LxZ|p, Yg:LxZ/p— LqgxZ|p.

Clearly, the composition ¢4 o ¢4 is the identity. We will henceforth denote Ly x Z/p by T'4. It follows that
there is the retraction of bundles below:

Bog Byq
BI'y ¢ BT 4 BTy

BZ/p —— BZ/p —— BZ/p.
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The maps Bdq and Byy induce maps on cohomology, which we denote by ¢; and 3. The terms of the
Atiyah-Hirzebruch-Serre spectral sequence for BT ; will be denoted Elrl &

+ By abuse of notation, we will define ¢4 : Z?~! — Z? and 4 : Z? — 7P~ similarly.

o Letr=(ry,...,1p) € Z" be a b-tuple. Define AT := A"N{ ®---® A" Ny.

«  For amodule M, let A®*"M be the sum of all A M and define A°¥M similarly.

«  When one of the r; is neither 0 nor p, then H*(Z/p; A™) = 0. Indeed, Lemma 4.5 shows that A™Z[Z/p] is
free when 1 < m < p — 1 and the vanishing of the Tate cohomology follows from Proposition 4.3. As we are
not interested in all r € Z2, we define the following:

Rpm = {(re,...,1p) € {0,p}°Ir1 +--- + 75 = mmod 2}.

For asubsetd < {1, ..., b}, define Ry ma < Rp,m to be those b-tuples such that rg = 0if d € d.

Proof of Theorem 4.1(1). We proceed by induction on b with the case b = 0 having been done in [9, Lemma 3.3].
Recall we are considering the Atiyah—Hirzebruch—Serre spectral sequence

Ey = Hi(z/p; K/(T})) = K™ (BT).
We first check that, if i > 0, then d;’j : E;’j - E?Z’j ! is trivial. Suppose that j is even. The term
E;’j _ Hi(Z/p; ACVeR %)
can be decomposed as a sum

P H@/p;r**"M; @ Ao P H'(Z/p; \Y'M; ® A")
l‘Ej{b’o I‘Gbe)l
and the term E;+2’j ! canbe decomposed as a sum
@ Hl+2(Z/p, Aevean ®Ar) ® @ Hi+2(Z/p;A0dsz ®Al‘)'

reRp; reRpo
Moreover, we may identify the image of ¢, in E;’ with

P H@/p:r""M;9AYe P H'(Z/p; A°VM; & A").
rERb’o’{d) I'Einy]y(d)
By the inductive hypothesis and the fact that ¢ o 9 : Ei’j = Ei’j 4 is the identity, these terms are in Eﬁx]) It
therefore remains to consider the effect of d;’] on the subgroup correspondingtor = (p, ..., p). Thus we consider

either a map _ _
Hl(Z/p, Aevean) N Hl+2(Z/p, AOddMZ)

or
Hl(Z/p, AOdsz) _ HHZ(Z/p, Aevean)

depending on the parity of i and b. In either case, Proposition 4.4 implies that these maps are 0. This completes
the proof that d,” = 0 when i > 0 and when j is even. The case that j is odd follows identically.

the left-hand side must be in Efl;{ .
The cases r > 2 follows from a similar analysis. O
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4.3 Convergence

In this subsection, we prove the second part of Theorem 4.1 in the case T is of type (a, b, 0). The general case
follows from this computation. We induct by assuming that the second part is true for groups of type (a, b’, 0),
where b’ < b.

Define the filtration for K™ (BT) given by the spectral sequence by

.. c F? c F' ¢ F® = K™(B).

Since FO/F! = K™(T})%/? is a free abelian group, it suffices to compute F*.
We first make a simplification. Suppose that Ny has rank bp as an abelian group. Let I’ be the group
"= (M x 2[Z|p)’) x Z[p. Let --- € G*> < G' ¢ G° = K™(BI") denote the filtration on K™ (BI").

Lemma 4.12. There is an isomorphism F! = G'.

Proof. Let TZ[Z/ denote the torus ThP with a Z/p-action corresponding to the action of Z/p on the lat-
tice z[z/p]". Slmllarly, let T denote the torus with Z/p -action corresponding to the lattlce Np. Since
(NL)(p) = Z[Z]p](p), thereis some N prime to p such that TN isan N-sheeted regular cover of T. Z[Z e From this,
we obtain an N-sheeted regular cover BI' — BI". This is a map of bundles over BZ/p so this induces a map on
the spectral sequences. The induced maps H*(Z/p; K™ (T*P~D x TZ’EZ/p )) — H¥(Z/p; K™ (TP~ x T]I\’,’Z))
are isomorphisms for s > 1 since N is prime to p. Induction on s via the diagram

GS/GS+1 R Gl/Gs+1 R Gl/Gs

FS/FS+1 R Fl/Fs+1 R Fl/Fs
shows that lim Fl/FS = lim G'/GS. 1t follows from Theorem 4.10 that F! = G*. O
For the remainder of the section, we will assume
I = (Mg, x Z[Z/p]") x Z/p.

In the computation of F!,induction on b will address the terms H(Z/ p; AM] ® A)whenr # (p, ..., p).Inorder
to deal with the terms withr = (p, ..., p), we will need to consider a sphere bundle quotient of BI'. Recall we
have assumed that Ny, = Z[Z/p]? so T?P = R[Z/p]®/Ny. Let xo € T?P denote the image of 0 € R[Z/p]” and let
D denote a Z/p-invariant disk neighborhood of xo. Then the quotient T?? /(TP \ D) is the representation sphere
of the regular representation R[Z/p]”. Using this, we construct a map

BT = T xz,, (T*P~D x EZ/p) — S xz;p (T"P~V) x EZ/p)
of bundles over BZ/p. Let E denote the sphere bundle S?? xz,, (T*?~V x EZ/p).
Lemma 4.13. There is an isomorphism

K™(E) = K™(B(My x Z[p)) ® K™ (B(ML, % Z/p)).
Moreoverthe spectral sequence
EY = H(Z/p; KI(T°P~D x §P)) = K™I(E)
has trivial differentials di’j forr>2.

