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Abstract:We prove that over a field of characteristic zero the maximal dimension of a proper unital subalge-
bra in the n × n matrix algebra is n2 − n + 1 and furthermore this upper bound is attained for the so-called
parabolic subalgebras. We also investigate the corresponding notion of parabolic coideals for matrix coalge-
bras and prove that the minimal dimension of a non-zero coideal of the matrix coalgebraMn(k) is n − 1.
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Introduction
The problem of finding theminimal/maximal dimension of proper subobjects (possibly satisfying some extra
assumptions) of a given mathematical object is a natural one and it was studied in various settings. The first
result in this direction was proved by Schur [13] and asserts that [ n24 ] + 1 is an upper bound for the dimen-
sions of commutative subalgebras ofMn(ℂ). Later on, Jacobson [6] showed that the same bound is valid over
any field K. An elegant and simpler proof of Schur’s theorem was given by Mirzakhani in [10]. These results
allowed for the introduction of the Schur invariant in Lie algebra theory as the maximal dimension of abel-
ian subalgebras of a given Lie algebra. A vast literature emerged from the study of this invariant which plays
an important role in many aspects of Lie algebra theory, see for example [3, 11] and the references therein.
To give just one example, the Schur invariant has been completely determined for semisimple Lie algebras
by Malcev in [8]. In this note we address the problem of finding the maximal dimension of subalgebras of
the matrix algebraMn(K) over a field K of characteristic zero. Our main result is Theorem 2.4 which gives an
upper bound for the dimension of subalgebras inMn(K) and it proves that thismaximal dimension is attained
for the so-called parabolic subalgebras [16], which are the associative algebra counterpart of the well-known
parabolic Lie subalgebras (see [17, 18] for more details). A subalgebra A of Mn(K) is called parabolic if it
is similar to an algebra consisting of all matrices having non-overlapping blocks of ni × ni matrices on the
diagonal, i = 1, 2, . . . , s, with non-zero entries only in these blocks or above them, where (n1, n2, . . . , ns)
is a partition of n. As a consequence of Theorem 2.4 we prove in Corollary 2.6 that the maximal dimension
of a proper unital subalgebra of Mn(K) is equal to n2 − n + 1. A related result was obtained in [1] where it
was proved thatMn(K) has no subalgebras of codimension equal to 1. A somewhat similar problemwas con-
sidered recently in [3, 4] in the context of Lie algebras and in [9] for Lie algebras as well as for associative
algebras. In the above mentioned papers the authors are interested in finding bounds for the dimensions of
abelian subalgebras or abelian ideals.
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The paper ends with a brief discussion on matrix coalgebras (see Section 1 for the definition and further
details). We introduce the notion of parabolic coideals formatrix coalgebras and derive some of their features
based on the duality between the matrix algebra and the matrix coalgebra. As an application, we prove that
the minimal dimension of a non-zero coideal of the matrix coalgebraMn(K) is n − 1.

1 Preliminaries
Unless otherwise stated, all vector spaces, linear maps, algebras and coalgebras are over an arbitrary field K.
In some specific caseswewill assume that K is algebraically closed of characteristic zero. For a vector space V
we denote by V∗ := HomK(V, K) the dual of V. If S is a subset of V we set S⊥ := {v ∈ V∗ | v(S) = 0}. Similarly,
if Y is a subset of V∗ we denote Y⊥ := {x ∈ V | f(x) = 0 for all f ∈ Y}. If X is a subspace of the vector space V
then the codimension of X is dimK(V/X).

