Home On order of vanishing of characteristic elements
Article
Licensed
Unlicensed Requires Authentication

On order of vanishing of characteristic elements

  • Meng Fai Lim ORCID logo EMAIL logo
Published/Copyright: April 20, 2022

Abstract

Let p be a fixed odd prime. Let E be an elliptic curve defined over a number field F with either good ordinary reduction or multiplicative reduction at each prime of F above p. We shall study the characteristic element of the Selmer group of E over a p-adic Lie extension. In particular, we relate the order of vanishing of these characteristic elements evaluated at Artin representations to the Selmer coranks and their twists in the intermediate subextensions of the p-adic Lie extension.

MSC 2010: 11G05; 11R23; 11S25

Communicated by Freydoon Shahidi


Award Identifier / Grant number: 11771164

Award Identifier / Grant number: CCNU20TD002

Funding statement: This research is supported by the National Natural Science Foundation of China under Grant No. 11771164, and the Fundamental Research Funds for the Central Universities of CCNU under Grant No. CCNU20TD002.

Acknowledgements

We thank the anonymous referee for the many helpful comments and suggestions.

References

[1] K. Barré-Sirieix, G. Diaz, F. Gramain and G. Philibert, Une preuve de la conjecture de Mahler–Manin, Invent. Math. 124 (1996), no. 1–3, 1–9. 10.1007/s002220050044Search in Google Scholar

[2] A. J. Berrick and M. E. Keating, The localization sequence in K-theory, K-Theory 9 (1995), no. 6, 577–589. 10.1007/BF00998131Search in Google Scholar

[3] D. Burns, On main conjectures in non-commutative Iwasawa theory and related conjectures, J. Reine Angew. Math. 698 (2015), 105–159. 10.1515/crelle-2013-0001Search in Google Scholar

[4] D. Burns and O. Venjakob, On descent theory and main conjectures in non-commutative Iwasawa theory, J. Inst. Math. Jussieu 10 (2011), no. 1, 59–118. 10.1017/S147474800900022XSearch in Google Scholar

[5] J. Coates, T. Fukaya, K. Kato and R. Sujatha, Root numbers, Selmer groups, and non-commutative Iwasawa theory, J. Algebraic Geom. 19 (2010), no. 1, 19–97. 10.1090/S1056-3911-09-00504-9Search in Google Scholar

[6] J. Coates, T. Fukaya, K. Kato, R. Sujatha and O. Venjakob, The GL2 main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 163–208. 10.1007/s10240-004-0029-3Search in Google Scholar

[7] J. Coates and R. Greenberg, Kummer theory for abelian varieties over local fields, Invent. Math. 124 (1996), no. 1–3, 129–174. 10.1007/s002220050048Search in Google Scholar

[8] J. Coates, P. Schneider and R. Sujatha, Links between cyclotomic and GL2 Iwasawa theory. Kazuya Kato’s fiftieth birthday, Doc. Math. Extra Vol. (2003), 187–215. 10.1017/S1474748003000045Search in Google Scholar

[9] J. Coates, P. Schneider and R. Sujatha, Modules over Iwasawa algebras, J. Inst. Math. Jussieu 2 (2003), no. 1, 73–108. 10.1017/S1474748003000045Search in Google Scholar

[10] J. Coates and R. Sujatha, Galois Cohomology of Elliptic Curves, 2nd ed., Narosa, New Delhi, 2010. Search in Google Scholar

[11] J. Coates and R. Sujatha, On the 𝔐H(G)-conjecture, Non-Abelian Fundamental Groups and Iwasawa Theory, London Math. Soc. Lecture Note Ser. 393, Cambridge University, Cambridge (2012), 132–161. 10.1017/CBO9780511984440.006Search in Google Scholar

[12] J. Coates, R. Sujatha and J.-P. Wintenberger, On the Euler–Poincaré characteristics of finite dimensional p-adic Galois representations, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 107–143. 10.1007/s10240-001-8189-xSearch in Google Scholar

