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Abstract: We establish the higher fractional differentiability of bounded minimizers to a class of obstacle prob-
lems with non-standard growth conditions of the form
min { JP(x, Dw)dx :w € .’Kl/,(SZ)},
Q

where Q is a bounded open set of R", n > 2, the function ¥ € WLP(Q) is a fixed function called obstacle, and
Ky(Q) = {we W(Q): w > ¢ ae. in Q}

is the class of admissible functions. If the obstacle ¢ is locally bounded, we prove that the gradient of solution
inherits some fractional differentiability property, assuming that both the gradient of the obstacle and the map-
ping x — D¢F(x, &) belong to some suitable Besov space. The main novelty is that the Besov type regularity on
the partial map x — D¢F(x, £) is not related to the dimension n.
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1 Introduction

In this paper, we study the higher fractional differentiability properties of the gradient of bounded solutions
u € WHP(Q) to obstacle problems of the form

min { JF(X, Dw)dx :w € wa(Q)}. 1
Q
Here Q is a bounded open set of R", n > 2, the function ¥ : Q — [-00, +00), called obstacle, belongs to the
Sobolev class WP (Q), p > 2, and
Ky(Q) :={w e up+ Wé”’(gz) tw>Pae inQ}

is the class of admissible functions, where uy € WP (Q)is a fixed boundary datum. To avoid trivialities, we shall
assume that Ky (Q) is not empty.
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In what follows, we assume that the energy density F : Q x R" — [0, +00) is a Carathéodory function with
Uhlenbeck structure, i.e. there exists a function F : Q x [0, +c0) — [0, +00) such that

F(x, &) = F(x, &) (F1)

fora.e. x € Q and every £ € R™.

Moreover, we also assume that there exist positive constants ¥, L, I, exponents 2 < p < q < +oo and a param-
eter i € [0,1], which will allow us to consider in our analysis both the degenerate and the non-degenerate
situation, such that the following assumptions are satisfied:

1 - q

7(I€|” ~uP) < F(x, &) < 1u* + &%) 7, (F2)
(DecF(x, OA, ) = D + €27 1AL, (F3)

IDecF(x, O < L(u? + 18T (F4)

fora.e. x,y € Q and every & € R".

In the vectorial case, assumption (F1) is quite common to prove regularity results for local minimizers
(see [49]), but, in the scalar case, it plays a crucial role, since it allows to approximate F with a sequence of
integrands F; with p-growth, monotonically convergent to F (see Lemma 4.1).

Very recently, in [15] it has been proved, under the structure assumption (F1), that (F3) and (F4) imply (F2),
ie.if p < g, the functional F has non-standard growth conditions of (p, q)-type, as initially defined and studied
by Marcellini [40, 41].

We say that the function F satisfies assumption (F5) if there exists a non-negative function

p+2B

g c L[”ﬁ*tl (Q),

loc

with 0 < B < a < 1, such that

IDF(x, &) - DeF(y, §)| < |x ~ yI*(8(x) + g0 + &) T (FS)

fora.e. x,y € Q and every £ € R".
On the other hand, we say that assumption (F6) is satisfied if there exists a sequence of measurable non-

negative functions
p+2a

i € Lig. " (Q),

with 0 < a < 1, such that

(]

"gk”a +2a <00
D 18K puae
o L)

for some o > 1, and at the same time
IDeF(x, &) = DF(y, &) < |x - yI“(gr(x) + gk()’))(ﬂz + Iflz)%1 (F6)

for a.e. x, y € Q such that 27K diam(Q) < |x -yl < 2%+ djam(Q) and for every £ € R".

It is well known that the regularity of the minima often comes from the fact that they are also solutions
to the corresponding Euler-Lagrange system, in the unconstrained setting, or, in the case of obstacle problems,
to the corresponding variational inequality. In the case of standard growth conditions, that is, p = ¢, we have
that u € W'P(Q) is a solution to the obstacle problem in Ky(Q) if and only if u € Ky (Q) solves the variational
inequality

J(A(x, Du), D(¢ - w))dx > 0 12)
Q
for all ¢ € Xy(Q), where we set
A(X, §) = DeF (X, §).

On the other hand, in the case of non-standard growth conditions, even in the unconstrained case, the relation
between extremals and minima is an issue that requires a careful investigation (see for example [7, 8, 22]).
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From conditions (F2)—(F4), we deduce the existence of positive constants v, L, [ such that the following
p-ellipticity and g-growth conditions are satisfied by the map A:

LA, O] < 1(u* + 182)'T (A1)
(A, &) = A, ), = ) 2 VIE - g2 + 187 + D), (A2)
LA, &) — A, | < LIE- pl(u® + 187 + D) T (A3)

fora.e. x,y € Qandevery ¢, n € R
Furthermore, if one of the conditions (F5) or (F6) holds, then A satisfies assumption (A4) or (A5), respectively,
ie.

LG D) — AW, B < [x - Y1900 + goN(? + 187 T (A4)
for a.e. x,y € Q and every ¢ € R", or
X, &) = AW, O < X = yI1U(gk(0) + gk () (u* + Iflz)% (A5)

for a.e. x,y € Q such that 27X diam(Q) < |x - y| < 27¥*! diam(Q) and for every ¢ € R".

The study of obstacle problems started with the works by Stampacchia [47] and Fichera [23] and has since
then attracted much attention. It is usually observed that the regularity of the solutions to the obstacle problems
is influenced by the one of the obstacle; for example, for linear obstacle problems, obstacle and solutions have
the same regularity [3, 5, 38]. This does not apply in the nonlinear setting, and hence there have been intense
research activities in this direction (see [11, 12, 19, 42], just to mention a few).

When referring to functionals with non-standard growth conditions, it is well known that in order to get
regularity of minimizers, even the boundedness, a restriction between p and q need to be imposed, usually
expressed in the form q < c(n)p with a suitable constant c(n) that goes to 1 as n goes to co (see [29, 41] for
counterexamples).

In recent years, there has been a considerable interest in analyzing how an extra differentiability of integer
or fractional order of the obstacle transfers to the gradient of solutions: for instance we quote [9, 20, 21, 26, 27, 34]
in the setting of standard growth conditions, and [10, 16, 24, 25, 28, 35, 36, 50] in the setting of non-standard growth
conditions.

The analysis comes from the fact that the regularity of the solutions to obstacle problem (1.2) is strictly
connected to the analysis of the regularity of the solutions to partial differential equations of the form

div A(x, Du) = div.A(x, D),

whose higher differentiability properties have been widely investigated (see for instance [1, 2, 13, 30-32, 44, 45].

It is well known that no extra differentiability properties for the solutions can be expected even if the obsta-
cle 1 is smooth, unless some assumption is given on the coefficients of the operator A. A W'" Sobolev regularity,
withr > n, or a B} ; Besov regularity, with r > £, on the partial map x — A(x;, ¢) is a sufficient condition for the
higher differentiability of solutions to obstacle problems (see [20, 24-26] for the case of Sobolev class of integer
order, and [20, 35] for the fractional one).

In particular, in [35] the author and Ipocoana obtained higher fractional differentiability properties for the
solution to (1.1) in the sense of

(u? +1Dul’)7 Du € BY ) (D),

provided the obstacle function satisfies

Y
Dlﬁ € BZq—p,(f,loc(Q)

for 0 < a <y <1, and assuming that, in the case g = oo, there exists a measurable, non-negative function

g € L},.(Q) satisfying (F5) or, in the case of a constant ¢ < n%’z' =» In which even parameters y = a are admissible,

there exists a sequence of measurable, non-negative functions gy € 1°(Lj .(Q)) satisfying (F6), where r > 2.

Moreover, the above results have been proved under the condition on the gap between g and p of the type

g<1+g—1.
p n r

For precise definition and properties of Besov spaces, see Sections 2.2 and 3.
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When one deals with bounded minimizers, both for unconstrained and constrained problems with (p, q)-
growth, regularity results for the gradient can be proved under dimension-free conditions on the gap q/p and
weaker assumptions on the data of the problem (see [6, 14, 17, 27, 28, 32]). Moreover, in [27, 28, 32], the higher
differentiability of integer order of bounded solutions to (1.2) is obtained assuming that the coefficients of A and
the gradient of the obstacle belong to a Sobolev class that is not related to the dimension n but to the ellipticity
and the growth exponents of the functional.