Proof. Thereisa section B(My, x Z/p) — E suchthat Thy := E/B(My, x Z/p) is the Thom space of the real vector
bundle R[Z/p]? xp,xz/p (EML, x EZ/p) = R[Z/p]® xz;, (T*P~V x EZ/p). This gives us an exact sequence

-+ = K%Thg) — K°%(E) - K*(B(My x Z/p)) — K*(Thy) — KY(E) —
in which the maps K™(E) — K™(B(M|, x Z/p)) are split surjective. We obtain

K™(E) = K™(B(My, x Z/p)) ® K™(Thy).
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Note that R ® Ny, = R[Z/p]? so R® N = R? @ V, where R? has trivial Z/p action and V is a real Z/p-repre-
sentation obtained by forgetting the complex structure of a complex Z/p-representation. Writing Th; as the
Thom space of V xz,, (T*P~Y x EZ/p), we have Thy = L Th;. We need to show that K™(B(M[,xZ/p)) = K™(Thy).

Define E" = V xz, (T4P~V x EZ/p™), where EZ/p™ denotes the n-skeleton of EZ/p and let Th denote
the Thom space of E" considered as a vector bundle over 74P~V x5, EZ/p™. The Thom isomorphism for
K-theory implies

K™(Th}) = K™(TYP~Y x4, EZ/p™).

This induces an isomorphism on inverse systems indexed by n. In particular, K™(Th}) is Mittag-Leffler. Thus,

K™ (Thy) = lim K™ (Th{) = K™(B(ML » Z/p)).

The proof of the second part is similar to the proof of the first part of Theorem 4.1. O

Proof of Theorem 4.1(2), case b = 1. Denote the filtration on K™(E) coming from the fibration E — BZ/p by
€ G*c G < G0 = K™(E).

It follows from Lemma 4.13 and the b = 0 case of Theorem 4.1 that G! = i;,p D,
Suppose i > 1 and j is odd. The Elz’] term for the Atiyah-Hirzebruch-Serre spectral sequence for K-theory
of the fibration BT — BZ/p is

EY = H(Z/p; A" M} ® APZ[Z/p]) & H\(Z/p; A" M}  \°Z[Z/p)).
On the other hand, the corresponding term for the fibration E — BZ/p is
EY = H(Z/p; A" M & HP(SP)) @ H'(Z/p; A" M & HO(SP)).

The decompositions of the coefficients above follow from the Kiinneth formula for K-theory [1]. Naturality of the
Kinneth formula shows that these decompositions respect the Z/p-module structures and that BT — E induces
isomorphisms on E;’] . A similar argument shows that this is an isomorphism when j is even as well. Therefore,
Theorem 4.10 implies that G! = F. O

4.3.1 The b > 1 case

Assume now that b > 1 and that Theorem 4.1 is true for groups of type (a, b’, 0), where b’ < b. We will need to
make some more observations.

Lemma 4.14. Suppose we have filtered abelian groups
o cFcFlc...cFl, .. cG <Gl G
with a filtration preserving split injection G* — F! whose splitting also preserves the filtration. Then
- C PGS c PGS ¢ c FYYG
is a filtered abelian group with slices
(F*/G*)/(F**1/G**) = (F°/F™™)/(G°/G**Y).

Proof. The splitting implies G' n F$ = G, where we take intersections in F! and identify the G° with their
images in F'. The result follows by considering the filtration

e CFS)(GPNF) c PG nFs Y c... c FYYGL. O
Denote the filtration on K™ (BT ) corresponding to the spectral sequence for BT'; by

- F2 c FL ¢ FY = K™(BTy).
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The maps Fj; — F* are split injections. In particular, F; — F® — F*/F; is a split short exact sequence. Now
consider the square

F) ————— Fs
F;/(F; n F{) ——— FS/Fj.
The right vertical map and the top map split which gives a splitting for the bottom map. Therefore, there is
a split short exact sequence
0— F;/(F; ﬂFi) — Fs/Fi — FS/(Ff +F§) -0,

where F; + F5 denotes the subgroup of F® generated by F; and F;. Continuing this way, we obtain split short
exact sequences

0 F/(Fon(FS+---+F5 ) > FJ(F{+--+F,_)) > F/(F{ +---+ F}) — 0.

This shows that F$ — F*/(F} +--- + F}) is split. The group F*/(F; + --- + F}) is a filtration for the subgroup of
K™(BT') with slices Hi(Z/p; (ANp) ® AT), where at least one of rq, 1, ...,rqis0.

Lemma 4.15. There is an isomorphism

1 1 - & @E-DEYvy
Fi+--+F, =7, s

_ (b b-2 _ b\, p-3 _a\(b-1)+1 b 0
vb._<1)2 (2)2 +-o 4 (-1) b_1 2" + Kp,m.

Here, Kp.m = (=1)2*1 when m is even and Kp,m = 0 when m is odd.

where

=Fy n---NFg

aw where aj, ..., a4 are distinct integers in {1,...,b} and

.....

,,,,,

One checks that there is the following resolution:

b b b
0—F ,—DF .. b_’"'_’@Fé,ﬁ—’@F}z—’leiﬁo.
a= a=

a=1 a<p

.....

such modules is a Zp-module homomorphism.! As an abelian group, 22:1 F! is torsion-free; the retractions
Y> | FL — F. give an injective homomorphism Y°_; FL — @B?_, FL whose target is torsion-free. Since Z, is
a principal ideal domain, we see that ¥°_, F1 is a finitely generated free Z,-module.

The result follows from tensoring with Qp and counting dimensions. For d =1, ...,b -1, the induction

hypothesis implies
) pa 21171

.....