[13] H. Darmon and Y. Tian, Heegner points over towers of Kummer extensions, Canad. J. Math. 62 (2010), no. 5, 1060–1081. 10.4153/CJM-2010-039-8Search in Google Scholar

[14] D. Delbourgo and A. Lei, Transition formulae for ranks of abelian varieties, Rocky Mountain J. Math. 45 (2015), no. 6, 1807–1838. 10.1216/RMJ-2015-45-6-1807Search in Google Scholar

[15] D. Delbourgo and A. Lei, Non-commutative Iwasawa theory for elliptic curves with multiplicative reduction, Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 1, 11–38. 10.1017/S0305004115000535Search in Google Scholar

[16] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic Pro-p Groups, 2nd ed., Cambridge Stud. Adv. Math. 61, Cambridge University, Cambridge, 1999. 10.1017/CBO9780511470882Search in Google Scholar

[17] T. Dokchitser and V. Dokchitser, Computations in non-commutative Iwasawa theory (with an appendix by J. Coates and R. Sujatha), Proc. Lond. Math. Soc. (3) 94 (2007), no. 1, 211–272. 10.1112/plms/pdl014Search in Google Scholar

[18] V. Dokchitser, Root numbers of non-abelian twists of elliptic curves (with an appendix by T. Fisher), Proc. London Math. Soc. (3) 91 (2005), no. 2, 300–324. 10.1112/S0024611505015261Search in Google Scholar

[19] T. Fukaya and K. Kato, A formulation of conjectures on p-adic zeta functions in noncommutative Iwasawa theory, Proceedings of the St. Petersburg Mathematical Society. Vol. 12, Amer.Math. Soc. Transl. Ser. 2 219, American Mathematical Society, Providence (2006), 1–85. 10.1090/trans2/219/01Search in Google Scholar

[20] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Stud. Texts 61, Cambridge University, Cambridge, 2004. 10.1017/CBO9780511841699Search in Google Scholar

[21] R. Greenberg, Iwasawa theory for p-adic representations, Algebraic Number Theory, Adv. Stud. Pure Math. 17, Academic Press, Boston (1989), 97–137. 10.2969/aspm/01710097Search in Google Scholar

[22] R. Greenberg, Iwasawa theory for elliptic curves, Arithmetic Theory of Elliptic Curves (Cetraro 1997), Lecture Notes in Math. 1716, Springer, Berlin (1999), 51–144. 10.1007/BFb0093453Search in Google Scholar

[23] Y. Hachimori and O. Venjakob, Completely faithful Selmer groups over Kummer extensions. Kazuya Kato’s fiftieth birthday, Doc. Math. Extra Vol. (2003), 443–478. 10.4171/dms/3/12Search in Google Scholar

[24] P.-C. Hung and M. F. Lim, On the growth of Mordell–Weil ranks in p-adic Lie extensions, Asian J. Math. 24 (2020), no. 4, 549–570. 10.4310/AJM.2020.v24.n4.a2Search in Google Scholar

[25] K. Kato, p-adic Hodge theory and values of zeta functions of modular forms, Cohomologies p-adiques et applications arithmétiques. III, Astérisque 295, Société Mathématique de France, Paris (2004), 117–290. Search in Google Scholar

[26] K. Kato, K1 of some non-commutative completed group rings, K-Theory 34 (2005), no. 2, 99–140. 10.1007/s10977-005-3935-3Search in Google Scholar

[27] Y. Kubo and Y. Taguchi, A generalization of a theorem of Imai and its applications to Iwasawa theory, Math. Z. 275 (2013), no. 3–4, 1181–1195. 10.1007/s00209-013-1176-3Search in Google Scholar

[28] T. Y. Lam, Lectures on Modules and Rings, Grad. Texts in Math. 189, Springer, New York, 1999. 10.1007/978-1-4612-0525-8Search in Google Scholar

[29] C.-Y. Lee, Non-commutative Iwasawa theory of elliptic curves at primes of multiplicative reduction, Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 2, 303–324. 10.1017/S0305004112000564Search in Google Scholar