Recently, in [18], it has been proved that, assuming the local boundedness of the obstacle ¥, the solution to
the obstacle problem (1.1) is locally bounded under a sharp relation between p and ¢. Here, we study higher
fractional differentiability properties of bounded solutions to obstacle problems satisfying (p, q)-growth condi-
tions. The novelty of this work consists in showing that, even in the fractional setting, the higher differentiability
properties of bounded solutions to (1.1) hold true assuming that the Besov type regularity on the partial map
x — A(x, &) is not related to the dimension n. We observe that the bound (1.4) is only needed to get the local
boundedness of the solution (see Theorem 2.3). Therefore, if we deal with a priori bounded minimizers, then
the result holds without the hypothesis (1.4).

More precisely, we shall prove the following theorems.

Theorem 1.1. Let F(x, &) satisfy (F1)-(F5) for exponents 2 < p < q such that

q<p+p 1.3)
and 1 1
s ) 1.4)
q p n-1

Let u € Ky(Q) be the solution to the obstacle problem (1.1). If € Ly, (R), then we have that

loc

. b2
Dy €B%,,, _ (Q) implies (u* +|Dul*) T Du € Bf 0 10¢(R),

pH1I+p—q 7

provided0 < B <a < 1.

On the other hand, a Besov regularity of the type Bf ;, with o finite, is stronger than the one of the type By .. In
this case, we prove higher fractional differentiability properties for bounded minimizers under weaker assump-
tions both on the coefficients of A and on the gradient of the obstacle and on the bound for the gap q/p. The main

difference is that a stronger embedding theorem hetween Sobolev and Besov spaces holds (see Lemma 3.6).
Theorem 1.2. Let F(x, &) satisfy (F1)-(F4) and (F6) for exponents 2 < p < q verifying (1.4) and

q<p+a.
Let u € Xy(Q) be the solution to the obstacle problem (1.1). If ¥ € Ly’ (Q), then we have that

L P2
DY € B, (Q) implies (u*+|Dul*) 7 Du € Bf ;16c(9),

p+l+a—-q°~”

for a constant > 1 such that o(a + g) <2

Note that Theorems 1.1 and 1.2 improve the results contained in [35]. Here, the local boundedness allows us to
use an interpolation inequality (see Lemma 3.2) that gives the higher local integrability LP+2% of the gradient
of the solutions. Such higher integrability is the key tool in order to weaken the assumptions on the partial
map x — A(x, §) and on Dy with respect to the higher differentiability results established in [35]. Indeed, for
p<n-2aandgq <p+a—w,wehave

n p+2a
Lo c Lr+a-a,

and, moreover, under our assumption on the gap,i.e.q < p + a,

B(l

a
Zq_p’g C B p+2a

p+l+a-q’

The structure of this paper is the following. After recalling some notation and preliminary results in Sec-
tion 2, a Gagliardo—Nirenberg type inequality in Besov spaces is established in Section 3 for a priori bounded
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minimizers. Then we concentrate on proving our main result. The strategy is to prove uniform a priori estimates
for solutions to a family of approximating problems. Therefore, in Section 4, we present the approximation
lemma that allows to construct a sequence of functions satisfying p-growth conditions that converges to the
initial problem. In Section 5, we prove Theorem 1.1. In particular, we derive the a priori estimates in Section 5.1,
and, in Section 5.2, we pass to the limit in the approximating problems. Eventually, in Section 6, we give the
proof of Theorem 1.2, focusing only on the a priori estimate since the approximation procedure works exactly
in the same way as in the proof of Theorem 1.1.

2 Notations and preliminary results

For the rest of the paper, we denote by C, ¢, 7 general positive constants. Different occurrences from line to
line will still be denoted using the same letters. Relevant dependencies on parameters will be emphasized
using parentheses or subscripts. We denote by B(x,r) = Br(x) = {y € R" : |y — x| < r} the ball centered at x of
radius r. We shall omit the dependence on the center and on the radius when no confusion arises. For a function
u € L'(B), the symbol

1
ﬁ J u(x)dx
B

:1‘; u(x)dx =

will denote the integral mean of the function u over the set B.
It is convenient to introduce an auxiliary function

-2
Vp(§) = (U + 1817 ¢
defined for all £ € R". One can easily check that, for p > 2, it holds

€7 < |V, ()I*.
For the auxiliary function V), we recall the following estimate (see the proof of [33, Lemma 8.3]).
Lemma 2.1. Let1 < p < +o0. There exists a constant ¢ = c(n, p) > 0 such that

IVp(§) = V(I

TR < c(? +181% + i) 'F

T+ 18R + D)’ <

forany &, n e R", & # 1.
Now we state a well-known iteration lemma (see [33, Lemma 6.1] for the proof).

Lemma 2.2. Assume @ : [%,R] — R is a bounded non-negative function, where R > 0. Assume that for all

2 <r<s<Ritholds
C

—_— + —_—
(s-1r?% (s-r)
where 0 € (0,1), A, B, C > 0 and y > 0 are constants. Then there exists a constant ¢ = c(0, y) such that

R B C
Q(E) < C(A+ﬁ +ﬁ)'

The following regularity result, whose proof can be found in [18] in a more general setting, allows us to obtain
the local boundedness of solutions to the obstacle problem (1.1).

D(r)< 0d(s)+A +

Theorem 2.3. Let u € W'"P(Q) be a solution to (1.1) under assumptions (F2) and (F3), for exponents 2 < p < q
verifying (1.4). If Y € L2 (Q), then u € LY (Q) and the estimate

loc loc

suplu| < C(sup|y| + lullwie(zy)" 2.0
Bgp2 Br

holds for every ball Bg € Q, for m := n(n, p, q) and with C := C(n, p, q, R).
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2.1 Difference quotient

We recall some properties of the finite difference quotient operator that will be needed in the sequel. Let us
recall that, for a function F : R" — R and a vector h € R", the r-th finite difference operator is defined by

T3 F(x) := TpF(x) = F(x + h) — F(x),

T, F(X) := Th(TZ_lF(X)), renN, r>1.

We start with the description of some elementary properties that can be found, for example, in [33].

Proposition 2.4. Let F ¢ WLP(Q), with p > 1, and let us consider the set
Qi = {x € Q : dist(x, 0Q) > |hl}.

Then the following assertions hold:
(i) ©oF € WHP(Qp) and
Di(thF) = Th(DiF).

(i) If at least one of the functions F or G has support contained in Qp|, then
J FtpGdx = J Gt_pFdx.
Q Q

(iii) We have
Th(FG)(Xx) = F(x + h)Tp G(X) + G(X)TRF(X).

The next result about the finite difference operator is a kind of integral version of the Lagrange theorem.
Lemma2.5. If0 < p <R, |h| < R%p, 1< p < +oo and F, DF € LP(Bg), then

[1e0Fcorax < e pyine” [1DFCOPdx.

B, Bg

Moreover,
J|F(X +h)Pdx < JlF(x)lpdx.
B, Br

2.2 Besov spaces

We give the definition of Besov spaces as done in [37, Section 2.5.12].

Definition 2.6. Letv : R" — Rbe a function and let @ > 0 be a constant. Denote by r the smallest integer larger
than a.
(i) Letl<p,s < oco.Wesay that v belongs to the Besov space B ;(R") if v € LP(R") and

IThvOOlP N3 dh \s
[V]Bgys(mn) = ( J ( J de) W) < 00.
R" R"

Equivalently, we could simply say that

v dh
P(RN h s .TDP(MN
veLP(R") and _|h|a €L (_|h|"’L (R )).
(i) Let1<p < oo.Wesaythatv e Bg,oo(IR”) if v e LP(R™) and

1TVl | N3
[Vlge (rn) = Sup ( J —dx) < 00.
.00 (R") e J |h|ap
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Accordingly, for 1 < p < coand 1 < s < co, the Besov norm is defined by
IVlige vy = IVILe ey + [VIBE  rr).-

Observe that, if 1 < s < co, by integrating for h € B(0, §) for a fixed § > 0, an equivalent norm is obtained,

because r :
1T VP N5 dh \s

< J ( J }llthx)p |h|n> <c(n,a,p, s, 8)Viwewn.
{lh>8} R"

In the case s = co, one can simply take the supremum over |h| < § and obtain an equivalent norm. By con-
struction, one has Bg,s(IR”) c LP(R™). One also has the following version of Sobolev embeddings (a proof can be
found at [37, Proposition 7.12]).

Lemma 2.7. Suppose that0 < a < 1

() Ifl<p<Zandl<s<p;= ap, then there is a continuous embedding By ((R") ¢ LPa(R™).

(ii) Ifp = % and 1 < s < oo, then there is a continuous embedding Bj ps(R") € BMO(]R"), where BMO denotes the
space of functions with bounded mean oscillations [33, Chapter 2].