For d = b, we have

.....

which accounts for the term xp . O

1 One examines the bijections

7 7 _ 1 7 ny _ 13 n ny _ 1§ ny _ /. _ . (7 /.
Homz(Z,, Z) —@Homz(lp,l/p )—}%nHomZ(Z/p »Z[p )—{%nHomz(Z, Z/p") = Homz(Z, Zy) = Homy, (Z,, Zy),

where the second bhijection follows from the fact that Zp has a unique subgroup of index p".
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Lemma 4.16. Ifb # m modulo 2, then v, = 2°-1. If b = m modulo 2, then v, = 20-1 - 1.
Proof. This follows from expanding 1 = (2 — 1)°. O
Proof of Theorem 4.1(2), case b > 1. Suppose that b # m modulo 2. Then F'/ (22:1 F}) is filtered with slices
b b H(Z ;AevenM , dd’
(P2 25)* (o e
a=1 a1 HS(Z/p; A°YMy), s even.

In either case, we see that these slices are trivial. Since N2, F* = 0, we see that F! = Yo FL.
Now, suppose that b = m modulo 2. Then we have slices

(FS/( iFS>>/<FS+1/< §F8+1>) = HS(Z/p;AevenML ®A(p """ p)), S even,
& &z HS(Z[p; \°Y¥M; ® AP--P)), s odd.

Recall that we have assumed the submodule Ny, is isomorphic to Z[Z/p]? so there is the sphere bundle quotient
E discussed in Lemma 4.13. As before, we let {G} denote the filtration on K™ (E). Note that there is a split injection

.....
.....

.....

.....
..........

we get

...............

()l 32 3)

follows similarly. Therefore, we obtain an isomorphism

The isomorphism

.....

(p-1)p2"!

Using Lemma 4.15 and Lemma 4.16, we obtain Fl= Zp as desired. O

4.4 Corollaries of the K-theory computation

We record some consequences of Theorem 4.1 that we will need for computing the L-groups and the structure
sets. These results are proven for groups of type (a, 0,0) in [9] so we will assume that either b + 0 or ¢ # 0 in
this section. We need to import the following results, which can be found in [9].

Lemma 4.17. For a finite group G, there is an isomorphism
Exth_ ) (M, Rc(G)) = Exty (M, Z)
foriz=0.

Theorem 4.18 (Universal Coefficients Theorem). For any CW-complex and all m € Z, there is an short exact
sequence
0 — Extl,(Km-1(X), Z) — K™(X) — Homz(Kn(X), Z) — 0.

Furthermore, when X is finite, there is a an exact sequence
0 — Exty,(K™'(X), Z) — Ku(X) — Homz(K™(X), Z) — 0.

These sequences are natural in X.
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Theorem 4.19 (Equivariant Universal Coefficients Theorem). Suppose that H is a finite group and that X is an
H-CW-complex. For m € Z, there is a short exact sequence of Rc(H)-modules

0 — Exty_ ) (Kjp 4 (X), Re(H)) — Kf}(X) — Hompe ) (Kiy (X), Re(H)) — 0.
Furthermore, when X is finite, there is an exact sequence
0 — Exty_ ;) (K (X), Re(H)) — Kin(X) — Homg ) (K7 (X), Re(H)) — 0.
These sequences are natural in X.
Corollary 4.20. The differentials in the following Atiyah—Hirzebruch—Serre spectral sequence vanish:
E}; = Hi(Z/p; Kj(Tp)) = Kij(BI).

Proof. The proof of this result is similar to the proof of Theorem 4.1 so we only sketch it. First, note that we may
reduce to the case that I is type (a, b, 0) as in Lemma 4.11.

As a Z[Z/p]-module, Kj(TL’) is isomorphic to the dual K (T[,’)*. Since dualization commutes with taking
direct sums and dualization sends modules of type (a, b, ¢) to modules of type (a, b, c¢), the induction argument
in the proof of Theorem 4.1 proves that the differentials d?,j vanish when i > 2.

Now, we check that the differentials

d; : Hy(Z/p; Km(TR)) — Ho(Z/p; Km(T2))

mapping to the left column vanish. By the induction hypothesis, it suffices to show that the restriction of the
differential summands of the form

and
vanish. Since

we only need to check the differentials vanish in the first case. The left column consists of terms K, ,-(T,’,‘)z/p. In
order to show the differentials vanish, it suffices to show that the transgression K ]-(T,’})Z/p — K;j(BT) is injective.
The norm map K, j(T[,‘)Z/p — K j(T,{,‘)Z/ P factors through the transgression. Since

The proof that dirJ. vanishes for r > 2 is similar. O
Corollary 4.21. There is an isomorphism
Kmn(BT) = Homz (K™(TH/P, Z) & (2/p™)P-VP' 2"
where Homy (K’ m(Tg)Z/ b,Z) is the image of the map induced by the inclusion of the fiber T — BI.

Proof. Define B® := Tjj xzp EZ/ p®®). We have the following direct system of short exact sequences:

Extl, (K™1(B%), Z) —— Kn(B®) —— Homgz(K™(B%), Z)

ExtL (K™ 1(BS*1), Z) — Kp(BS*') —— Homy (K™ (BS*Y), Z)
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Taking the colimit, we obtain
0— linExtlZ(Km”(Bs), Z) — Km(BT) — lim Homz(K™(B%), Z) — 0.

By considering the Atiyah—Hirzebruch-Serre spectral sequence for the fibration BS — BZ/p‘® and comparing
it to that of the fibration BT — BZ/p, we see that K™(B%) = K’"(Tg)z/p ® AS @ C5, where A® is some p-group
and C* is a (possibly trivial) finitely generated free abelian group. Indeed, the limit of the A® is exactly F! in
the filtration of K™(BT). Moreover, by considering morphisms of spectral sequences, C° is not in the image
of K™(B**1). Therefore, the right hand term is isomorphic to Homz (K™ (Tp)%/?, Z) = K™(T)%/P.

