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Abstract: Let X be a complex projective variety of dimension n with only isolated normal singularities. In this
paper, we prove, using mixed Hodge theory, that if the link of each singular point of X is (n − 2)-connected,
then X is a formal topological space. This result applies to a large class of examples, such as normal sur-
face singularities, varietieswith ordinarymultiple points, hypersurfaceswith isolated singularities and,more
generally, complete intersections with isolated singularities. We obtain analogous results for contractions of
subvarieties.
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1 Introduction
The rational homotopy type of a topological space X is the commutative differential graded algebra (cdga
for short) Apl(X) in the homotopy category Ho(CDGAℚ) defined by inverting quasi-isomorphisms, where
Apl : Top→ CDGAℚ is Sullivan’s functor of rational piece-wise linear forms. A topological space X is said to be
formal if its rational algebra of piece-wise linear forms is a formal cdga: there is a string of quasi-isomorphisms
from Apl(X) to its cohomology H∗(Apl(X)) ≅ H∗(X;ℚ) considered as a cdga with trivial differential. In parti-
cular, if X is formal then its rational homotopy type is completely determined by its cohomology ring, and
higher order Massey products vanish. Using Hodge theory, Deligne, Griffiths, Morgan and Sullivan [9] proved
that smooth projective varieties or, more generally, compact Kähler manifolds, are formal.

Simpson [25] showed that every finitely presented group G is the fundamental group π1(X) of an irre-
ducible projective variety X. Later, Kapovich and Kollár [19] showed that X can be chosen to be a complex
projective surface with simple normal crossing singularities only. This implies the existence of non-formal
complex projective varieties. For instance, one may take G to be the fundamental group of the complement
of the Borromean rings, which has non-trivial triple Massey products. In this paper, we use mixed Hodge
theory to show that a large class of projective varieties with normal isolated singularities are formal topo-
logical spaces. We also study the mixed Hodge structures on the rational homotopy type of a contraction of
a subvariety and prove analogous results in this setting.

We next outline the contents of this paper. For a complex algebraic variety X, the complex homotopy type
Apl(X) ⊗ ℂ can be computed from the differential bigraded algebra defined by the first term E∗,∗1 (X) of themul-
tiplicative weight spectral sequence, a multiplicative analogue of Deligne’s weight spectral sequence [8]. This
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result was proven by Morgan [21] for smooth quasi-projective varieties and by Cirici–Guillén [6] in the pos-
sibly singular case. In Section 2, we study the multiplicative weight spectral sequence of a projective variety
with isolated singularities and provide a simple description of its algebra structure in terms of a resolution of
singularities of the variety. This gives an upper bound on the homotopy theoretic complexity of the variety.

The idea that purity of theweight filtration implies formality is part of the folklore onmixedHodge theory
andgoes back to [9]. In Section3,we give a simple proof of a refinement of this idea:we show that the purity of
theweight filtrationof a complexprojective variety up to a certaindegree, implies formality of the variety up to
the same degree. We prove the main results of this paper in Section 4. We first show, using the multiplicative
weight spectral sequence, that every normal complex projective surface is formal. We then generalize this
result to arbitrary dimensions and prove formality for normal projective varieties with isolated singularities
whose link is (n − 2)-connected, where n is the dimension of the variety. In particular, complete intersections
with isolated singularities are formal. Using similar techniques, we show that if X is a projective variety with
normal isolated singularities admitting a resolution of singularities with smooth exceptional divisor, then X
is a formal topological space. Lastly, in Section 5 we prove analogous results for contractions of subvarieties.
In particular, we show that if Y í→ X is a closed immersion of smooth projective varieties, then X/Y is a formal
topological space.

The results of this paper arose from a more general study (see [4]) of the vanishing of Massey products
on the intersection cohomology of projective varieties with only isolated singularities. However, the simplic-
ity of the statements and proofs in the classical setting of rational homotopy encouraged us to write them
up separately. Our more general study follows the intersection-homotopy treatment of [5], where Chataur,
Saralegi and Tanré prove intersection-formality for certain spaces. In particular, they show that any nodal
hypersurface in ℂℙ4 is formal.

2 Multiplicative weight spectral sequence
Deligne proved that the k-th cohomology space Hk(X;ℚ) of every complex algebraic variety X carries a func-
torialmixed Hodge structure: this is given by an increasing filtration

0 = W−1Hk(X;ℚ) ⊂ W0Hk(X;ℚ) ⊂ ⋅ ⋅ ⋅ ⊂ W2kHk(X;ℚ) = Hk(X;ℚ)
of the rational cohomology of X, called the weight filtration, together with a decreasing filtration F of the
complex cohomology Hk(X;ℂ), called the Hodge filtration, such that F and its complex conjugate induce a
Hodge decomposition of weight p on each graded piece GrWp Hk(X;ℂ). If X is smooth thenWk−1Hk(X;ℚ) = 0,
while if X is projective thenWkHk(X;ℚ) = Hk(X;ℚ). Let us briefly explain howW is defined in the latter case.
Let X∙ → X be a simplicial resolutionof X: this is a smooth simplicial varietyX∙ togetherwith anaugmentation
morphism X∙ → X satisfying cohomological descent (see [8], see also [24, Section II.5]). Deligne showed that
the associated spectral sequence Ẽp,q1 (X) := Hq(Xp;ℚ) ⇒ Hp+q(X;ℚ) degenerates at the second stage, and
that the induced filtration on the rational cohomology of X is well-defined (does not depend on the chosen
resolution) and is functorial for morphisms of varieties. The weight filtration W on H∗(X;ℚ) is then defined
by décalage of the induced filtration. We have GrWq Hp+q(X;ℚ) ≅ Ẽp,q2 (X).