For further needs, we recall the following inclusions [37, Proposition 7.10 and (7.35)].

Lemma 2.8. Suppose that0 < f < a.
(i Ifl<p<ooandl<s<t<oo,then Bg’S(IR”) C Bg’[(]R").
(i) If1<p<ocoandl<s,t< oo, then BE (R") c BY (R").

Given a domain @ c R", we say that v belongs to the local Besov space Bp sloc if @,V € By ((R") whenever
@ € CX(Q). It is worth noticing that one can prove suitable versions of Lemma 2.7 and Lemma 2.8, by using
local Besov spaces.

We have the following lemma.

Lemma 2.9. A functionv € L
and only if

loc(Q) belongs to the local Besov space Bp sloo With1<p,s<coand0<a <2, if

N [|e llzs (e LP(B))

dh
Ihl'l

for any ball B c 2B c Q with radius rg. Here the measure

Proof. If a < 1, the result has been proved in [2].
Now, let a € [1, 2). Using twice Proposition 2.4 (iii), for any smooth and compactly supported test function ¢,
the pointwise identity
T3 (oV)(X) _ Th(@(X + MTRV(X) + v(X)Th9(X))

|h|® |hl®

T2V(X) . Tpv(X)TRO(X + R) 77 9(x)
2
I e P

= @(x + 2h) 2.2)

holds.

It is clear that
TRV(X)ThQ(X + h) - | TRV (X)]

< DY|loo-
e hjet Dol
So,sincea—-1<1landv e BZ slloc(Q), from Lemma 2.8 (b), one has
ThV(X)Th(X + h) o7 dh
SR T e LP(R™)).
e E (g L ®)
Moreover, it holds
V)T 9(X) - -
|~ | < VOOUTADG NI < VOO ND?gleol I,

and therefore we have )
v T, 9(X) L ( dh

BB e LR
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As a consequence, we have the equivalence

2
« s . ThV(X) s( dh iy
Qv € Bp,S(IR ) if and 0n1y1f (p(X+ Zh)w eL (W’L (]R ))

However, it is clear that

2
Thv(x) s dh .TP(RN 0
(p(X+2h)W el (WL (R )) for every ¢ € C°(Q),
if and only if the same happens for every ¢ = yp and all balls B ¢ 2B ¢ Q. This concludes the proof. O

It is known that Besov spaces of fractional order a € (0, 1) can be characterized in pointwise terms.

Definition 2.10. Suppose v : R" — R is a measurable function. Then a fractional a-Hajlasz gradient for v is
a sequence {gx}x of measurable, non-negative functions gx : R" — R, together with a null set N ¢ R", such that
the inequality

v(xX) = vl < (8k 0 + gry)Ix -yl
holds whenever k € Zand x,y € R" \ N are such that 27X < |x — y| < 27¥*1, We say that {gx}x € I5(Z; LP(R")) if

I{grtrclliszey = < y ||gk||iﬂ(1R"))S < 00

keZ
The following result was proved in [39].

Theorem 2.11. LetO<a<1,1<p<ooandl<s<oo. Letv e LP(R"). Onehasv € Bg’s(IR”) ifand only if there
exists a fractional a-Hajlasz gradient {gk}x € I°(Z; LP(R™)) for v. Moreover,

IVliBg  rmy = Infl{gitkllis(rr),

where the infimum runs over all possible fractional a-Hajlasz gradients for v.

3 Gagliardo-Nirenberg inequality

In this section, we collect some results on Besov spaces that will be useful later.

1+y
p,s,loc

Lemma3.1. Letv € Wllo’f(]R"). IfDv e B;,S,IOC(IR")for somel<s<ooand0<y<1,thenveB (R™). More-
over; the estimate
Vgt g, < C[DVIg) (5
holds for every ball B, c Bg, with ¢ := ¢(n, p).
Proof. We give the proof of Lemma 3.1 only for s = oo, since the case s finite can be obtained in a similar way.
Fix0 < p <R, |h| < R%p and consider balls B, ¢ Bg. Since 1 < 1+ y < 2, we have that

[T2v(X)IP . \b
Wlg2 i, = :Bn?"( I |h|@p dx) '
P

Now, using v € Wllo’f (R™) and Lemma 2.5, we obtain

J ITh(ThV(X))lpdxsdhlpJ |TRDV(X)|P
|h|(+y)p |R|(+y)p
p Br
B |Tn DV ()P
S
Br
p
< c[Dv]B;m(BR),

which is finite by the assumption on Dv. This completes the proof. O
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The following interpolation inequality can be found in [46].

Lemma3.2. Letl1<p<oo,1<s<o0,y>0and0 < 0 < 1. Then the interpolation inequality
Vg gy < CIVIGy gy IV

holds for every v € Bzys(IR") N LP(RMY).

For the next result, see, e.g., [43].

Lemma33. Lety>0,1<p<ocoand1<s<oo. IfmeNandy > m, then there is a continuous embedding
B} s(R") ¢ WM™P(R").
Now, we are able to prove the following higher integrability result.

Proposition 3.4. Letv € Wl p(IR”) N Ly (R") and let Dv € B
pv e LPU*P )(IR”), for every 0 < B < y. Moreover, the estimate

loc

pmloc(]R")forsomel <p<ooand0<y <1 Then

JIDvlp #Pdx < CIIEE 5, (1DVI]

o0 * R p) V)
BP

holds for every ball B, ¢ Bg, with C := C(n, p, y, p).

Proof. Thanks to Lemma 3.1, we obtain
Ve B“V (R™) locally.

Then Lemma 3.2 yields
0(1+y)

v EBp/Goo

(R™) locally

for every 6 € (0,1).

Choosing 6 = for 0 < B < y, we have

1+ﬁ’
1+y

+B
Let us consider 0 < p <R <1and fix balls B, ¢ Br and a cut-off function n € €2°(B R+p) such that 0 < n <1,
n=1onB,, |Dn| < = and ID?n| < >. By virtue of Lemma 3.3, we have

0(1l+y) = >1

(1+P) (1+p)

j|Dv|"<“ﬁ>dx <MVt ey < VPSP 31
By B0 RY)
From Lemma 3.2, we get
1

PP < it g, v ||”1+y . (3.2)

(Br) % (R

Bp(lﬁﬁ)oo(]R)

Using identity (2.2) and the properties of n, we infer

P <C c 2h)P 7P d
v v su X —L__dx
V07 gy < CMIEra ) + ek ["7( 2O e
TP [T2n00P
+C sup |ltan(x+h)P TVl dx +C sup |v|pLd
R |R|PA+P) R |[h|P(1+Y)
i< %2 g <=2 p
3R+p
|T2v|P P |Tpv|P
<C||v||Lp(BR+ y+C sul? J Ihlp(“”)dXJrC sul? JllDr)lle(Baﬂ)de
<2 p Ihl< %2 3 T

4

+C sup [RPOY | PP, 05

R-p

<P

Ihl<= B3r+p
4
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C |TRV|P
= C"V"LP BR+P> + C[V] “V (BaR+p (R P) IhTERPp J |h|PY
B3R4+p

+——— sup |hPA7 J [v[Pdx.
“p)p h

(R-p) S B3rip

i

Now, exploiting Lemma 2.5 and using the fact that R — p < 1, we obtain

C
p - p(1-y) p - p
vl Byl (R C”v"L"(BR ) C[V]B}foﬂ(&w) " (R-p)P Su}ip'hl JIDVI ax+ (R - p)?P J IviPdx
|n< 232 By Bty
4
C p
: C[V] ;2;(3 3R+p) " W”V” WLP(Bg)* 33
Combining inequalities (3.1), (3.2) and (3.3) and Lemma 3.1, we derive
C
p(1+p) p =
j|Dv| dx < C”V”waw["]B;,;z,wm) T IV G 1V 05,
B, i
C pB p
< C”V”Loo(BR)[DV]By w(Br) m"v||L°°(BR)"v"WLP(BR)’
i.e. the desired estimate. O

The following proposition is an immediate consequence of the previous result and will be a fundamental tool
for the proof of Theorem 1.1.