The left-hand term is isomorphic to h_n)l ExtlZ (A%, Z) (we abuse notation here and let AS denote the p-group
in K™*1(B%)). We obtain isomorphisms

—_— — ~(p— agb+c-1
lim Extl, (4%; Z) = lim A° = [im A° = (z;” Lp2 ) = (z/p™)P-Dp
— — —

agb+c-1
I

where A denotes the Pontryagin dual of a locally compact abelian group A. We refer to the proof of [9, Theo-
rem 4.1] and [16] for details regarding Pontryagin duality.

It remains to check that the subgroup HomZ(Km(T[,')Z/P, Z) is the image of the map induced by T;; — BT.
The inclusion induces the composition

K™(B%) — K™(Tp)*/? — K™(T}).
By the commutativity of the diagram

Kn(T}) — Homg (K™(T}), Z)

| J

Km(BT) — lim Homgz (K™ (B), Z)

the result follows. O
In the future, we will write K™ (T7)%/? rather than Homz(K™(T})%/?, Z).

Corollary 4.22. After inverting 2, KO, (BT) is the sum of a finitely generated free Z[%]—module and a p-torsion
group. Moreover, the inclusion T, — BT induces a surjection on the finitely generated free Z[%]-module.

Proof. Consider the following diagram:

Ty .

KOm(TR) —— 5 Kn(T}) ——— KOp(T})

] |

Ly Iy
KOp(BT) —— 5 Kpn(BT) ———— KOp(BT).

The horizontal composites are multiplication by 2. Thus, after inverting 2, i, is injective. Applying Corollary 4.21
proves the first part.

For the second part, let x € KO, (BT) be an element in the finitely generated free Z[%]-submodule of
KOp(BT). Then i,x is in the image of the middle vertical map by Corollary 4.21. It pulls back to an element
Y € Kn(T7). But then x is the image of %r* y under the outer vertical maps. O

Corollary 4.23. The groups KJ'(ET), KOJ'(ET) and KOY,(ET) are p-torsion free.

Proof. First, we show that K['(ET) is p-torsion free. Let Rc(Z/p) denote the reduced complex representation
ring of the group Z/p. Proposition 3.2 gives us the top row of the following diagram:

DR @(P)ET RC(Z/p)2b+C_1 N Km(EI‘) _ KF,I(EI‘) RN @(P)e(]) RC(Z/p)2b+C_1 N

l -| | |

~ 9b+c— (p ~ 9b+c—
——— Ppyer 28 —— K™(BT) ———— K™(BT) —— Ppyep 25"
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The bottom row comes from applying K-theory to the homotopy pushout diagram obtained from the quotient
of diagram 3.1 by I'. The vertical map @ p)cp Re(Z/p)*™ " — @pyep 22 is p-adic completion.

Letx € K}" (ET) be an element of order p. Then x must pull back to an element in K™(BTI') which then pulls
back to and element X € D p)cp 2?,““ (here we use that K™ (BT) is torsion free). Using the transfer, one can
check that K™(BT) is the sum of a finitely generated free abelian group with a finite p-group. The image of ¢
must be contained in the p-group (it is the entire p-group as K™(BT) is torsion free). Thus ¢ factors through
®(p)e yZ Yy pY ZZ " for some N. But every element in this quotient can be represented by an element in the
image of B pyer RC(Z/p)ZM T Letk e B pyer Rc(z/p)?"™" be an element lifting the projection of X. Then we
obtain that X maps to x € K m(1:"1") but exactness implies that x = 0. This shows that K m(}51") has no p-torsion.

Lemma 4.17 and Theorem 4.19 imply that K%, (ET) has no p-torsion. Since multiplication by 2 in KOY, (ET)
factors through K&, (ET), it follows that KO, (ET) has no p-torsion. O

5 L-theory computations

For geometric applications, one is typically interested in the groups L$, (Z[I']) and Lh m(Z[T]).The group L§ (Z[T])
contains obstructions to obtaining simple homotopy equivalences through surgery and the group L (Z[I']) con-
tains obstructions to obtaining homotopy equivalences through surgery. There is a map L$,(Z[T]) — L (Z[T)).
More generally, one can define the lower L-groups L<’>(Z[ I']), wherej =2,1,0,... with the convention

L @IT) = L3,zIT), LY (Z[T)) = L(Z[T).

There are maps ' _
L (ZIT) - Ly " (ZIT)

and we define '
Ly 2[r)) = lim L) (Z[T).

This theory is developed in [14]. The group LY (Z[T]) is nmL<1> (Z[I']) for aspectrum L (Z[T]). Also, the functors
L(’ : Grpd — Sp send a group G (regarded as a groupoid) to LY (Z[G]).

We begin by computing L< ©)(z[T]). This is easier to work with as the Farrell-Jones conjecture holds
for Lo, Using Rothenberg sequences [14, Section 17], we then compute L (Z[ ]) for all j. One of the pri-
mary L-groups that appear in our computations are the groups Ly >(Z[NrP]) and L%)(Z[WFP]) S0 we take
some time to discuss these groups here. Recall that NP = Z*¢ x Z/p and WP = Z"*¢, Shaneson splitting
[14, Theorem 17.2] gives isomorphisms

b+c b+c
LY (ZINyP)) = EBL” D@izip)C), LY @wep) = PLI @),

i=0 i=0
When j = —co, the Farrell-Jones conjecture says that the first group can be repackaged as the homology
group Hm(T” L) (z[Z/p))). The second group can always be rewritten as Hy,(T?*¢; L(Z)) since the maps
Ly (Z) )(Z) are isomorphisms for all j. Since the map NrP — WP splits in our case, we have an
inclusion _ _

LY (ZIWrP)) - L) (ZINcP)).