By an algebra (coalgebra) we mean an associative (coassociative), unital (counital) algebra (coalgebra)
over K. If A is an algebra, rad A stands for the Wedderburn–Artin radical of A. Wedderburn’s main theo-
rem ([7, Theorem 2.17]) is a fundamental result on the structure of finite-dimensional algebras, being the
associative algebra counterpart of the famous Levi decomposition of a Lie algebra: it asserts that for any
finite-dimensional algebra A over a field K of characteristic zero, there exists a semisimple subalgebra S
of A isomorphic to A/ rad A such that A = S ⊕ rad A. Moreover, over an algebraically closed field any semi-
simple finite-dimensional algebra is a direct sum ofmatrix algebras over the same field.We refer the reader to
[7, Chapter II] for a detailed account on the Wedderburn–Artin theory. For an arbitrary integer n ≥ 2 we let
Mn(K) denote the algebra of n × n matrices over the field K while Un(K) and Un(K) stand for the set of all
upper triangular matrices inMn(K), respectively the set of all strictly upper triangular matrices inMn(K). We
denote by ei, j ∈Mn(K) the matrix having 1 in the (i, j)-th position and zeros elsewhere. If A is a subset of
Mn(K), then we denote CAC−1 = {CAC−1 | A ∈ A}.

If A is a finite-dimensional algebra then A∗ has a natural coalgebra structure called the dual coalgebra
on A. In the samemanner, if C is a (not necessarily finite-dimensional) coalgebra then C∗ inherits an algebra
structure called thedual algebra on C. ByMn(K)wedenote thematrix coalgebra, i.e.Mn(K) =Mn(K) as vector
spaces with the coalgebra structure given for all i, j = 1, 2, . . . , n by

∆ : Mn(K) →Mn(K) ⊗Mn(K), ∆(ei, j) =
n
∑
k=1 ei, k ⊗ ek, j ,

ε : Mn(K) → K, ε(ei, j) = δi, j .

It is well known that Mn(K)∗ and Mn(K) are isomorphic as coalgebras. Similarly, Mn(K)∗ and Mn(K) are
isomorphic as algebras. For all unexplained notions or results from the theory of coalgebras we refer the
reader to [2, 15].

We also make use of a well-known result on the dimension of subspaces of nilpotent matrices which first
appeared in [5]. An improved version of this result appears in [14], where the cardinality assumption on the
field K is removed. More precisely, the result in [14] states that if S is a subspace of the vector space of n × n
matrices over an arbitrary field K and S consists of nilpotent matrices, then the maximal dimension of S is
n(n−1)

2 . Moreover, if equality holds then S is conjugate to Un(K).

2 Parabolic subalgebras of matrix algebras
By analogy with Lie algebra theory (see [17]), a proper subalgebra A of the matrix algebra Mn(K) is called
parabolic [16] if it is similar to an algebra which contains Un(K), i.e. there exists an invertible matrix U such
that Un(K) ⊆ UAU−1. As we will see, this concept will play an important role in determining the maximal
dimension of a subalgebra in amatrix algebra. It was proved in [16] thatA is a parabolic subalgebra ofMn(K)
if and only if there exists a set of positive integers n1, n2, . . . , ns with ∑si=1 ni = n such that A is similar to
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the algebra of all matrices having non-overlapping blocks of ni × ni matrices on the diagonal with non-zero
entries only in these blocks or above them. Moreover, it is straightforward to see that dim A = n22 + ∑

s
i=1 n2i

2 .

Definition 2.1. A parabolic subalgebra A ofMn(K) determined by the set of positive integers n1, n2, . . . , ns
will be called a parabolic subalgebra of type (n1, n2, . . . , ns). If s = 2 then A will be called a maximal
parabolic subalgebra.

Our next result shows that a maximal parabolic subalgebra is in fact a maximal proper subalgebra ofMn(K).

Proposition 2.2. The maximal parabolic subalgebras are maximal proper subalgebras ofMn(K).

Proof. Consider A to be a parabolic subalgebra having on the diagonal two blocks U and V of dimensions
l × l and respectively (n − l) × (n − l) with l ≥ 1 and assume there exists a subalgebra T of Mn(K) such that
A ⊂ T, A ̸= T. The elements of T are linear combinations of the matrix units ei, j and there must be an
element x ∈ T −A that has a non-zero entry α in a position (i, j) with i > l and j ⩽ l. Then ei, j ∈ T since
ei, j = α−1 ei, i x ej, j. Since i > l, em, i ∈ A for all m and hence em, j = em, i ei, j belongs to T for all m. Similarly
ej, k ∈ A for all k and so ei, k = ei, j ej, k ∈ T for all k. Thus if ei, j belongs to T, then so do all the matrix units
from row i and column j. Using the same reasoning for all these elements we can conclude that T =Mn(K)
which finishes the proof.