Proposition 3.5. Let v € W1 p(IR”) NL
0<y<1 ThenDv e LP*?

loc

1OC(IR”) for some p > 2, and assume that V,(Dv) € B!
(R™) for every 0 < B < y. Moreover, the inequality

2,00, 1oc(R™) for some

j IDVIP2Edx < CIvlh s, (1Vp (DY)

By By " (R - p)Zp"V"WWBR)
BP

holds for every ball B, c B, with C := C(n, p, y, p).
Proof. By Lemma 2.1, we get
[T Vp(DV)I2 > c|TaDVIA(u? + [Dv(x + ) + [DV()D)'T > clzpDvl?, (3.4)

where in the last inequality we used the fact that p > 2.
Estimate (3.4) implies

dx for every h. (3.5)

J |ThDVIP I |[TnDvl? j |Th Vp(DV)[2
3 - 2y i NTAT
B |h|pp |h| |h|

R
Now, taking the supremum over h in (3.5) and by virtue of the assumption on V,(Dv), we derive that
2y
Dv € By o (R") locally. (3.6)

Thanks to Lemma 3.1 and (3.6), we obtain

Zy

Ve Bp o (R") locally.

By virtue of Lemma 3.4 and (3.5), it follows

[1Dvrax < il g, VoDV
BP

b0t e ) T e 1 L

forevery 0 < < y. O
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Moreover, we have the following embeddings between Sobolev and Besov spaces (see [48]).

Lemma3.6. Lety > 0,1 <p <ocoandl < s <min{p, 2}. Then there is a continuous embedding

B} s(R") ¢ W"P(R™M).

y

Arguing similarly, but assuming that Vj,(Dv) € B, ¢ .

ing result.

(R™) for some 1 < s < co, we are able to prove the follow-

Proposition 3.7. Let v e WP (R") n L (R™) for some p > 2, and assume that V,(Dv) € By .| (R") for some

) loc 2,8,loc
0<y<1andlsssm.Then

Dv e Lp+2y(IR”).

loc

Moreover; the inequality

[1ovirr2rax < i o, (1vp0w)

2 P
o0 @ g o)
By

holds for every ball B, c Bg, with C := C(n, p, ).

4 Approximation lemma

The main tool to prove Theorem 1.1 is the following approximation lemma (see [35] for the proof).

Lemma4.1. Let F: Q x R" — [0, +00), F = F(x, £), be a Carathéodory function satisfying assumptions (F1)—(F3)
and (F5). Then there exists a sequence (F;) of Carathéodory functions F; : Q@ x R" — [0, +00) monotonically con-
vergent to F, such that the following assertions hold:

(i) Forae x € Qandevery & € R", Fj(x, §) = Fj(x, |€]).

(i) For a.e. x € Q, for every & € R™ and for every j,

F]'(X, E) S Fj+1(X’ f) S F(X) f)
(iii) For a.e. x € Q and every ¢ € R", we have
-2
(DgcFi(x, OA,A) = v + [E1) T 1A,

with v depending only on p and v.
(iv) For a.e. x € Q and for every & € R", there exist L1, independent of j, and L, depending on j, such that

8P = 7)< Fj, D < Lau + 14D,
Fj(x, &) < L1()(u + [€)P.
(v) There exists a constant C(j) > 0 such that
IDEFj(x, &) — DeFj(y, ) < Ix - yI“(g00) + g2 + 1§D T,
IDF;(x, &) - DeFj(y, Ol < C(HIX - y1(g0x) + gy)(u? + 18D

forae. x,y € Qand for every £ € R"".
Assuming (F6) instead of (F5), statement (v) would change as follows:
(V') There exists a constant C(j) > 0 such that

IDEFj(x, §) - DFj(y, O < Ix - yI“(gr(x) + ge(@? + 1§17,
IDEF;(x, &) - DeFj(y, §)] < CHIx - Y18k (0) + e (2 + &%) T

forae. x,y € Q such that 27K diam(Q) < |x -yl < 27K+ diam(Q) and for every & € R™.
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5 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In particular, in Section 5.1, we derive the a priori estimates
for regular minimizers of obstacle problems (1.1), while in Section 5.2 we conclude through an approximation
argument.

5.1 A priori estimate

We have the following theorem.

Theorem 5.1. Let F(x, &) satisfy (F1)-(F5) for exponents 2 < p < q such that (1.3) and (1.4) hold. Let u € Ky (Q) be
the solution to the obstacle problem (1.1). Suppose that

p+2B

geLpm(Q), YeLP(Q), DypeB,,

loc

(Q)
pﬂwfq,oo,loc

for0 < B < a < 1. Ifwe a priori assume that

Vy,(Du) € By (Q),

2,00,loc

then the estimates

2 4
[ 2 ax < oy + Whwiosy ([ @55 + D+ 1D, )

,00
BR/4 BR p+1+p—q

and
P2 T
[ vy @uitax < cinPPIm, + Tl ( [ 6755+ Dax+ 1DYls L, o)
BR/4 BR p+1+p-q°

hold for all balls B4 c Br € Q, for positive constants C := C(n, p, q,v, L, R) and 7 := ri(n, p, q, B).

Proof. By virtue of assumption (1.4) and Theorem 2.3, u € Ly, (®). Hence, using Proposition 3.5, we deduce that

Du e LV (q). (.1

loc

Notice that Du € Lﬁ;w (Q) implies that u satisfies the variational inequality (1.2) for every ¢ € W14(Q) such that
¢ > 1. Indeed, let ¢ € WH9(Q), ¢ > 1. Then the function u + £(¢ — u) belongs to the admissible class, for every
€€ (0,1), since

u+e@-u=€ep+(1-eu=y.

Hence, by minimality of u, we get

JF(X, Du)dx < jF(x, Du + eD(¢ — u))dx,
Q Q

which leads to
J[F(x, Du + ¢D(¢ — u)) — F(x, Du)]dx = 0.
Q

From Lagrange’s theorem, for 8 € (0, 1) it holds

J(A(x, Du + €0D(¢p — u)), eD(p — u))dx > 0.
Q
Since € > 0, we get

I(A(x, Du + £6D(0 — w)), D(¢ — w))dx > 0. (5.2)
Q
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Now, from assumption (A1), we obtain
[{CA(x, Du + e6D(9 —u)), D(¢ — w))| < [A(x, Du + €6D(p — w))|ID(¢ — u)|
< C(1+|Du+£6D(¢p — u)|7H)|D(p - u)|
< C(1 +|Dul? + |Dpl9),

where we also used that €, 0 € (0, 1).
On the other hand, by virtue of assumption (1.3) and (5.1), we have

1+ |Dul? +|Do|? € LL (Q).

loc

Therefore, by applying the dominated convergence theorem, we can pass to the limit for ¢ — 0" in (5.2), getting
inequality (1.2), for every ¢ € W4(Q) such that ¢ > 1.

Fix0< £ < p<s<t<t <&suchthat Bp € Q and a cut-off function ) € Cj(B;) suchthat0<n<1,n=1
on B, and [Dn| < 5.

Now, for |h| < t' - t, we consider the functions

v100) = N[ - Y)(x + h) - (u - P)(x)]

and
V2(x) = NP (x = W)[(w - Y)(x - h) = (u - P)(X)].
Then
P1(X) = u(x) + tv1(x), (5.3)
2(x) = u(x) + tva(x) (5.4)

are admissible test functions for all t € [0, 1).
Inserting (5.3) and (5.4) in (1.2), we obtain

J(A(x, Du), D(n?tp(u — ¥)))dx + J(A(x, Du), D(n*(x — h)T_p(u — ¥)))dx > 0. (5.5)
Q Q
By means of a simple change of variable, we can write the second integral on the left-hand side of the previous
inequality as follows:

J(A(X +h, Du(x + h), D(-n*ta(u - ¥)))dx,
Q
and so inequality (5.5) becomes

J’(A(x + h, Du(x + h)) - A(x, Du(x)), D(nzrh(u -Y))Hdx <0.
Q
We can write the previous inequality as follows:

0> J(.A(X + h, Du(x + h)) - A(x + h, Du(x)), r]ZDThu)dx
Q

- J(A(x + b, Du(x + b)) — A(x + b, Du(x)), n*Drwbydx

+

(A(x + h, Du(x + h)) - A(x + h, Du(x)), 2nDntp(u - ¥))dx

(A(X + h, Du(x)) — A(x, Du(x)), n?Dtpuydx

+

(A(X + h, Du(x)) — A(x, Du(x)), n?Dtp)dx

+

O—, D O, O— ©

(A + h, Du(x)) - A(x, Du(x)), 2nDntp(u - ¥))dx

=h+L+I3+1I4+Is5+1Ig, (5.6)
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which yields
Iy < || + 13| + 4l + |I5| + |I6]. (5.7

The ellipticity assumption (A2) and Lemma 2.1 imply
Li>v J n?leaDul? (i + 1Du(x + h) + [Du()?) = dx
Q

> C(v) I N3t V(D) dx. 5.8)
Q

From the growth condition (A3), Young’s and Holder’s inequalities, Lemma 2.1 and the assumption on Dy, we
get

| < L J P 1TnDul(? + 1DuCx + W + D)) T [taDyldx

Q
<e J 21T Dul(? + 1Dulx + h)? + |Du()1?) = dx
Q

2q

+Co(L) j TR + 1Dux + W + 1DuGo )+ dx
Q

pe2p e e
<e J 2T V,p(Duw) 2dx + CE(L)< J|th¢|u+l+ﬁ—q dx) ( j (1+ |Du|)P+2ﬁdx)
Q B, By

29-p-2
PlaVp@uitds+ CORDY. ([ @+ puprax) ™ 59

p+1+p—q o0 B[,

<€

[ —

Arguing analogously, we get

3] < 2L J|D’7|’7|ThDU|(ﬂ2 +1DuCx+ )2 + [DUCOP) T a(u - ¥)ldx
Q
<e j N2 1TnDul(? + |Dulx + h)? + [Du()?) =" dx
Q
Ce(L)
(t-9)?