The quotient is
b+

LY (ZINeP))/LY, (ZIWrP)) z@ G0 z12/p)) 1.
i=0

So, these groups can be computed in terms of the L-groups of the group Z/p.
Finally, we record the L-groups of Z/p. The following theorem can be found in [3] and [2].

Theorem 5.1. There are isomorphisms

7P-D/2 " m even,
0, m odd,

7?12 ¢ H(Z/p), m even,

Ly(z(Z/p)) = <l 0 o odd

and L} (z[z/p)) = {
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where H(Z/p) is finitely generated abelian group of exponent 2. For j < 0, there is an isomorphism

7P-DI2 m even,
0, m odd.

Remark. Although L$,(Z[Z/p]) and i az1z) p)) are isomorphic for j < 0, the map

L2 @ziz/p) = {

Ls.ziz/p) — LY zlz/p)

is not an isomorphism.

5.1 The L~ computation

Theorem 5.2. There is an isomorphism

LG @) = (D Ha(THLE@IZIp)) ) @ Hu(Th L),
(P)eP
Proof. We show that the isomorphism holds when p is inverted and when 2 is inverted. This suffices since the
groups are finitely generated.
Using Proposition 3.4 and Proposition 3.2, we have the following long exact sequence:

o Ko 22 15N (ZITY) = Hu(BT; L(Z)) — Kiog — -+ - 51)
By the remark after Proposition 3.2, we can make the identification
Km = @ Ha(TH)?; L(2(Z/p))).
(P)eP
After inverting p, the sequence splits into short exact sequences

0 — Km — LSN(Z[T]) - Hn(BT; L(Z)) — 0.

But when p is inverted, the right-hand term is isomorphic to Hp (Tp; L(Z))?/P by a transfer argument [9, Propo-
sition A.4]. This is free so the sequence splits. Note that K, is a free abelian group since Z,ﬁn_ 00)(Z[Z/p]) is
free abelian.

Now it remains to show that the groups are isomorphic after inverting 2. By [10, Theorem 4.2], equivariant
L-theory homology and equivariant KO-homology agree after inverting 2. We obtain the resulting long exact

sequence.
1

. K’"[Z] om, Kofn(gr)[%] — KOm(QF)[%] — xm_l[%] S

We can write KOm(QF)[%] =FeA, where F is a free Z[%]-module and A is a p-torsion group. The map
K o,f,,(gr)[%] — K Om(ﬁl")[%] is invertible after inverting p so there is a partial section defined on a p-power
index subgroup of K om(gr)[%]. Since KO%,(ET) has no p-torsion, this subgroup must be a p-power index sub-
group of F, hence isomorphic to F. This partial splitting gives a subgroup Km[%] & F, which is p-power index in
K O,Fn(g F)[%]. Therefore, there is an isomorphism

1
2
It remains to check that F is isomorphic to Hm(T”;L(Z))Z/l’[%]. But this is a consequence of the fact that
Hpn(T%; L(2))?/P[1] is a free Z[}]-module isomorphic to a p-power index subgroup of H,(BI; L(Z))[1]. O

Kogl(gr)[%] = xm[ ] oF.

5.2 Arbitrary decorations

For the groups studied in [10], the assembly map HS (EG; L%) - L,({;)(Z[G]) is an isomorphism for all decora-
tions j. This is essentially because the normalizers of finite subgroups are isomorphic to Z/p and because the
analogous result holds for Z/p. In our case, the normalizers are of the form Z?*¢ x Z/p so the situation becomes
more complicated.
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In order to study L-theory with arbitrary decorations, we need to use Whitehead groups.
Definition 5.3. For a group G and integer m, define the Whitehead group Wh,(G) to be
Why(G) := HS(EG — pt; Ky).

The isomorphism in the statement below is [12, equation 3.29]. That this isomorphism is induced by an inclusion
of subgroups follows from the proof of [12, Theorem 1.10].

Theorem 5.4. There is an isomorphism induced by the inclusions NtP — T

Why(T) = € Whyn(NrP).
(P)eP

Since Why,(Zb*¢ x Z/p) = 2:8 Whm_k(Z/p)(b;C) and Why,(Z/p) = 0 when m < -1, Why,(T) = 0 for m < -1.
Theorem 5.5. Forj=2,1,0,...,—0c0, thereis an isomorphism

Ly (ZIT]) = Hn(TS LZ)Y2P & € LY (ZINcP))/LY, (ZIWrP)).
(P)eP

Proof. The homology group Hy,((Th)?; L) (z[2/p))) fits into the exact sequence
- = Hu(TH)P; L(Z)) - Hn((T))?; LEN(Z[2/p))) — Hn(Ty)?; LN (z[Z/p))) — -+,

where the map L(Z) — L~ (z[z/p)) splits. By the Farrell-Jones conjecture (or Shaneson splitting), we may
identify
Hn((TH'; L(Z)) = Lm(Z[WrP)), Hn((TH?;L)(Z[Z/p))) = Ly (ZINtP)).

It follows from Theorem 5.2 and the resulting identification
Hu(TH; LN (Z[2/p)) = Ly ™ (ZINyP))/L5 < (Z{WrP))

that the result is true when 2 is inverted. Now, we need to check that the result is true when p is inverted. Since
Wh;(NtP), Wh;(T') = 0 for j < -1, the Farrell-Jones conjecture and Proposition 3.2 imply that
0 ) ) B :

P Lw @INeP)/Ly (ZIWrP]) — Ly (ZIT]) = Hp(BT; L(Z))

(P)eP
is a split short exact sequence when p is inverted.

We claim the same is true for j > —1. To verify this claim, we induct on j, using j = —1 as the base case.