Let k ≥ 0. The weight filtration on Hk(X;ℚ) is said to be pure of weight k if
0 = Wk−1Hk(X;ℚ) ⊂ WkHk(X;ℚ) = Hk(X;ℚ).

For instance, if X is smooth and projective thenW on Hk(X;ℚ) is pure of weight k, for all k ≥ 0. Awell-known
consequence of the Decomposition Theorem of intersection homology is that a projective variety X with only
isolated singularities satisfies semi-purity: the weight filtration on Hk(X;ℚ) is pure of weight k, for all k > n,
where n = dim(X) (see [26], see also [22] for a more direct proof).

Morgan [21] introduced mixed Hodge diagrams of differential graded algebras and proved the existence
of functorial mixed Hodge structures on the rational homotopy groups of smooth complex algebraic vari-
eties. His results were extended to the singular setting by Hain [16] and Navarro-Aznar [23] independently.
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In particular, Navarro-Aznar introduced the Thom–Whitney simple functor and developed the construction
of algebras of piece-wise linear forms associated to simplicial varieties. As a result, for any complex algebraic
variety X, one has amultiplicativeweight spectral sequence E∗,∗1 (X)which is awell-defined algebraic invariant
of X in the homotopy category of differential bigraded algebras, and is homotopy equivalent, when forgetting
the algebra structure, to Deligne’s weight spectral sequence Ẽ∗,∗1 (X). Furthermore, the multiplicative weight
spectral sequence carries information on the rational homotopy type of the variety.

2.1 Mixed Hodge diagrams and multiplicative weight spectral sequence

We next recall the definition of the multiplicative weight spectral sequence associated with a complex alge-
braic variety.

Definition 2.1. A filtered cdga (A,W) over a field k is a cdga A over k together with an (increasing) filtration{WpA} indexed byℤ such thatWp−1A ⊂ WpA, d(WpA) ⊂ WpA, andWpA ⋅WqA ⊂ Wp+qA.

Every filtered cdga (A,W) has an associated spectral sequence, each of whose stages (E∗,∗r (A,W), dr) is a dif-
ferential bigraded algebra with differential of bidegree (r, 1 − r).
Definition 2.2. A mixed Hodge diagram (of cdgas over ℚ) consists of a filtered cdga (Aℚ,W) over ℚ, a bifil-
tered cdga (Aℂ,W, F) over ℂ, together with a string of filtered quasi-isomorphisms from (Aℚ,W) ⊗ ℂ to(Aℂ,W). In addition, the following axioms are satisfied:
(MH1) Theweight filtrationW is regular and exhaustive. TheHodge filtration F is biregular. The cohomology

H∗(Aℚ) has finite type.
(MH2) For all p ∈ ℤ, the differential of GrWp Aℂ is strictly compatible with F.
(MH3) For all k ≥ 0 and all p ∈ ℤ, the filtration F induced on Hk(GrWp Aℂ) defines a pure Hodge structure of

weight p + k on Hk(GrWp Aℚ).
Such a diagram is denoted asA = ((Aℚ,W) φ¹ÍÅ½ (Aℂ,W, F)).
By forgetting themultiplicative structures we recover the original notion ofmixed Hodge complex introduced
by Deligne (see [8, Section 8.1]). In particular, the k-th cohomology group of every mixed Hodge diagram is
a mixed Hodge structure.

The following is a multiplicative version of Deligne’s Theorem [8] on the existence of functorial mixed
Hodge structures in cohomology.

Theorem 2.3 ([23, §9], see also [16]). For every complex algebraic variety X there exists a mixed Hodge dia-
gram A(X) such that A(X)ℚ ≃ Apl(X) and for all k ≥ 0, the cohomology Hk(A(X)) is isomorphic to Deligne’s
mixed Hodge structure on Hk(X;ℚ). This construction is well-defined and functorial for morphisms of varieties
in the homotopy category of mixed Hodge diagrams.

The rational component (Aℚ,W) of every mixed Hodge diagramA is a filtered cdga over the rationals. Hence
it has an associated spectral sequence E∗,∗1 (Aℚ,W) ⇒ H∗(X;ℚ).
Theorem 2.4 ([6, Theorem 3.23]). Let A be mixed Hodge diagram such that H0(Aℚ) ≅ ℚ. There is a string of
quasi-isomorphisms of complex cdgas from (Aℚ,W) ⊗ ℂ to E1(Aℚ,W) ⊗ ℂ compatible with the filtration W.

The proof of the above result uses minimal models in the sense of rational homotopy. This is why we ask that
mixed Hodge diagrams are cohomologically connected. Under some finite type conditions the above result is
also valid overℚ (see [6, Theorem 2.26]). We remark that in [6], a weaker notion of mixed Hodge diagram is
used. This does not affect the above result.