2q—p-2

jnh(u—¢)|2(u2+|Du(x+h)|2+|Du(x>|2) F ax
B,

C (L) 428 2(p+1§§—q) Zq—gl—?Z
<e | mimvpouiaxcs S5 ([ ma-pirtiea) ([ apupra)
Q By By

Using Lemma 2.5, we obtain

2p+1+p-q) 2q-p-2
Ce(L)

+28 + “p+2B

Ll <e J ATV, (D) dx + sz( JlD(u _ )| dx) Y ( j(1 " |Du|)P+2ﬂdx) " (510)
Q By By

In order to estimate the integral I, we use assumption (A4), Young’s and Holder’s inequalities and Lemma 2.1

as follows:

14| < J nlaDullh|*(g0x + h) + g())(1 + [DuC)?) T dx
Q
<e j n?ltnDul*(u? + |1Du(x + h)|> + IDu(x)|?) 7 dx + Ce|h2 j(g(x +h) + g())*(1 + |Du))*TPdx
Q By
) 5 5 v\ o
<e J N2 h V(D) [dx + Celh] “( J g dx) ( j(l + |Du|)P+2ﬁdx) . (5.11)
Q

Bp B;
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We now take care of Is. Similarly to above, exploiting assumption (A4) and Hélder’s inequality, we infer

15| < j *TDYIRIC(S(x + 1) + §00)(A + 1Dul) T dx

Q
pﬂ%q b
a 2B P+2, (q-1)(p+2B) p+2B
< |h| grfidx |Th DY o 1+ |Du|) B dx
By B;
+[f—q p+1+ﬁ—q 2q-p-1

< |h|“( J g qu) <J|T;,D¢|P+1+ﬂ qu) (I(l + |Dul) T dx) v

By B B,

Now, we observe that
(q-D(p+2B)

2q-p-1 <p+2B ifandonlyif p<gq. (5.12)
Hence,
151 < ([ ¥ qu) 7 Dyl oy 0 ([ax |Du|>P+2/3dx)p v .13
Bg P B,

From assumption (A4), the hypothesis [Dn| < = and Holder’s inequality, we infer the following estimate for I:

C -1
| < :Ihl" Jlrh(u ~)I(g0x+ h) + gX))(A + Dul?) T dx
B;
+h—q p+l+p—q 29-p-1

p+h—q —1)(p+ 128
<t [ g##ea) ™ ([immw-wirFFar) " (v imu T ax)

By B B;

Using once again Holder’s inequality, inequality (5.12) and Lemma 2.5, we have

al 2B % p+2B p+pl+2€97q +28 qu:Zlﬁ
IIs| < |h| ( J e dx) ( J ID(u — )| 7 dx) ( j(l + |Duly? dx) . (5.14)
BR Btl Bt

Inserting estimates (5.8)—(5.11), (5.13) and (5.14) in (5.7), we infer

11+2/3

c(v) j n*|th Vp(Du)l*dx < 3¢ j N*Th Vp(Dw)*dx + Ce(L)|hI** [DY]3 - (BR)( J(1 +|Dul)P** dx )
Q Q pHIpq By

2(p+1+p-q) 2q-p—2

* (fi(I;))z |h|2< jID(u - lﬁ)ll”%zﬁﬁ-qu) e ( I(l + |Du|)p+zﬁdx>w

B, By
e (R o\
+ Colh ( Jgpw dx) (ju + |Dul)P* dx)

BR Bt

+5 q q-1
+ ClhlZa( J gP+B q dX) [Dl/)]Ba pe2p (BR)< J(l + |Du|)p+2BdX> p+2p
Bg p+1+p-q’ B,
C 1 P2 o _pi2p b
vt ( [ g#5ax) "7 ([ iD= w1 ax)
Br By

g1
: ( J(l + |Du|)P+25dx) e

B

Using Lemma 2.1, p < 1 and u € WP (Q), we obtain

2 2 20,2 2 2 22
jr) |Th Vp(Du)|“dx < jlthul (u” + |Du(x + h)|* + [Du(x)|*) = dx < oo.
Q Q
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Choosing € = % we can reabsorb the first integral in the right-hand side of the previous estimate by the left-

hand side, thus getting

qupfz

j T Vy(Du)Pdx < C(L)|h|2“M§( J(1 + |Dul)P*?P dx )
Q By
2(p+1+B-q) 2q-p-2
0 o) B o)
B By
qup -1

+ Clh( J(1 + 1D ax)" + clhP M J(1 +Dupax)"
B; B;

C 28 P*l:ﬁ’q q+’1
+ —S|h|‘”1MR< I ID(u - )| 7 dx) P ( J(1 + |Du|)!’+2ﬁdx)” 7

t
By B;

where we set
= "g”L%(BR +1DYllse ., Bo-

g’

From Young’s inequality, we infer

j N*ThVp(Dw)|*dx < Co(L, Mg)|h|*® + 0| h|*® J(1 + |Dul)P**B dx
Q By
Co(L)
+
(t-s)P

|2 JlD(u O 759 dx + O|h? J(1 + 1Dul)P*?Pdx
B, By

+ Co(Mp)|h|* + 0|h|>® J(l + |Dul)P*Pdx + Co(Mg)|h|*® + O]h|*® J(1 + |Du|)P**Pdx

B B
C M 128 ﬁ<p+1++/3*q)
e 2 [ia-pirFiar)
+ OJh|e+ J (1 + |Dul)P P dx, (5.15)
B,

where
.. p+28 p+2p
= pi= .
p+B-q P+2f-q+1
Using Young’s inequality, we estimate the third and the second last integral appearing in the right-hand side
of estimate (5.15) as follows:

ColL) I [ 1D - )1 ax < Co(L) IRl (1Dl dxes 20 Co(L) Ikl (101 ax
(t—s)p (-5 (-5
t t t
< Olh? [ IDul P dx+ oD g+ XM (sa6)
(=) (t—s)
B,
and analogously
Co(Mg) v\ Pt

Bt ([ b - gy ax)
< Cg(MR)|h|a+1 + leaﬂ le(u_ ¢)|%dx
B (t—s)p”

By

< Cobtl ™ + o [1pupax + O gy LV
(t-s)P (t-s)P

(t-s)P

%, (5.17)
B,
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where
y._ D+1+B-¢q n._ D+2B

T p+p-q P Topvitp-q
Inserting (5.16) and (5.17) in (5.15), we get
j n*Ta Vp(Dw)|*dx < Co(L, Mg)|R** + 6] h|* J(1 +|Du|)P** dx
Q By
+ OlhP? JlDulp"zﬁdx N (f"i),mﬂum S Me) o

- s)P (t-s)P
B

+ 0[R2 J(1 + |Dul)P*2Bdx + Co(Mg)|h[2® + 0]h[2 J(1 + |Dul)P*2 dx
By B,

+ oM + R [(1-+ 1Dul)** dx

B

+ ColMa) IR + OlAI” [1DulPPax + (9())|h|| 2l
B,

N —C(‘i(L J)MR)|h|2 + 6h|e j(1+ \Dul)P* % dx.

B.