Consider the following diagram:

DB pyep H™(Z/2; Why(NyP)) —— H™(2/2; Wh;(T)) 0
. X J+1)
Dpyer L @INePY/LE 2 IWrP)) — L8 (z[1)) n Hn(BT; L(Z))
) -

m

Bpyer LY ZINtP)/LY (zIWrP)) —— L (z[T)) Hn(BT; L(Z))
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The left vertical column comes from the Rothenberg sequence and the observation that WrP is a free abel-
ian group which splits from NpP. The middle column is a Rothenberg sequence. The map Bf,’fb is defined so
that the diagram commutes. If we invert p, the bottom row is split exact by hypothesis. Then the middle row
is exact.

Now, we must check that Bfffl)

is split when p is inverted. We have the commuting diagram

SU+1)
m

HE(E; LYYy ———— Hu(BT; L(2))

HE (ET; LS ™) ————— Hu(BT; L(Z))

Ag;+l) A§n—0<)>

L@ (z[r) ————— Hm(BT; L(Z))

¢+1)
LI (z[r)) ————— Hm(BT; L(Z)).

where the maps Aﬁ,foo) and A,?B are assembly maps. The top map comes from Proposition 3.2 so it splits after

p is inverted. The vertical maps on the right are equalities. The map Lﬁ,{ Oo)(Z[l“]) — Hpy,(BT; L(Z)) is chosen

so the middle square commutes which can be done since Aﬁ,{ ) js an isomorphism. The hottom square com-

mutes from the definition of 8" . The composite A% o (BY*")~1 gives us the desired splitting of B .
Thus, when p is inverted, we have split short exact sequences

. . . (+1)
D L8 @NePY/LY @ (WP — LY @IT]) P Hn (BT L)), G2
(P)eP
As Hy(BT; L(Z)) [117] = (Hn(T}; L(Z))Z/P)[%], this finishes the proof of the theorem. O

6 Computation of the structure set

6.1 A brief review of surgery

Let M be a simple Poincaré duality complex. Its geometric simple structure set, denoted 88¢*-¥(M), is defined to be
the set of equivalence classes of simple homotopy equivalences f: N — M. Two simple homotopy equivalences
f:N— Mandf' : N — M are equivalent if there is a homeomorphism g : N — N’ such that f and f’ o g are
homotopic. The geometric simple structure set is contained in geometric surgery exact sequence

= NM x D) — Ly (Z[m (M)]) — 885 (M) — N(N) — Ly (Z[m1(M)]).
This can be found in [17]. It is not clear from this description that there is an abelian group structure on 88%5(M).
In [15], Ranicki defines an algebraic surgery exact sequence valid for any CW complex X.

Api(X)
oo ——— Hpn(X; L(Z)) 2255 LS, (Z[m X))

An(X)
——m

ma1 (X m+
Em1(X) Sfr)nei,ls(X) Nm+1(X) Ho(X: L(Z))

L3y (Z[m X)) —— -+
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The groups 8h,* (X) are called the periodic simple structure groups. One can, for instance, define the assembly
map A, (X) and define Sh; "*(X) to be the homotopy groups of the fiber. When X is an m-dimensional simple
Poincaré complex, elements of 8 mfl (X) can be represented by homotopy equivalences f: N — X, where N is
a homology manifold (see [6]).
If we define
St (X) 1= Hn(X - pt;LY)

then we have algebraic surgery exact sequences for all decorations. The techniques used to compute § iﬂfil(M )

will also compute S},)lirei’f (M) so we state our results in this level of generality.

Let L(Z)(1) denote the 1-connective cover of L(Z). Then there is an algebraic surgery exact sequence

AL X £ (%) N ()
e Hun L@ P sz eo) Y sy Y gLy
AN @

Ly(Z[n(X)]) —— -+ .
When X is an m-dimensional closed manifold, Ranicki shows that

Sgeo,s(X) 8(1) S(X)

m+1

Just as we did for the periodic structure sets, we may define structure sets 8§ne°’(’)(X) so that there is an
algebraic surgery exact sequence

(1) (1)
m+1(

s B L@ 1) 2 10 2 ) S, 800 )

for all decorations. We opt to use the notation 85 0.0 (X) rather than the more appropriate S,%)’(j ) (X) in order to
avoid confusion.

6.2 The Periodic Structure Set of BT
Here, we will record computations of periodic structure sets found in [10] and [12].
The following results are [10, Theorem 6.1] and [12, Theorem 1.13], respectively.
Theorem 6.1. Let p be an odd prime and let P be a finite p-group. Then the homomorphism
£.8p) : LY z[P)) — 82V (BP)

induces a L-localization
4 5 = (j) per, (j)
¢.(BP): L) (Z[P]) — 8, "' (BP).

In particular,

. oy Z[1 -2 ,
20 gpy = L 2P L) = { 210 meven
p 0, m odd,

whenj # 1.
Theorem 6.2. There is an isomorphism
S per, (j-i) bre per,(j)
P P i Bp)() = $i Y (BI.
(P)eP i=0
Remark. Although [10, Theorem 6.1] is only stated for the decoration s, the proof is valid for all decorations.
Remark. In the proof of [12, Theorem 1.13], the authors use an isomorphism

bic b+c ~
P P kizpn = Kj(z[r)

Pe® i=0
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rather than the correct isomorphism

b+c bec 5
P PDE&-i(zpn) = Kj(zir))

(P)eP i=0

and conclude that there is an isomorphism

S per, (j) bte per, (j)
P P i Bp)) = $§ Y (Br)
(P)eP i=0
rather than the isomorphism in Theorem 6.2. The isomorphism in Theorem 6.2 can be obtained from the proof
of [12, Theorem 1.13] after resolving the indexing issue.

Remark. The isomorphism in Theorem 6.2 can be rewritten as

er, (j . | :
P (pry = EB L%)(Z[Nrp])/L%)(Z[WFP])[_]'
(P)eP ’

6.3 The periodic structure set of M

In order to compute the periodic structure sets Sflireyl) (M), we follow [10, Section 8]. Namely, we study a map

a: P (M) - Hy(T7; L(z) 2P

n+é+1

so that we get a well-behaved injection

o x 82D () - SELD (M) — Hy (T L(2))7P x $E) (B,

n+é+1 n+é+1 +0+1

where f: M — BT is the inclusion.
First, we record a consequence of Corollary 4.20.