Definition 2.5. Let X be a complex algebraic variety. The multiplicative weight spectral sequence of X is the
spectral sequence

E∗,∗1 (X) := E∗,∗1 (A(X)ℚ,W) â⇒ H∗(X;ℚ)
associated with the filtered cdga (A(X)ℚ,W) given by the rational component ofA(X).
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This is a well-defined algebraic invariant of X in the homotopy category of differential bigraded algebras.
When forgetting the multiplicative structures, there is a homotopy equivalence of bigraded complexes
between E∗,∗1 (X) and Deligne’s weight spectral sequence Ẽ∗,∗1 (X).

Themain advantage of themultiplicative weight spectral sequencewith respect to Deligne’s weight spec-
tral sequence is that by Theorem 2.4, the former carries information about the rational homotopy type of X.

2.2 Thom–Whitney simple

Theorem 2.3 relies on the Thom–Whitney simple functor, which associates, to every strict cosimplicial
cdga A∙ over a field k of characteristic zero, a new cdga sTW(A∙) over k. This cdga is homotopically equiva-
lent, as a complex, to the total complex of the original cosimplicial cdga. Hence the Thom–Whitney simple
can be viewed as a multiplicative version of the total complex. We next recall its construction. For every
α ≥ 0, denote by Ωα the cdga given by

Ωα := Λ(t0, . . . , tα , dt0, . . . , dtα)∑ ti − 1,∑ dti ,

where Λα := Λ(t0, . . . , tα , dt0, . . . , dtα) denotes the free cdga over k generated by ti in degree 0 and dti in
degree 1. The differential on Λα is defined by d(ti) = dti and d(dti) = 0. For all 0 ≤ i ≤ α, define face maps
δiα : Ωα → Ωα−1 by letting

δiα(tk) = {{{{{{{
tk , k < i,
0, k = i,
tk−1, k > i.

These definitions make Ω∙ = {Ωα , δiα} into a strict simplicial cdga (the adjective strict accounts for the fact
that we do not require degeneracy maps).

Recall that the total complex s(K∙) of a strict cosimplicial cochain complex K∙ is given by

s(K∙) := ∫
α

Kα ⊗ C∗(∆|α|) =⨁
α
Kα[−|α|],

where C∗(∆|α|) denotes the cochain complex of ∆|α|. Analogously, we have:

Definition 2.6 ([23, §3]). Let A∙ be a strict cosimplicial cdga over k. The Thom–Whitney simple of A∙ is the
cdga over k defined by the end

sTW(A∙) := ∫
α

Aα ⊗ Ωα .
Example 2.7. Let f, g : A Â± B be morphisms of cdgas. Then sTW(f, g) is given by the pull-back

sTW(f, g) ⌟
��

// B ⊗ Λ(t, dt)
(δ0 ,δ1)
��

A
(f,g)

// B × B
where δx : B ⊗ Λ(t, dt) → B is the evaluation map given by t Ü→ x and dt Ü→ 0.

We shall need the followingfiltered versionof theThom–Whitney simple.Given r ≥ 0, consider on the cdgaΩα
the multiplicative increasing filtration σ[r] defined by letting ti be of weight 0 and dti be of weight −r, for all
0 ≤ i ≤ α. Note that σ[0] is the trivial filtration, while σ[1] is the bête filtration.
Definition 2.8. Let (A,W)∙ be a strict cosimplicial filtered cdga. The r-Thom–Whitney simple of (A,W)∙ is the
filtered cdga (sTW(A∙),W(r)) defined by

W(r)psTW(A∙) := ∫
α

∑
q
(Wp−qAα ⊗ σ[r]qΩα).
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To study the weight spectral sequence we shall mostly be interested in the behavior of the filtration W(1) of
the Thom–Whitney simple, which in the setting of complexes corresponds to the diagonal filtration δ(W, L)
of s(−) introduced in [8, Section 7.1.6] (see also [7, Section 2]). The following is a matter of verification.

Lemma 2.9. Let (A,W)∙ be a finite strict cosimplicial filtered cdga. The spectral sequence associated with(sTW(A∙),W(1)) satisfies
Ep,q1 (sTW(A∙),W(1)) := Hp+q(GrW(1)

−p sTW(A∙)) ≅ ∫
α

∑
m
(Ep−m,q1 (Aα ,W) ⊗ Ωmα ).

Deligne’s simple of a cosimplicial mixed Hodge complexK∙ is the diagram of complexes given by

sD(K∙) := ((s(K∙ℚ), δ(W, L)) s(φ)¹ÍÅ½ (s(K∙ℂ), δ(W, L), F)),
which by [8, Theorem 8.1.15], is again a mixed Hodge complex. The following Lemma is a multiplicative
analogue of this result and gives a Thom–Whitney simple in the category of mixed Hodge diagrams.

Lemma 2.10 ([23, §7.11]). Let A∙ be a strict cosimplicial mixed Hodge diagram. The diagram of cdgas given
by

sTW(A∙) := ((sTW(A∙ℚ),W(1)) sTW(φ)¹ÍÅ½ (sTW(A∙ℂ),W(1), F(0)))
is a mixed Hodge diagram, which is homotopy equivalent, as a complex, to Deligne’s simple sD(A∙).
2.3 Main examples

We next give a description of the multiplicative weight spectral sequence in some particular situations of
interest for this paper.