We can rewrite the previous estimate as

J T Vy(Du)2dx < 56/h/% Ju + |DuP*8)dx + 26]h|% j (1+ [DulP*?)dx
Q B, By
1 1 1
! + n + I/)
(t-s)p (t-9P (t-s)P

+ C@Ihlz"(l +

for a constant Cy := Cg(v, L, Mg, R).
Dividing both sides of the previous estimate by |h|?¢, recalling that n = 1 in B, and passing to the limit as
t' — t*, we get

V,(Du)[?
J%dx < 791(1 +1DulP*)dx + Co(1 +

s B¢
for every h € R".
Since u € L) (Q) and Vy(Du) € BY

(5.18)

(N S )
(t—spP'"  (t-sP (t-s)P"

(Q), by virtue of Proposition 3.5 and Theorem 2.1, we infer the fol-

2,00,loc
lowing 1nequa11ty

2 |71 Vp(Du)|* C
[pupax < cpuil s, sup | o s
B, B

|Th Vp(Du)|*
< CI Moo + lwioga, ) sup [ -2 dx
o [h
C v
+ WCQWHLM(BR) + llullwir(pg)) (5.19)

for a constant 7 := 7(n, p, q).
Taking the supremum over h in the left-hand side of (5.18) and using estimate (5.19), we obtain

leuW*Zﬁdx < CIY ey + Il winz)"0 j(l + |DulP*#)dx

B, i
+C © + lu ) 71 + + .
P lwsion) [ (t-sP  (t-s)P (t—s)pr,]
C v
" mﬂllﬂlmwm + lullwroze)

forevery0< <p<s<t<
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Now, choosing s such thats —p=t-s,ie.s = ”Tp, it follows

jIDuI”*Z’gdx < CIYllzeo(sy) + lullwir(g))" 0 j(l + [Du|P*?Pydx

B, 3
1 1 1
+C (B + [[Ullw. 11+ + _ +
oIl + Ntlwiogs [ L+ =+ o 4 ]
C
Yo p® )0 (1 llzeo(Bgy + Nullwrrse))”™ (5.20)
Setting
(1) = leul’”Zﬁdx,
B,
we can write inequality (5.20) as
@(p) < C[YllLeo(By) + Nullwrepy)) 0D(2)
1 1 1
+C w8 + lUllw ] 4+ + 4
oW lumim) + Ntlwroin V' [L+ G b s + ]

—C y/
+ (t—p)2p IWllzeoBr) + Nullwesg))”™

By virtue of Lemma 2.2, choosing 6 such that

1
ClPlzeosy) + ”u"WLP(BR))ne =3

we obtain

R 1 1 1 C

() < ClLoy + Mulwem)[1+ 2 + o5+ oo | + 2 (Wl + o)™
with C := C(n, p, q, v, L, Mp).
Now, recalling the definition of ®, we obtain
+2 T 228 d
[ 1w ax < ey + Nelwnomy ([ GFS + Dax e 10l w) - G2D
Brya Bp pHi+p—q

Thus, inserting (5.21) in (5.18), we deduce the a priori estimate

pi2p T
[ v @uwitax < cinPPIm, + oo ( [ 6555+ Dax+ 1DYls ., o)

+1+p-q "
Bgpa By p+1+p—q

for constants C := C(n, p, q, v, L,R) and r := n(n, p, q, B). O
Now, we are able to establish the following higher differentiability result for obstacle problems with p-growth.

Theorem 5.2. Assume that A(x, ) satisfies (A1)-(A3) for an exponent 2 < p = q and let u € Xy (Q) be the solution

to the obstacle problem (1.2). If there exist a non-negative function g € Ly, () and an exponent 0 < a < 1such that

GG ) — AW, § < X = Y1800 + gD WP + 184 T
forae. x,y € Q and for every & € R", then the implication that

L 2 222
VeLRQLDY € By (@) implies (u* +1DU)T Du € B 1 (Q),

holds, provided 0 < 8 < a.
Proof. Using Proposition 3.4, we infer Dy € Lﬁfczﬁ (Q). Hence, [4, Theorem 2.6] yields Du € L? 26 (R). Arguing as

loc
in the proof of Theorem 5.1, we derive estimate (5.18) in the case p = q. This completes the proof. O
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5.2 Passage to the limit

Proof of Theorem 1.1. Letu € Xy(Q)be asolution to (1.1), and let F; be defined as in Lemma 4.1. For fixed Br € Q,
let u; be the solution of the problem

min{ J Fj(x, Dw)dx : w > a.e.in Bp, w e u + Wé’p(BR)}. (5.22)
Br
Setting
Aj(x, &) = D¢Fj(x, §),
one can easily check that A; satisfies (A1)-(A4) and the following assumptions:
406 Ol < () +18H)'T, (5.23)
A0, 8) = A6 M < L G)IE = nl(u? + 187 + 1) T, (5.24)
A0, 8) = A1, )] < O()Ix — YI*(800) + gONW? + 1E1) T
fora.e.x,y € Q,forevery ¢, n € R" andj € IN.Itis well known that u; € Xy (Bg) is a minimizer of problem (5.22)

if and only if the following variational inequality holds:

J(Aj(x,Duj),D((p —-uj))dx >0 forall ¢ € Ky(Bg). (5.25)
Q

Let Q'  Q be an open set. Fix a non-negative smooth kernel ¢ € €§°(B1(0)) such that fBl © ¢ =1 and con-
sider the corresponding family of mollifiers {¢m,}men. Setting

gm =8 * Pm
and
Amx, 9= [ 0)A00+ my. Dy, 5.26)
B1(0)
an easy computation shows that A;;, satisfies assumptions (A1)-(A3), (5.23)-(5.24) and the conditions
Mjm(X, &) = Ajm (¥, O < X = Y1“(gn(X) + Em) (U + ks (AD)
and

; p1
WAjm (X, ) = Ajm(y, Ol < 01X = y|“(gm(X) + Em ) (W? + &%)
fora.e. x,y € Q, for every &, n € R" and everyj,m € IN.
Step 1. For fixed j € N, let Aj;, be defined as in (5.26) and let ujm € u; + W;’p (Bg) be the solution to the varia-
tional inequality
I(Ajm(x,Dujm),D(w - Ujm))dx =0 forall ¢ € Ky(Bg). (5.27)
Bp
By the ellipticity assumption (A2), we have
v J(yz + DU + |DUjn|?) T | Dujm — Dujl2dx
Br

< I (Ajm(x, Dujm) — Ajm(x, Du;), Dujm — Dujydx

Br
= I(Ajm(x, Dujm), Dujm — Duj)dx — I(Ajm(x, Du;j), Dujm — Duj)dx
BR BR

= j(Ajm(x,Dujm),Dujm - Duj)dx - j(Aj(x,Duj),Dujm - Duj)dx
Br Br
" J (A%, DU) — Ajm(X, DU;), DUjm — D) d. (5.28)
Br
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Since u;j and uj;, are solutions to (5.25) and (5.27), respectively, we notice that
I (Ajm(X, Dujm), Dujm — Duj)dx — j (Aj(x, Duj), Dujm — Duj)dx < 0. (5.29)
Br Br

Combining (5.28) and (5.29), we get

p=2
v J(uz + [Dyj|* + |Dujm|*) 7 |Dujm — Dujl*dx
Bg

< J (Aj(x, Duj) - Ajm(x, Duj), Dujm — Duj)dx
Bp
) p-1 1
<( JIAj(x, Du) - Ajm(x, D) Prax) ” JIDujm - DujPax)’, (5:30)
By Bp
where in the last inequality we used Hélder’s inequality.
Since p > 2, from (5.30) we obtain
JlDujm - Dujlpdx <C JlAj(x, Duj) — Ajm(x, Duj)|ﬁdx. (5.31)
BR BR
Since Ajm (X, Duj) satisfies .
. p-1
Mjm(X, D)l < L()H(* + |Dw;*) 7,
and Ajm (X, DUj) = m-co Aj(X, Duj) a.e. in Q, applying the dominated convergence theorem, we have
Ajm(X, DUj) = m—oo Aj(x, Du;)  strongly in Lﬁ(g).
Therefore, passing to the limit for m — oo in (5.31), we deduce that

Uim — W in WYP(Bg). (5.32)

Moreover, since
p+2B

g c Lp+ﬁ*¢l (Q),

loc

we have
p+2B

gn— g inL77(Q). (5.33)

loc

a
2,00,loc

By virtue of Theorem 5.2, V,(Duj;,) € B (Br). Hence, from Theorem 5.1, u;n, satisfies the a priori estimate

p+2B Ve
[ 1D < oy + lgmbwsoa)( [ @R77 + Dax+ 1DV, )

,00
BR/4 Bg p+1+p—q

for constants C := C(n, p, q, v, L, R) and r := 7(n, p, q, B), both independent of j and m.
Finally, by weak lower semicontinuity, (5.32) and (5.33), we get
J |Du;|P*?P dx < lim inf J |Dujp [P2P dx
m—oo

BR/4 BR/4

2B g
< Cllman + Il ( [ @75 4 Dax e 1DYls @) - 639

Bg p+1+p-q oo

Step 2. From Lemma 4.1 (iv), there exists ¢; > 0 such that
I€P < c1(1+ Fj(x,§)) foralljeN.