Example 2.3. The parabolic subalgebras ofM3(K) are similar to the following subalgebras:

(
K K K
0 K K
0 0 K

) , (
K K K
K K K
0 0 K

) , (
K K K
0 K K
0 K K

) .

The last two algebras are maximal proper subalgebras ofM3(K).

If K is an algebraically closed field of characteristic zero and A is a finite-dimensional K-algebra then by
Wedderburn’s theorem [7],A has a semisimple part which is a direct sum of matrix algebras over K of dimen-
sions n21, n

2
2, . . . , n2s . In order forA to be a subalgebra ofMn(K)we need to have∑si=1 ni ≤ n. However, since

we are trying to maximize the dimension ofA we will assume that∑si=1 ni = n.
Theorem 2.4. Let K be an algebraically closed field of characteristic zero andA a subalgebra ofMn(K) whose
semisimple part S is a direct sum of matrix algebras over K of dimensions n21, n

2
2, . . . , n2s with∑

s
i=1 ni = n. Then

dimA ≤ n
2

2 + ∑
s
i=1 n2i

2 . Moreover, if equality holds then A is a parabolic subalgebra ofMn(K).

Proof. By Wedderburn’s main theorem [7, Theorem 2.17] we have A = S ⊕ radA. Let dimA = d and let
dim radA = r. It follows that ∑si=1 n2i + r = d. Remark that each ni × ni matrix subalgebra of S contains its
nilpotent subalgebra of strictly upper triangular matrices. This implies that A contains, all together, a sub-
algebra of nilpotent matrices of dimension ∑si=1 ni(ni−1)

2 + r. Using Gerstenhaber’s result [5] on subspaces of
nilpotent matrices we must have

s
∑
i=1 ni(ni − 1)2 + r ≤ n(n − 1)2 .

Since∑si=1 n2i + r = d we get
d ≤ n(n − 1)2 +

s
∑
i=1 ni(ni + 1)2 .

The conclusion now follows by using∑si=1 ni = n.
Suppose now that equality holds. It follows that r = n22 − ∑

s
i=1 n2i

2 and soA contains a subalgebra of nilpo-
tent matrices of dimension n(n−1)

2 . Gerstenhaber’s result implies that any such subspace of Mn(K) is conju-
gate to Un(K). Since for any invertible matrix C ∈Mn(K) the map u : A→ CAC−1 which takes any A ∈ A to
CAC−1 is an algebra isomorphism we may assume without loss of generality that A contains Un(K). How-
ever, by looking at dimensions one sees that Un(K) is not all of A. Now since the semisimple part of A is
a direct sum of matrix algebras of dimensions n1, n2, . . . , ns with ∑si=1 ni = n it follows that each eii ∈ A for
all i = 1, 2, . . . , n. Therefore,A contains Un(K) and the proof is now finished.
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Proposition 2.5. Let K be an algebraically closed field of characteristic zero. Then the proper subalgebras of
maximum dimension inMn(K) are the parabolic subalgebras of type (1, n − 1) and respectively (n − 1, 1).

Proof. By Theorem 2.4 we know that the upper bound for the dimension of a subalgebra in Mn(K) is
attained when the subalgebra is parabolic. In what follows we will prove that this bound is maximal
precisely when the subalgebra is parabolic of type (1, n − 1) and respectively (n − 1, 1). Since the dimen-
sion of a parabolic subalgebra of Mn(K) is n2

2 + ∑
s
i=1 n2i

2 in order to maximize its dimension we need to
have ∑si=1 n2i as large as possible. We denote by S := n21 + n

2
2 + ⋅ ⋅ ⋅ + n

2
i + (n − n1 − n2 − ⋅ ⋅ ⋅ − ni)