Smooth projective varieties

Let X be a smooth projective variety. A mixed Hodge diagramA(X) for X is given by the dataA(X)ℚ := Apl(X)
and A(X)ℂ := AdR(X;ℂ) the complex de Rham algebra, with W the trivial filtration and F the classical
Hodge filtration. The multiplicative weight spectral sequence satisfies E0,∗1 (X) = H∗(X;ℚ) and Ep,∗1 (X) = 0
for all p > 0.
Varieties with normal crossings

Let D í→ X̃ be a simple normal crossings divisor in a smooth projective variety X̃ of dimension n. We may
write D = D1 ∪ ⋅ ⋅ ⋅ ∪ DN as the union of irreducible smooth varieties meeting transversally. Let D(0) = X̃ and
for all p > 0, denote by D(p) = ⨆|I|=p DI the disjoint union of all p-fold intersections DI := Di1 ∩ ⋅ ⋅ ⋅ ∩ Dip where
I = {i1, . . . , ip} denotes an ordered subset of {1, . . . , N}. Since D has normal crossings, it follows that D(p)

is a smooth projective variety of dimension n − p. For 1 ≤ k ≤ p, denote by jI,k : DI í→ DI\{ik} the inclusion
and let jp,k := ⨁|I|=p jI,k : D(p) í→ D(p−1). This defines a simplicial resolution D∙ = {D(p), jp,k} → D, called the
canonical hyperresolution of D. Deligne’s weight spectral sequence is the first quadrant spectral sequence
given by (see for example [14, §4])

Ẽp,q1 (D) = Hq(D(p+1);ℚ) â⇒ Hq+p(D;ℚ)
with the differential d̃p,∗1 = j∗p+2 defined via the combinatorial restriction morphisms

j∗p := p∑
k=1

(−1)k−1(jp,k)∗ : H∗(D(p−1);ℚ) → H∗(D(p);ℚ).
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By computing the cohomology of Ẽ∗,∗1 (D) we obtain
GrWq Hp+q(D;ℚ) ≅ Ẽp,q2 (D) = Ker(dp,q1 )/Im(dp−1,q1 ) ≅ {{{Ker(j∗2)q , p = 0,

Ker(j∗p+2)q/Im(j∗p+1)q , p > 0.
Proposition 2.11. Let D∙ = {D(p), jp,k} → D be the canonical hyperresolution of a simple normal crossings
divisor D. The multiplicative weight spectral sequence of D is given by

Ep,q1 (D) ≅ ∫
α

Hq(D(α+1);ℚ) ⊗ Ωpα â⇒ Hp+q(D;ℚ).
Proof. Since D(p) is smooth and projective for each p, there is a strict cosimplicial mixed Hodge diagram
A(D∙) := {A(D(p)), j∗p,k} with trivial weight filtrations. A mixed Hodge diagram for D is then given by the
Thom–Whitney simple A(D) := sTW(A(D∙)). Indeed, cohomological descent for rational homotopy gives
a quasi-isomorphism A(D)ℚ ≃ Apl(X). Furthermore, the filtrations of A(D) given in Lemma 2.10 make
A(D) into a mixed Hodge diagram. By Lemma 2.10, when forgetting the multiplicative structures, A(D)
is quasi-isomorphic to the canonical mixed Hodge complex for D (see also [14, §4]). Hence it induces
Deligne’s mixed Hodge structure on the cohomology of D. The result follows from Lemma 2.9, by noting
that E0,q1 (D(α)) = Hq(D(α);ℚ) and Ep,q1 (D(α)) = 0 for p > 0.
Example 2.12. Let D be a simple normal crossings divisor of complex dimension 1. Then D(1) is a disjoint
union of smooth projective curves, D(2) is a collection of points and D(p) = 0 for all p > 2. Deligne’s weight
spectral sequence is given by

Ẽ∗,∗1 (D) ≅ H2(D(1);ℚ)
H1(D(1);ℚ)
H0(D(1);ℚ) j∗2ÚÚÚ→ H0(D(2);ℚ)

where j∗2 := j∗2,1 − j∗2,2. The multiplicative weight spectral sequence is given by

E∗,∗1 (D) ≅ H2(D(1);ℚ)
H1(D(1);ℚ)
E0,01 (D) d1ÚÚÚ→ H0(D(2);ℚ)Λ(t)dt

where the term E0,01 (D) is given by the pull-back
E0,01 (D) ⌟
��

// H0(D(2);ℚ) ⊗ Λ(t)
(δ0 ,δ1)
��

H0(D(1);ℚ) (j∗2,1 ,j∗2,2)
// H0(D(2);ℚ) × H0(D(2);ℚ)

and the differential d1 : E0,01 (D) → E1,01 (D) is given by (a, b(t)) Ü→ b�(t)dt. The products E0,01 × E0,k1 → E0,k1
and E0,01 × E1,01 → E1,01 are given by(a, b(t)) ⋅ c = a ⋅ c and (a, b(t)) ⋅ c(t)dt = b(t) ⋅ c(t)dt
respectively. The unit is (1D(1) , 1D(2) ) ∈ E0,01 (D). The maps H0(D(1);ℚ) → E0,01 and H0(D(2);ℚ) → E1,01 given
by

a Ü→ (a, j∗21(a)(1 − t) + j∗22(a)t) and b Ü→ −b ⋅ dt
define an inclusion Ẽ1(D) → E1(D) of bigraded complexes which is a quasi-isomorphism.
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Smooth quasi-projective varieties