The previous estimate and the minimality of u; imply

I DuPdx < ¢; I(1 + F(x, Duy)dx < ¢y J(l + F(x, Dw)dx < ¢4 j(1 + F(x, Du))dx,
BR BR BR BR
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where in the last inequality we used Lemma 4.1 (ii). Thus, up to subsequences,
uj— i inu+W,"(Bg). (5.35)
Now, fix jo € IN. Then, by Lemma 4.1 (ii) and the fact that u; is a minimum for Fj, for everyj > jo, we might write
j Fj,(x, Duj)dx < J Fj(x, Duj)dx < J Fj(x, Du)dx < J F(x, Du)dx.
Br B Br Br
From weak lower semicontinuity of Fj, and (5.35), it holds,
J Fj,(x, Dii)dx < liminf J Fj,(x, Duj)dx < j F(x, Du)dx.
BR J—+00 BR BR

Combining these last inequalities, we get

J F(x,Dit)dx = lim J Fj,(x, Dit)dx < J F(x, Du)dx,
By ]U_WOOBR Bz
where we also applied the monotone convergence theorem, according to Lemma 4.1 (ii).
Moreover, by the weak convergence (5.35), the limit function & still belongs to Xy (Bg), since this set is convex
and closed. Thus, by the strict convexity of F, we have that &t = u a.e. in Bg.
Now, from estimates (5.34) and (5.35), it follows

P2 4
[ 10w ax < oy +glwnomg ([ @5+ Dax+ DY, o)

Bx p+1+f—q o0

Brja

T p+28 Ve
< (Ihomo + [ @+ P+ For Dunax) ( [ @#75 + Dax+ 1Dylse ,,, a0

By By p+1+p-q’

for constants C := C(n, p, q, v, L, R) and 7 := 7(n, p, q, B), both independent of j.
Hence, from (5.35) and weak lower semicontinuity, it follows

I DUl dx < liminf J \Duj [P+ dx
j—oo

BR/4 BR/4
Vs 2B n
< (Il + J(1 +lul? + Fx, Dwydx) J(gmﬁ—q F DA DYl L, my)
Br Br p+1+p-q
Eventually, proceeding as in the proof of Theorem 5.1, we derive that V,(Du) € Bg’m)loc(Q). O

6 Proof of Theorem 1.2

Proof of Theorem 1.2. We derive only the a priori estimates, since the approximation procedure is achieved
using the same arguments presented in Section 5.2.

We a priori assume that V,(Du) € Bg, GJOC(Q). By virtue of assumption (1.4) and Theorem 2.3, u € L (Q).
Hence, using Proposition 3.7, we deduce that

Du e L2 Q).

loc

Arguing analogously as in the proof of Theorem 5.1, we define the integrals I4, Iy, Is, I, Is and I according
to (5.6) and we are able to derive estimates (5.7) and (5.8) for the integral I;. We need to treat differently the
integrals I, Is, I4, Is and I in which the new assumptions on the coefficients of the map A(x, £) and on the
gradient of the obstacle come into play.
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Consider the integral I;. From the growth condition (A3), Young’s and Holder’s inequalities, Lemma 2.1 and
the assumption

DY € By 10
we get
2Ap+lta—q) 20-p-2
Ll <e j n2\Tn V(D) 2dx + CS(L)< j|rhpw|%dx) s ( J(1 N |Du|)P+2“dx) )
Q B By

Performing the same computations which led us to (5.10) with B = a, we get the following estimate for I3:

2(p+1+a—q) 2q-p-2
|3 squzlrth(Du)Izdx = Ce ))2|h|2(J|D(u_¢)|ipﬂfa—qu> e (J(1+|Du|)p+z“dx) 62
Q B By

Now, we take care of the integral I;. For h € R" such that 27%(¢ - t) < |h| < 27¥*1(t' - t), k € N, applying
Lemma 2.1, assumption (A5), Young’s and Holder’s inequalities gives that

4] < J n*TaDullh|%(gr(x + h) + gr())(1 + IDu(X)IZ)qT_1 dx
Q

<e j PATaDul?(u? + [Du(x + R)[2 + |Du(x)2) T dx + Ce | j(gk<x +h) + gk(0)2(1 + [Du(x)])* P dx

Q B;
paa 20 s
<e j PRV (Du)dx + Colhe( j(gk(x 1+ gFerax) T j(l + DU edx) ™ 63
Q B; B

Exploiting assumption (A5) and Holder’s inequality, we infer

5] < J’72|Tth||h|a(gk(X+ 1) + ge(0)(A + IDu?) s dx
Q

. pi2a e pi2a (g-D(p+20) 4
< 1h17( [ (grx+ )+ g0 dx) ™ ([ 1muDyl e (1 + 1Dup) T ax)
B; B
+r17q p+1+a q 2q-p-1

: |h|a< J(g"(x +h) + gi(x) e qu) ( Jlthwlma qu) ( J(1 T |Du)) T )dx> iy

B, B, B,

Now, we observe that
(q-1)(p +2a) . .
2q-p-1 <p+2a ifandonlyif p<q. (6.4)
Hence,
afq p+1+|1 q q-1

|Is|sC|h|“(j(gk(x+h)+gk<x))w«dx) " (j|th¢|p+wdx) (j(1+|Du|)P+2“dx)”““, (6.5)

B, B, B

where h € R" is such that 27K(¢t/ = t) < |h| < 27K (¢ - t), k € N.
Similarly to above, from assumption (A5), hypothesis |Dn| < tTCs and Hoélder’s inequality, we are able to
estimate the integral Ig as follows:

C q-1
sl < 5 A1 70 = 9)Igte+ h) + 00N + 1Duf) = dx

B
ptra—-q ptl+a—q

C +20 120 +20 2a
< I j(gk(x 1+ gioo)Ferax) " jm(u - p)Eax) |
B B
2q-p-1

( J(1 + |Dul) T )dx)w.

B¢
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Using once again Holder’s inequality, inequality (6.4) and Lemma 2.5, we have

p+a—q p+l+a—q
| < rcslhl‘“l( J(gk(x +h)+ gk(x))%dx> P ( J ID(u - )7 dx) P
B By
q-1
+2a
: ( J(1 + |Du|)p+2“dx)p . 6.6)

B;
Inserting estimates (5.8), (6.1)—(6.3), (6.5) and (6.6) in (5.7) and reabsorbing the integral
j n%th Vy(Du)|*dx
Q

in the right-hand side by the left-hand side, we infer

. 2(p+1+a—q) 2q-p-2
jr]zl‘[th(Du)lzdx < c( I|D¢|w’37qu> e ( J(l N |Du|)!’+2“dx) e
o Br By
il (JID(u— W17 dx) ( j(1 + IDu)?*27ax)
B By
+2a Hpro—g) i
N C|h|2“( I (gr(x +h) + gk(x))p‘iT—qu) v ( I(l N |Du|)P+2“dx)‘”“
Bry2 Bt
o\ i
#I( [ g b+ g0) o ax)
B2
e\ Pt P
: ( J|th¢|p+w dx) ( J(1 N |Du|)l’+2“dx)
Bg B
C pr2a b pea B
w0 (geter b + g0y i ax) ™ ([ D - )i ax)
Bg2 By
q-1
: ( J(1 N |Du|)l’+2“dx)”*2“

B

for a positive constant C := C(n, p, q, v, L), where 27%(¢ — t) < |h| < 27%*1(¢' — t), k € N. Recalling that n = 1
on B and dividing both sides by |h|*?, we get

2(p+1+a—q) 2q-p-2

J—|T’lv”(D“)| ax=c( | PO Tax) ™ ( [ @ ipuprzeax) ™

2 a(p+2a)
B, || By |h|p+1+a*q

By
pr |\ EEHEO e
e ( [ipa-pirETax) ([ @+ pupyax)

By By

C

BT

2(p+a—q) 2q-p

i C( I (8k(x+h) +gk(X))%dx) e ( I(1 + |Du|)”*2‘1dx)”m

Bgj2 Be
pra=q

+ (] guocs b+ geooyFiax)

Bgy2

p+l+a—q q-1

p+2a
D p+l+a—q T2q T7a
. %dx e (1 + |Du|)P**dx)" :
a(p+2a)

By |h| priva—q B,
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C p+2a pp++a2:1q pila p*pl*ﬂ
+ mlhh—a( J (gk(x+h) + gk(X))mdx) < J |D(u - l,b)lmdx)
Bgy2 By
( j(l + |Du|)p+2“dx> p+2a ‘
B