2 and by
S� := n21 + n22 + ⋅ ⋅ ⋅ + n2i−1 + (n − n1 − n2 − ⋅ ⋅ ⋅ − ni−1)2, where nt are positive integers for all t = 1, 2, . . . , i,
such that n1 + n2 + ⋅ ⋅ ⋅ + ni < n. The proof will be finished once we show that S < S�. Indeed, this follows by
noticing that S = S� − 2ni (n − n1 − n2 − ⋅ ⋅ ⋅ − ni) < S�. Therefore we need to consider parabolic subalgebras
of type (l, n − l), with l ≥ 1. Then ∑si=1 n2i = l2 + (n − l)2. Now it can easily be seen that for 1 < l < n − 1 we
have l2 + (n − l)2 < 1 + (n − 1)2 and the conclusion follows.

Corollary 2.6. Let K be a field of characteristic zero. Then the maximal dimension of a proper subalgebra of the
matrix algebraMn(K) is n2 − n + 1.

Proof. If K is an algebraically closed field of characteristic zero then the assertion follows from Proposi-
tion 2.5. We will prove that the algebraically closed assumption on the field K can be dropped by simply
extending the coefficients to the algebraic closure K of K. Indeed, let A be a K-subalgebra ofMn(K). We have

K ≃ K ⊗K K ⊂ K ⊗K A ⊆ K ⊗K Mn(K) ≃Mn(K),

where the last isomorphism follows from [12, Lemma 7.130]. Therefore, K ⊗K A is a K-subalgebra ofMn(K)
and since dimK(A) = dimK (K ⊗K A) the conclusion follows.

We end the paper by looking at the matrix coalgebra case. It is well known that X ⊆Mn(K) is a coideal if and
only if X⊥ is a subalgebra ofMn(K) (see [15, Proposition 1.4.6] for a more general statement). In light of this
bijection we introduce the following:

Definition 2.7. AcoidealX ⊆Mn(K)will be calledparabolic ifX⊥ is a parabolic subalgebraofMn(K). IfX⊥ is a
parabolic subalgebraof type (n1, n2, . . . , ns) thenXwill be called aparabolic coideal of type (n1, n2, . . . , ns)
as well. If s = 2 then X will be called a minimal parabolic coideal.

The parabolic coideals ofMn(K) can be characterized as follows:

Proposition 2.8. Let X be a parabolic coideal of type (n1, n2, . . . , ns) of the matrix coalgebraMn(K). Then X
is the coideal of all matrices having non-overlapping blocks of ni × ni matrices on the diagonal with non-zero
entries only below these blocks.

Proof. IfA is a subalgebra ofMn(K)∗ ≃Mn(K) (isomorphism of algebras) thenA⊥ is a coideal inMn(K). The
conclusion follows by a straightforward computation.

Proposition 2.9. The minimal parabolic coideals are minimal proper coideals ofMn(K).

Proof. LetX beaminimal parabolic coideal of type (l, n − l) andassume there exists a coideal Y ofMn(K) such
that Y ⊂ X, Y ̸= X. Then X⊥ ⊂ Y⊥ and X⊥ is a maximal parabolic subalgebra ofMn(K). Using Proposition 2.2
we obtain Y⊥ =Mn(K). This implies Y = {0} and the proof is finished.

Proposition 2.10. Let K be an algebraically closed field of characteristic zero. Then the non-zero coideals of
minimal dimension in Mn(K) are those parabolic coideals X for which X⊥ is a parabolic subalgebra of type
(1, n − 1) and respectively (n − 1, 1).

Proof. For any finite-dimensional vector space V, and any subspace X of V∗ we have dimK X⊥ = dimK V∗/X.
Therefore, for any coideal X inMn(K) we have dimK X⊥ = dimK Mn(K)/X. Collaborating this result with the
bijection between the coideals ofMn(K) and the subalgebras ofMn(K) (see [15]), it follows that a coideal X in
Mn(K) has maximal codimension precisely when the subalgebra X⊥ ofMn(K) has maximal dimension. The
conclusion now follows by Proposition 2.5.
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Corollary 2.11. Let K be a field of characteristic zero. Then the minimal dimension of a non-zero coideal
inMn(K) is n − 1.
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