Let X be a smooth projective variety and let X í→ X̃ be a smooth compactification of X such that the comple-
ment D := X̃ − X is a union of divisors with normal crossings. A mixed Hodge diagram for X is defined via the
algebra of forms on X̃ which have logarithmic poles along D (see [21, §3] for details, see also [23, §8]). In this
case, the multiplicative weight spectral sequence for X coincides with Deligne’s weight spectral sequence,
given by

E−p,q1 (X) = Hq−2p(D(p);ℚ) â⇒ Hq−p(X;ℚ).
The differential d−p,∗1 : E−p,∗1 (X) → E−p+1,∗1 (X) is given by the combinatorial Gysin map

γp := p∑
k=1

(−1)k(jp,k)! : H∗−2(D(p);ℚ) → H∗(D(p−1);ℚ),
where jp,k : D(p) í→ D(p−1) are the inclusion maps. The algebra structure of E∗,∗1 (X) is induced by the combi-
natorial restrictionmorphisms j∗p = ∑p

k=1(−1)k−1(jp,k)∗ together with the cup product ofH∗(D(p);ℚ) for p > 0.
Isolated singularities

Let X be a complex projective variety of dimension n with only isolated singularities and denote by Σ the
singular locus of X. By Hironaka’s Theorem on resolution of singularities there exists a cartesian diagram

D
j
//

g
��

X̃

f
��

Σ i
// X

where X̃ is smooth, f : X̃ → X is a proper birational morphism which is an isomorphism outside Σ and
D = f−1(Σ) is a simple normal crossings divisor. Since both X̃ and Σ are smooth and projective, there aremixed
Hodge diagrams A(X̃) and A(Σ) for X̃ and Σ respectively with trivial weight filtration. Let A(D) = sTW(A(D∙))
be a mixed Hodge diagram for D as constructed in the proof of Proposition 2.11. The maps j1 : D(1) → X̃ and
g1 : D(1) → Σ defined by composing the map D(1) → D with j and g respectively induce morphisms of mixed
Hodge diagrams j∗1 : A(X̃) → A(D) and g∗1 : A(Σ) → A(D).
Proposition 2.13. Let X be a complex projective varietywith only isolated singularities.With the above notation
we have:
(1) A mixed Hodge diagram for X is given byA(X) = sTW(A(Σ) ×A(X̃) Â± A(D)).
(2) For q ≥ 0, the term E0,q1 (X) is given by the pull-back

E0,q1 (X) ⌟
��

// E0,q1 (D) ⊗ Λ(t)
(δ0 ,δ1)
��

Hq(Σ;ℚ) × Hq(X̃;ℚ) ( g∗1 0
0 j∗1 )

// E0,q1 (D) × E0,q1 (D)
while for p > 0 and q ≥ 0 we have

Ep,q1 (X) ≅ Ep,q1 (D) ⊗ Λ(t) ⊕ Ep−1,q1 (D) ⊗ Λ(t)dt.
The differential of E∗,∗1 (X) is defined component-wise, via the differential of E∗,∗1 (D) and the differentiation
with respect to t.

(3) Denote by j∗p : H∗(D(p−1);ℚ) → H∗(D(p);ℚ) the combinatorial restriction maps, with D(0) = X̃. Let
τ : H0(X̃;ℚ) × H0(Σ;ℚ) → H0(D(1);ℚ)
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be given by τ(x, σ) = j∗1(x) − g∗1(σ). Then
Ep,q2 (X) ≅ Ker(j∗1) Ker(j∗2)/ Im(j∗1) Ker(j∗p+1)/ Im(j∗p)

Ker(τ) Ker(j∗2)/ Im(τ) Ker(j∗p+1)/ Im(j∗p)
p = 0 p = 1 p ≥ 2

q ≥ 1
q = 0

Proof. By Lemma 2.10 the Thom–Whitney simple of a strict cosimplicial mixed Hodge diagram, with the
filtrations W(1) and F(0), is a mixed Hodge diagram. Hence A(X) is a mixed Hodge diagram, which by
cohomological descent satisfies A(X)ℚ ≃ Apl(X). By forgetting the multiplicative structures, we obtain a
mixed Hodge complex for X (see for example [11, Section 2.9]). This proves (1). Assertion (2) now follows
from (1) and Lemma 2.9. Assertion (3) is a matter of verification.

3 Purity implies formality
In this section we give a simple proof of the fact that the purity of the weight filtration of a complex projective
variety up to a certain degree, implies formality of the variety up to the same degree. A direct application is
the formality of the Malcev completion of the fundamental group of projective varieties with normal isolated
singularities.

Definition 3.1. Let r ≥ 0 be an integer. A morphism of cdgas f : A → B is called r-quasi-isomorphism if the
inducedmorphism in cohomologyH i(f) : H i(A) → H i(B) is an isomorphism for all i ≤ r andamonomorphism
for i = r + 1.
Definition 3.2. A cdga (A, d) over k is called r-formal if there is a string of r-quasi-isomorphisms from (A, d)
to its cohomology (H∗(A;k), 0) considered as a cdga with trivial differential. We will say that a topological
space X is r-formal if the rational cdgaApl(X) is r-formal.