We now need to take the L2-norm with the measure AT hl" restricted to the ball B(0, t' — t) on the h-space of the
L%norm of the difference quotient of order a of the function V,(Du). Since the functions g are defined for
27K(t" — t) < |h| < 27K*1(¢t' — 1), we interpret the ball B(0, t' — t) as

B(O,t' —t) = G B(0,27%1(¢' - £)) \ B(0,27%(t' - 1)) =: Ej Ej.
k=1 =

We obtain the following estimate:

I (j Irth(Du)Izdxfﬂ
|h|2a [n|"

By_,(0) B
0(24-p-2) _pr2a_ o(p+ita-q)
“2(pr2a) Dy|p+T+a=a e dh
o [+ ipuprreax) ™ N
|h| prita—q |h|
By By_(0) Bg
o(p+1+a-q) (2q-p-2)0
C p+2a p+ia 20p+2a) dh
+ ———( |ID(u - y)|7Fea dx) < J 1+|Du erZ"‘dx) J h|o1-0
e 1w (1 + IDu) i
B, By B._(0)
2= oa(pta-q)
(p+2a) _p+2a p2a dh
e o farpupreax) ™ Y [ ([ @i m+geonFax) " oo
B, K=1Ee  Brp
& i\ Ty | TR DY | P O dh
+ J ( j (8k(x+ h) + gk(x))Pies dX) ( J %d") TR
k:1Ek Bz |h| pita—q
(q- 12)17)
(I(l + |Du|)’”2“dx) v
B
(p+a-q)a
C 0(1 a) _pt2a 2(p+2a)
e S [ (] @ o0 ax)
k= 1Ek Brp2
p+2a (pZ(l,ffz;?)a %
: ( JlD(u _ p)| dx) ( J(1 + |Du|)p+2“dx> . 6.7)
By B¢
Note that, since a < y, the integral
p+2a a(p+1+a-
_ ltpDy| 7t |\l dh
Ji= ( g X T
Ba () By IMIPFEE
is controlled by the norm in the Besov space
Ba +20a
p+pl+2afq’o-

on By, of the gradient of the obstacle which is finite by the assumptions. The integral

dh
o o(l-a) *™
. B J(o)lhl thr"
can be calculated in polar coordinates as follows:

t'—t R/A
Jo = C(n) j 0°1=9"1do < C(n) J 0°1=9"1do = C(n, a, o, R),
0 0

since t' —t < % and a € (0,1).
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Now, we take care of the integral

o(p+a-q)

:IZEJ< J(gk(“hﬂgk(x»%dx) P ﬁif?

Bgp2

We write the right-hand side of the previous estimate in polar coordinates, so h € Ex if and only if h = r¢ for
some 27X (' — t) < m < 27%(¢' - t) and some & in the unit sphere $"1 on R™. We denote by dS(¢) the surface
measure on $"!, We infer

a(p+a=q)
p+2a

Js < i j [ ([ @oremsgon=ar) ™ aso

Mi-1 §n=1 By

-y | ju(rmfgwgk)u“pﬂa ase ™,

PFa=0 (Bgs)

where we set my = 27%(¢t' - t). We note that for each & € $"! and my_1 < m < my,

ICnegic+ 801, pae <l pae gl g <20 g
where in the last inequality we used that ¢’ — t < %. Hence,
Js < Cgil® e
19(L P71 (Bg))
which is finite by assumption (F6).
Using Young’s inequality with exponent 2, we deduce the following estimate:
S Wl oDyl \ Yt dn
Z(p+2r1) h +1+a— p+2a
> (] @ocemgoofEan) (| BT a) T AT
k:1Ek Bx2 By |h| prita—q
p+2a a(p+l+a—q)
< pr2a il dh Dy|PTraq v dh
<€y (J’(gk(x‘*'h)"’gk(x))pp*“’qu) L | (] 2a) ™
k=1 |h| |h| p+f+nfq |h|
k  Brp By_(0) Bgrp
where the two integrals in the right-hand side can be estimated as the integrals J; and Js.
Similarly, we obtain
00 . 2 0(P++ﬂ;q) dh
> [IH( [ (gt )+ g0y Fax) T T
k=1g, Bgy2
apa-q)
P2 w2« dh
< [ mrer S ([ @i g ax) T
By_(0) k=1E, Bgy2
The first term and the latter one can be estimated as the integral J, and J3, respectively.
Estimate (6.7) can be written in the following way:
V(D> | \%
I (th p(Du)| dx)zdh
|h|2 |n|"
By_,(0) B,
0;2(611277)2)
C( j 1+ |Du|)p+2“dx) v
By
a(p+1+a-q) (2q-p-2)a

p+2a 2(p+2a)

+ﬁ<J|D(U—¢)|%dX) < I(1+|Du|)p+2adx)

B, By
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b G
+-c(j(1+|DunPﬂ“dx> ’ +-c(j(1+|DunF”“dx)”
B, B
C pi2a O 230
+;—;(me-wnwwuu) (Iu+wmwﬂﬁh)
By B
for a constant
C:=C(L,v,p,q,1,n,0,0,R, "lelBypﬁiﬁ?q:v(BR)’ Il{gk}klllo@%(h»).
From Young’s inequality, we infer
T V,(Du)>  \?
j (j'hp( ngzdh
|hj2a |h|"
By (0) Bs
g C +2a g g
ge(Ju+mmw”%uy44@+E—%W(jmm—¢nﬁmmuy+ﬂ<ju+wmwﬂ%uy
-s
By ¢ By
+9<ﬁ1+wmw”%uy+ﬂ(ﬁ1+wmwﬂ%wy
B; B
C 2] p+2a 2((p1.7++1 ;:;z‘i)g) 2 %
e )p(jww—wnwwwm) +9(ﬁ1+wmw+%m) 6.8)
-s
By B
for 0 < 6 < 1, where we set
2a 2a
pi= BT apg p- —PTE
p+l+a—-q p+1+2a-q

We estimate the second and the penultimate integral appearing in the right-hand side of the estimate as
follows:

C pa N\ C pita c PN
e o) < o o) o [owr )
(e (t=sy (s
B, B i
z L g +20 g
< 9( JIDuI’”Z‘]’dx)Z + Col )i,a |Bg|? + Co ,,( J|D¢|mdx)z_ 6.9)
(t-s)z (t-s)r
B, By
Similarly,
o(p+1+a—q) "
C _pr2a_ +1+2a— C pi2a_ g
- ( J|D(u—l/))lp*p““*q dX>2(p [P LA Ce( le(u—l/))|P£+a*lI dx)z
(t-s) (t-s)P
By Bu
- ﬁ +0( [ 1Durreax) + 1Bl + Co [ IDYIFF ), 610)
-8 ! 5
where we set
7 ﬂ and p”' _P +2a

- pra-q ' a
Inserting estimates (6.9) and (6.10) in (6.8), we obtain

By_(0) Bs

Vy(Dw)l? | \? § z
| (Jﬁlﬁ%#ldO %%g4ﬁju+ummmmm) +30( [ @+ 1Duprr2eax)

t By

L g +2a g
+Co+ ol z'w [Brl|? + o u( J'IlepJﬂm_q dX)Z
(t-s)7 (t-s)P 5

R

Cg a p+2a %
Bl + Cof wa,—,m_q ax)". 6.11)
(t—s)P E
R
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Now, by virtue of Proposition 3.7, we infer the following inequality:

7 lTh Vp(DW)* . \? dh C @
(J|Du|l)+20dx> < Clul s, J (J@de) i+ oy e m sz 612

B, By_(0) Bs

Combining inequalities (6.11) and (6.12) and arguing as in the proof of Theorem 5.1, we obtain

g
(j|Du|P+2"dx) < Clzomy + Moy T e 41DV, 5y + 1))
( +20

7(LPTT1(Bg))

+T+a—q >
Brya P q

which yields

[T Vp(DWI* | \7 dh

[ (] it dx) o < Clblummy + ulwino) (gkd” e +1DYly g+ 1)
[h|@ [h| 19(L P78 (BR)) pt2a

By_(0) Bgps

p+1+a—q o

R
for every t' — t < 7. Hence, we eventually get

1T Vp(Dw)*  \7 dh
| (] ) o < Gl + abwioeo) (I e +1DYy gy + 1)
[h|2a il 19(L P51 (By)) B o
Bga(0)  Bgya piTra—q
for constants C := C(n, p, q,Vv, L, R) and i := n(n, p, q, a, 0). O
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