[30] M. F. Lim, A remark on the 𝔐H(G)-conjecture and Akashi series, Int. J. Number Theory 11 (2015), no. 1, 269–297. 10.1142/S1793042115500165Search in Google Scholar

[31] M. F. Lim, Comparing the π-primary submodules of the dual Selmer groups, Asian J. Math. 21 (2017), no. 6, 1153–1181. 10.4310/AJM.2017.v21.n6.a7Search in Google Scholar

[32] M. F. Lim, Notes on the fine Selmer groups, Asian J. Math. 21 (2017), no. 2, 337–361. 10.4310/AJM.2017.v21.n2.a5Search in Google Scholar

[33] M. F. Lim, 𝔐H(G)-property and congruence of Galois representations, J. Ramanujan Math. Soc. 33 (2018), no. 1, 37–74. Search in Google Scholar

[34] B. Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. 10.1007/BF01389815Search in Google Scholar

[35] J. S. Milne, Arithmetic Duality Theorems, 2nd ed., BookSurge, Charleston, 2006. Search in Google Scholar

[36] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of Number fields, 2nd ed., Grundlehren Math. Wiss. 323, Springer, Berlin, 2008. 10.1007/978-3-540-37889-1Search in Google Scholar

[37] A. Neumann, Completed group algebras without zero divisors, Arch. Math. (Basel) 51 (1988), no. 6, 496–499. 10.1007/BF01261969Search in Google Scholar

[38] B. Perrin-Riou, Théorie d’Iwasawa et hauteurs p-adiques, Invent. Math. 109 (1992), no. 1, 137–185. 10.1007/BF01232022Search in Google Scholar

[39] K. Ribet, Torsion points of abelian varieties in cyclotomic extensions, Enseign. Math. 27 (1981), 315–319. Search in Google Scholar

[40] J. Ritter and A. Weiss, Toward equivariant Iwasawa theory. II, Indag. Math. (N. S.) 15 (2004), no. 4, 549–572. 10.1016/S0019-3577(04)80018-1Search in Google Scholar

[41] P. Schneider, p-adic height pairings. II, Invent. Math. 79 (1985), no. 2, 329–374. 10.1007/BF01388978Search in Google Scholar

[42] P. Schneider and O. Venjakob, Localizations and completions of skew power series rings, Amer. J. Math. 132 (2010), no. 1, 1–36. 10.1353/ajm.0.0089Search in Google Scholar

[43] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Grad. Texts in Math. 151, Springer, New York, 1994. 10.1007/978-1-4612-0851-8Search in Google Scholar

[44] O. Venjakob, On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 3, 271–311. 10.1007/s100970100038Search in Google Scholar

[45] O. Venjakob, Characteristic elements in noncommutative Iwasawa theory, J. Reine Angew. Math. 583 (2005), 193–236. 10.1515/crll.2005.2005.583.193Search in Google Scholar

[46] M. Witte, On a localisation sequence for the K-theory of skew power series rings, J. K-Theory 11 (2013), no. 1, 125–154. 10.1017/is013001019jkt198Search in Google Scholar

[47] C. Wuthrich, Iwasawa theory of the fine Selmer group, J. Algebraic Geom. 16 (2007), no. 1, 83–108. 10.1090/S1056-3911-06-00436-XSearch in Google Scholar

[48] S. L. Zerbes, Generalised Euler characteristics of Selmer groups, Proc. Lond. Math. Soc. (3) 98 (2009), no. 3, 775–796. 10.1112/plms/pdn049Search in Google Scholar

[49] S. L. Zerbes, Akashi series of Selmer groups, Math. Proc. Cambridge Philos. Soc. 151 (2011), no. 2, 229–243. 10.1017/S0305004111000211Search in Google Scholar

Received: 2021-11-16
Revised: 2022-03-06
Published Online: 2022-04-20
Published in Print: 2022-07-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0289/html?lang=en
Scroll to top button