The case r = 1 is of special interest, since 1-formality implies that the rational Malcev completion of π1(X)
can be computed directly from the cohomology group H1(X;ℚ), together with the cup product

H1(X;ℚ) ⊗ H1(X;ℚ) → H2(X;ℚ).
In this case we say that π1(X) is formal. For r = ∞we recover the usual notion of formality, which in the case
of simply connected (or more generally, nilpotent) spaces, implies that the higher rational homotopy groups
πi(X) ⊗ ℚ, with i > 1 can be computed directly from the cohomology ring H∗(X;ℚ). Note that if X is formal,
then π1(X) is also formal.

Theorem 3.3. Let X be a complex projective variety and let r ≥ 0 be an integer. If the weight filtration on
Hk(X;ℚ) is pure of weight k, for all 0 ≤ k ≤ r, then X is r-formal.

Proof. We prove formality overℂ and apply independence of formality on the base field for cdgas with coho-
mology of finite type (see [27], see also [17]). Since the disjoint union of r-formal spaces is r-formal, we may
assume that X is connected, so it has a mixed Hodge diagram A(X) with H0(A(X)ℚ) ≅ ℚ. By Theorem 2.4
it suffices to define a string of r-quasi-isomorphisms of differential bigraded algebras from (E∗,∗1 (X), d1) to(E∗,∗2 (X), 0). Let M be the bigraded vector space given by M0,q = Ker(d0,q1 ) for all q ≥ 0 and Mp,q = 0 for
all p > 0 and all q ≥ 0, where dp,q1 : Ep,q1 (X) → Ep+1,q1 (X) denotes the differential of E∗,∗1 (X). Then M∗,∗ is
a bigraded sub-complex of (E∗,∗1 (X), d1) with trivial differential. Denote by φ : (M, 0) → (E∗,∗1 (X), d1) the
inclusion. Since Ker(d0,∗1 ) × Ker(d0,∗1 ) ⊂ Ker(d0,∗1 ), the multiplicative structure induced by φ on M is closed
in M. Hence φ is an inclusion of differential bigraded algebras. On the other hand, we have

E0,q2 (X) ≅ M0,q = Ker(d0,q1 ).
This gives an inclusion of bigraded algebras ψ : M → E∗,∗2 (X). Assume that the weight filtration on Hk(X;ℚ)
is pure of weight k, for all k ≤ r. We next show that both φ and ψ are r-quasi-isomorphisms. Indeed,
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for every p > 0 and every q ≥ 0 such that p + q ≤ r we have Ep,q2 (X) = 0, while for every q ≥ 0, we have
E0,q2 (X) ≅ M0,q ≅ Hq(X;ℚ). Therefore the induced maps Hk(φ) and Hk(ψ) are isomorphisms for all k ≤ r and
the maps Hk+1(φ) and Hk+1(ψ) are monomorphisms.

We highlight the two extreme cases r = 1 and r = ∞ in the following corollary.

Corollary 3.4. Let X be a complex projective variety.
(1) If the weight filtration on H1(X;ℚ) is pure of weight 1, then π1(X) is formal.
(2) If the weight filtration on Hk(X;ℚ) is pure of weight k, for all k ≥ 0 then X is formal.

Example 3.5 (ℚ-homology manifolds). Let X be a complex projective variety of dimension n. Assume that
X is a ℚ-homology manifold (for all x ∈ X, Hk{x}(X;ℚ) = 0 for k ̸= 2n and H2n

{x}(X;ℚ) ≅ ℚ). Then the weight
filtration onHk(X;ℚ) is pure of weight k, for all k ≥ 0 (see [8, Theorem8.2.4]). Hence X is formal. Examples of
such varieties are given by weighted projective spaces or more generally V-manifolds (see [10, Appendix B]),
surfaces with A1-singularities, the Cayley cubic or the Kummer surface.

In fact, purity of the weight filtration is strongly related to Poincaré duality: if X is a complex projective
variety whose rational cohomology satisfies Poincaré duality, then the weight filtration on Hk(X;ℚ) is pure
of weight k, for all k ≥ 0. Indeed, the Poincaré duality maps Hk(X;ℚ) ≅ (H2n−k(X;ℚ)∗)(−n) are compatible
with mixed Hodge structures. The weights on the left-hand (resp. right-hand) side are ≤ k (resp. ≥ k), hence
equal to k. Therefore such varieties are formal (cf. [16, Theorem5]). Anotherwell-known result relating purity
and Poincaré duality is the purity of the weight filtration on the (middle perversity) intersection cohomology
IH∗(X;ℚ) of a projective variety X. Furthermore, Weber [29] showed that for a complex projective variety X,
the image of the map Hk(X;ℚ) → IHk(X;ℚ) is isomorphic to the pure term GrWk H

k(X;ℚ).
The purity of the weight filtration in cohomology does not imply Poincaré duality, as shown by the fol-

lowing example.

Example 3.6 (Projective cone over a smooth curve). Let C ⊂ ℂℙN be a smooth curve of genus g and consider
the projective cone X = PcC over C. The Betti numbers of X are b0 = 1, b1 = 0, b2 = 1, b3 = 2g and b4 = 1.
The weight filtration on Hk(X;ℚ) is pure of weight k, for all k ≥ 0, and hence X is formal, but H∗(X;ℚ) does
not satisfy Poincaré duality.

In [1], it is shown that the weight filtration on H1(X;ℚ) of a normal complex projective variety X is pure of
weight 1. In the case of isolated singularities, the proof is a standard argument in mixed Hodge theory.