Proposition 6.3. The differentials in the Atiyah—Hirzebruch—Serre spectral sequences
Eij(Bl") = Hi(Z/p; Hj(T}; L(Z))) = Hi,j(BT; L(Z))

and
E2,(M) = H'P (S Hy(T}; L(2)) = Hiyj(M; L(Z)

vanish.

Proof. The proof is similar to the proof of [10, Lemma 8.3] so we give an outline.

We first show that the differentials in the first spectral sequence vanish. It suffices to show that the differen-
tials vanish after inverting p and after localizing p. After inverting p, the only nonzero terms are in the column
E(ZJJ. so the differentials must vanish.

Afterlocalizing at p and applying [10, Theorem 4.2], it suffices to show that the differentials for the homology
theory KO (-)(p) vanish. But multiplication by 2 in the homology theory KO. factors through the map K. This
exhibits a KO. (BT)y) as a retract of K. (BT)y). The result follows from Corollary 4.20, which asserts that the
differentials in K. (BT')(y) vanish.

To show that the differentials in the second spectral sequence vanishes, we consider the map f: M — BT.
This induces a map from the second spectral sequence to the first which is bijective on terms E2 fori<e
and surjective on terms E . Since the terms E2 (M) 0 for i > ¢, this implies that the dlfferentlals vanish
as desired. O

Let Fp n(—) and E;,n(—) denote the filtration terms and E” terms of the spectral sequences in Proposition 6.3. Note
that Fp n(M) = Hpie(M; L(Z)) because the base space is ¢-dimensional. Note also that there is always a quotient
pr: Fen — Ejp),. Finally, Proposition 6.3 implies that £, = )52 for both spectral sequences. This explains the
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second, third, fourth and fifth rows of the following diagram:

s Sheeal) S50 ar)
Nn+e+1(M) Nn+e+1(B)
Hne L) — 2 PEE) oy srLa)
= |inc inc
Fen(M) fen) Fen(BT)
pr pr
E, (M) Eial) ES, (BT)
=|id , =|id
E2 (M) Feal) EZ ,(BT)
=|id =|id
HYP(S Ha(T8; L(2)) et HY'P(EZ/p; Hy(Tp; L(Z))
=lid =|id
Ho(T; L(2))?/P Enet Ho(Z/p; Hy(T2 L(Z))
= | An(T})*/P = id
Loz 8 AT i Ea T L),

The maps nnie+1 are from the surgery exact sequence and A,,(Tg)z/!’ is the assembly map. We define u to
be the composite of the left vertical maps and we define o to be the composite of y with the isomorphism
Ln(Z[Zg])Z/I’ = H,(T%; L(Z))?/P. Our goal now is to show the following.

Lemma 6.4. The map Nn.e41 : Sﬁirei]f (M) — Hpyo(M; L(Z)) induces an isomorphism
ker(8%5Y) (1) — ker(Hyse(f; L(2))).

Proof. Consider the following commutative diagram:

Hyyer1(M; L(Z)) Hpie41(BT; L(Z))
LY, (ZIT]) LY, (ZIT])
: S0 ;
S0l She Y (BT)
Nn+e+1 (M) ’]n+€+1(Br)
Hyse(f: L(Z))
Hyvo(M; L(Z) s Hy.o(BT; L(Z))
. id .
LY (zIr) LY (zr)).

Surjectivity of the map follows from the bottom three rows.
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Now, we show injectivity. Suppose a € ker(Sgiréfl) ) N ker(npie+1(M)). It suffices to show that a = 0 after

localizing at p and after inverting p.
After localizing at p, the top map becomes

KOnye41 (M)(p) — KOnye41 (Br)(p) .

Some diagram chasing shows that a pulls back to an element of Lﬁ{ie .1(Z[T']) which then pulls back to an
element of B € KOy¢+1(BT)(p). It suffices to show that f is in the image of an element of KOp.¢.1(M)(p). Since

Li’i 2+1(Z[T']) is p-torsion free, it follows that  does not have p-power order. Now, consider the diagram

KOnJrngl(T;,l X Se)(p) ——— KOnyer1(M)(p)

K0n+l+1(TS)(p) —— KOn+en1 (Br)(p)-

The left vertical map is a surjection as it has a section. The bottom map surjects onto the p-torsion free
part of KOpye+1(BT)(p) by Corollary 4.22. Thus, the right vertical map surjects onto the p-torsion free part
of KOp¢41(BT)p). This gives the desired result.

After inverting p, we pull a back to an element S € Hp,¢.1(BT; L(Z))[Il,]. It suffices to prove that

Hn+€+1(M;L(Z))|:%:| - Hn+e+1(BF;L(Z))[[17]

is surjective. Consider the following diagram:

Hpsen1(T) x S L(Z)) (5] Hpsen1(M; L(2) (3]

Hpses1(Th x S L(Z)) 5] ——————— Huren1 (BT L(D)[3].

Again, the left vertical map is surjective since it has a section. It remains to show that the bottom map is
surjective. For this, note that the map factors through the isomorphism

(Hn+e+1(T;)l x S°°;L(Z>>[ ])

[1) Z/paHmm(Br;L(Z»[ |

1
p
Therefore, the right vertical map is surjective, which completes the proof. O

Lemma 6.5. The composite
Hp+e(M; L(Z)) — Fen(M) — Ep5 (M)
induces an isomorphism
ker(Hne(f; L(Z))) — ker(Eg,(f).
Proof. The proof is the same as the proof of [10, Lemma 8.5]. O
gper.()

From Lemma 6.4 and Lemma 6.5, we conclude that o x §, ;"

(f) is injective.
Proposition 6.6. The map

0 x S () SRl (M) — Ha(T; LZ)*IP x 873 (BT)
is injective.