Lemma 3.7. Let X be a normal complex projective variety with isolated singularities. Then the weight filtration
on H1(X;ℚ) is pure weight 1.
Proof. Let Σ denote the singular locus of X and f : X̃ → X a resolution such that D := f−1(Σ) is a simple nor-
mal crossings divisor. Since X is normal, by Zariski’s main Theorem we have H0(D;ℚ) ≅ H0(Σ;ℚ). Since
dim Σ = 0, we have Hk(Σ) = 0 for all k > 0. This gives a Mayer–Vietoris long exact sequence

0 ÚÚ→ H1(X;ℚ) f∗ÚÚ→ H1(X̃;ℚ) j∗Ú→ H1(D;ℚ) ÚÚ→ H2(X;ℚ) f∗ÚÚ→ ⋅ ⋅ ⋅
which is strictly compatible with the weight filtration (see for example [24, Corollary-Definition 5.37]). Since
X̃ is smooth and projective, its weight filtration is pure. Hence the weight filtration on H1(X;ℚ) is pure
weight 1.

Corollary 3.8. The fundamental group π1(X) of every normal complex projective variety X with isolated singu-
larities is formal.

4 Formality of projective varieties with isolated singularities
By purely topological reasons we know that every simply connected, 4-dimensional CW-complex is formal.
We also know there exist non-formal 4-dimensional CW-complexes. Asmentioned in the introduction, thanks
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to deep results of Simpson and Kapovich–Kollár we know that there exist non-formal complex projective
surfaces. In this sectionweprove that every complexprojective surfacewithnormal singularities is formal.We
generalize this result in two directions. First, we prove formality for projective varieties of dimension n with
only isolated singularities whose link is (n − 2)-connected. Second, we prove formality for those projective
varieties with normal isolated singularities admitting a resolution of singularities with smooth exceptional
divisor.

Theorem 4.1. Every normal complex projective surface is a formal topological space.

Proof. Let X be a normal complex projective surface, which we may assume to be connected. We use the
formulas for E∗,∗1 (X) given in Proposition 2.13. Since normal singularities have codimension ≥ 2, we have
dim(Σ) = 0. Since dim(D(p)) = 1 − p, we have Ep,q1 (X) = 0 for all q > 4 − 2p. By Lemma3.7 together with semi-
purity, the weight filtration on Hk(X;ℚ) is pure of weight k for all k ̸= 2. We have

E∗,∗1 (X) =
E0,41

E0,31

E0,21
d0,21ÚÚÚ→ E1,21

E0,11
d0,11ÚÚÚ→ E1,11

E0,01
d0,01ÚÚÚ→ E1,01

d1,01ÚÚÚ→ E2,01

â⇒ E∗,∗2 (X) ≅
H4(X̃;ℚ)
H3(X̃;ℚ)
Ker(d0,21 ) 0

Ker(d0,11 ) Coker(d0,11 )
Ker(d0,01 ) 0 Coker(d1,01 )

.

For all p, q ≥ 0 take a section Ep,q2 (X) → Ker(dp,q1 ) ⊂ Ep,q1 (X) of the projection Ker(dp,q1 ) �¤ Ep,q2 (X). This
defines a morphism ρ : (E∗,∗2 (X), 0) → (E∗,∗1 (X), d1) of bigraded complexes which is a quasi-isomorphism.
We next show that ρ is multiplicative. By bidegree reasons, the only non-trivial products in E∗,∗2 (X) are the
products

Ker(d0,q1 ) × Ker(d0,q�1 ) → Ker(d0,q+q�1 )
induced by the cupproduct ofH∗(X̃;ℚ). Since ρ is the identity onKer(d0,q1 ), it preserves these products. It also
preserves the unit 1 ∈ Ker(d0,01 ). It only remains to see that the diagram

Ker(d0,11 ) × Coker(d0,11 )
ρ×ρ
��

// 0

��

E0,11 (X) × E1,11 (X) // E1,21 (X)
commutes. By Proposition 2.13, the term E0,11 (X) is given by the pull-back

E0,11 (X) ⌟
��

// H1(D(1);ℚ) ⊗ Λ(t)t
δ1
��

H1(X̃;ℚ) j∗1
// H1(D(1);ℚ)

and E1,k1 (X) ≅ Hk(D(1);ℚ) ⊗ Λ(t)dt for k ∈ {1, 2}. Moreover, the differential d0,11 : E0,11 (X) → E1,11 (X) is given
by (x, a(t)) Ü→ a�(t)dt and the product E0,11 (X) × E1,11 (X) → E1,21 (X) is given by (x, a(t)) ⋅ b(t)dt = a(t)b(t)dt.

Let (x, a(t)) ∈ E0,11 (X). Since a(0) = 0, it follows that (x, a(t)) ∈ Ker(d0,11 ) if and only if a(t) = 0. Therefore
we have Ker(d0,11 ) ⋅ E1,11 (X) = 0, and the above diagram commutes. This proves that the map

ρ : (E∗,∗2 (X), 0) → (E∗,∗1 (X), d1)
is multiplicative. Since X is connected, it has a mixed Hodge diagram A(X) with H0(A(X)ℚ) ≅ ℚ. Hence by
Theorem 2.4 we have a string of quasi-isomorphisms of complex cdgas(Apl(X), d) ⊗ ℂ ∼←→ (E∗,∗1 (X), d1) ⊗ ℂ ∼←Ú (E∗,∗2 (X), 0) ⊗ ℂ ≅ (H∗(X;ℂ), 0).
To conclude that X is formal it suffices to apply descent of formality of cdgas from ℂ toℚ.
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The following is an example of a normal projective surface with isolated singularities and non-trivial weight
filtration on H2 (cf. [28, §7], see also [3]).