Proposition 6.7. The cokernel of ¢ is a finite p-group.
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Proof. As in the proof of [10, Theorem 8.1(2)] we consider the following diagram:

Fe_1,n+1(M) Fe_1,n41(BT)

n

LT

Hnye(M; L(Z)) ——— Hnye(BT; L(Z))

Anye(BT
An+€(M) y =

L () ~F haenio.

+

(ST

Unlike [10], the bottom map is only an surjection which splits after inverting p.
After inverting p, we have the following diagram (where inverting p is omitted from the notation):

0 0

.

Fe1n1(M) ——————— Hnye(BT; L(2))

Jy
; Nn+e+1 Anie(M) ;
P (pf) ———————— Hpo(M; L(2)) ——————— L (z[1))

An(TP)Z/p o pr

Lo(Z[Z2))%/?

0. 6.1)

The image of A, ¢(M) is contained in the image of y since the assembly map factors through Hy,.(M; L(Z)) —
Hp.¢(BT; L(Z)). Now, diagram chasing gives that y[ll]] is surjective. This implies that O'[Il)] is surjective, which
completes the proof. O

Proposition 6.8. Let v be the composite

j j = (j Snver1 (M) (i
vi @ LY, @)L, @i p) - LY, @ir)) 2, g gy
(P)eP
where the first map comes from Equation (5.2) and the second map comes from the surgery exact sequence. Then
v is injective, im(v) < ker(o) and ker(o)/im(v) is a finite abelian p-group.

Proof. Consider the commutative diagram

Dpyer L) ¢ (ZINePD/LY ., (ZIWrP))

\
€n+€+1 (M)

L§1]4>-€+1(Z[r]) Sper;(f) (M)

n+é+1

An+€+1 (Br)

Hnse+1(BT; L(2))

Hpie1(i; L(Z))

Hyy041(BT; L(Z))
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where the column is split exact after inverting p. In the proof of Lemma 6.4 we showed that Hy.01(M; L(Z)) —
Hp.,p41(BT; L(Z)) is surjective after inverting p. Since the assembly map Ap.¢+1(M) factors through Ap,e41(BT),
the row is exact after inverting p. Moreovey, after inverting p, the map Hy¢11(BL; L(Z)) — Hpie+1(BL; L(Z)) is
an isomorphism. ‘ '

We first show that v is injective. Since @( P)cp Lfﬁ ¢4+1(Z[NtP])/L f{ie +1(Z[WrP]) is p-torsion free, it suffices
to show that v is injective after inverting p. But this follows from the splitting in the vertical column of the
diagram above and exactness of the row.

We now show that im(v) ¢ ker(o) and that ker(o)/im(v) is a finite abelian p-group. From the surgery
exact sequence, we get that im(v) <€ ker(ngue+1(M)) € ker(u) so it suffices to show that ker(npe+1(M))/im(v)
and ker(u)/ker(nnie+1(M)) are finite abelian p-groups. Some diagram chasing shows that the cokernel of
Hpip41(i; L(Z)) is isomorphic to im(&pe+1(M)/im(v). Since Hpip41(BT; L(Z)) is a finitely generated abelian
group, we see that im(&p¢.1(BT)/im(v) is a finitely generated abelian p-group.

It follows from diagram (6.1) that ker(n n+g+1[ll)]) = ker(,u[%]). From this, we see that ker(u)/im(&p1p+1(M))
is a finite abelian p-group. We have shown that ker(u)/im(v) is a finite abelian p-group. O

Proposition 6.9. After inverting p, the map
ax PO ) - PN (M) — Ha(T2 L(2))1P x 8259 (BT)

n+é+1 n+€+1 n+€+1

is an isomorphism.

Proof. Tt follows from Proposition 6.6 that the map is injective. Surjectivity follows from Proposition 6.7 and
Proposition 6.8. O

per,{j)
n+€+1

Now, using Proposition 6.6, Proposition 6.9 and the fact that H, n(Tg T L(Z))2IP x §
obtain an integral computation.

(BT) has no p-torsion, we

Theorem 6.10. Forj=2,1,0,...,—00, there is an isomorphism

st ) = Hy(T L) o @ LY, (ZINyP))/LY)

n+é+1 +e+1(Z[Wl“P])-
(P)eP

6.4 The geometric simple structure set of M

Identifying 8¢ (M) with Sfllﬁéil(M), we see that there is a map
J(M) = 8805 (M) — SPEHS(M).
The proof of [10, Theorem 9.2] and the results above give the following theorem.
Theorem 6.11. There is a homomorphism
08 : §5°°(M) — Hn(Tp; L(Z)(1)*/P

such that the following hold:
(1) The map

5 x (Sppaa () @ (M) : 88°S (M) — H(Tp; LIZ)(1))*? x 8353 (BT)
is injective.
(2) The cokernel of a8*° is a finite abelian p-group.
(3) Consider the composite

- : Sives
V& 1 (D Hnoert(T" L(Z[PY) —— Ly (ZIT]) = 855 (M)
(P)eP

where the first map comes from (5.2) and Efllfeﬂ is the map from the geometric surgery exact sequence. Then

V8®0 s injective, the image of v8®° is contained in the kernel of d8°° and ker(a8®°)/im(v8%°) is a finite abelian
p-group.
(4) After inverting p, the map a8 x (8

per,s
n+é+1

(f) o j(M)) is an isomorphism.
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From this, we conclude:

Theorem 6.12. Forj=2,1,0,...,—co, thereis an isomorphism

S50 (M) = Ho(TH L)1) P o @) LY, (ZINtP)/LY.,, (ZIWrP)).
(P)eP

Acknowledgment: The author would like to thank Shmuel Weinberger for suggesting this project and for many
helpful discussions. The author would also like to thank the referee for their detailed report.
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