Example 4.2. Let C be a curve of degree d ≥ 3 with n > 0 nodes in ℂℙ2. The genus of C is given by
g = (d − 1)(d − 2)/2 − n. Choose a smooth projective curve C� of degree d� = d + 1 intersecting C transversally
at smooth points of C, so that |C ∩ C�| = dd� and consider the blow-up X̃ = BlC∩C�ℂℙ2 ofℂℙ2 at the dd� points
of C ∩ C�. Then the proper transform C̃ of C has negative self-intersection |C̃ ∩ C̃| = d(d − d�)= −d and wemay
consider the blow-down X of C̃ to a point. Explicitly, assume that the curve C is given by f(x, y, z) = 0, and that
C� is given by g(x, y, z) = 0. Then X is the projective variety defined by the equationwf(x, y, z) + g(x, y, z) = 0,
which has a normal isolated singularity at (0, 0, 0, 1). Here (x, y, z, w) are the homogeneous coordinates inℂℙ3. The normalization of C̃ is a smooth projective curve of genus g and X̃ is homeomorphic to the connected
sum of dd� + 1 projective planes. Deligne’s weight spectral sequence can be written as

Ẽ∗,∗1 (X) ≅
ℚ
0ℚdd�+1 �¤ ℚ
0 ℚ2gℚ ⊕ℚ �¤ ℚ 0→ ℚn

â⇒ E∗,∗2 (X) =
ℚ
0ℚdd� 0
0 ℚ2gℚ 0 ℚn

.

Hence H2(X;ℚ) has a non-trivial weight filtration:
GrW0 H

2(X;ℚ) ≅ ℚn , GrW1 H
2(X;ℚ) ≅ ℚ2g and GrW2 H

2(X;ℚ) ≅ ℚdd� .
Since X is simply connected (see for example [10, Corollary V.2.4]), we may compute the rational homo-
topy groups of X with their weight filtration from a bigraded minimal model ρ : M ∼→ E∗,∗2 (X) of the bigraded
algebra E∗,∗2 (X). The weight filtration on πi := πi(X) ⊗ ℚ satisfies GrWq πp+q ≅ Hom(Q(M)p,q ,ℚ), where the
term Q(M)p,q denotes the indecomposables of M of bidegree (p, q).

The cohomology ring of X̃ is given by H∗(X̃;ℚ) ≅ ℚ[a, b1, . . . , bdd� ]with a2 = T, b2i = −T and bi ⋅ bj = 0
for all i ̸= j. Here T denotes the top class of X̃, a is the hyperplane class and bi correspond to the exceptional
divisors. Let γi := a − d ⋅ bi. Then E0,22 (X) ≅ Ker(d0,21 ) ≅ ℚ[γ1, . . . , γdd� ]with γ2i = T(1 − d2) and γi ⋅ γj = d2T
for i ̸= j. Hence we may write

E∗,∗2 (X) ≅ ℚ[α1, . . . , αn , β1, . . . , β2g , γ1, . . . , γdd� ],
where the generators have bidegree |αi| = (2, 0), |βi| = (1, 1) and |γi| = (0, 2). By bidegree reasons, the only
non-trivial products are given by γ2i = T(1 − d2) and γi ⋅ γj = d2T, for all i ̸= j. We compute the first steps of a
minimal model for E∗,∗2 (X). Let M2 be the free bigraded algebra

M2 = Λ(α1, . . . , αn , β1, . . . , β2g , γ1, . . . , γdd�)
with trivial differential generated by elements of bidegree |αi| = (2, 0), |βi| = (1, 1) and |γi| = (0, 2). Then the
map ρ2 : M2 → E∗,∗2 (X) given by x Ü→ x is a 2-quasi-isomorphism of bigraded algebras. Hence we have

GrW0 π2 ≅ ℚn , GrW1 π2 ≅ ℚ2g and GrW2 π2 ≅ ℚdd� .
LetM3 = M2 ⊗d Λ(V3,0, V2,1, V1,2, V0,3, V−1,4)where Vi,j are the graded vector spaces of pure bidegree (i, j),
and d : Vi,j → Mi+1,j

2 are the differentials given by

V3,0 = ℚ⟨xij⟩, dxij = αiαj , 1 ≤ i ≤ j ≤ n,
V2,1 = ℚ⟨yij⟩, dyij = αiβj , 1 ≤ i ≤ n, 1 ≤ j ≤ 2g,

V1,2 = ℚ⟨zij , wkl⟩, dzij = αiγj , dwkl = βkβl , 1 ≤ i ≤ n, 1 ≤ j ≤ dd�, 1 ≤ k ≤ l ≤ 2g,
V0,3 = ℚ⟨τij⟩, dτij = βiγj , 1 ≤ i ≤ n, 1 ≤ j ≤ 2g,

V−1,4 = ℚ⟨ξij⟩, dξij = γiγj , 1 ≤ i ≤ dd�, (i, j) ̸= (1, 1).
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Then the extension ρ3 : M3 → E∗,∗2 (X) of ρ2 given by Vi,j Ü→ 0 is a 3-quasi-isomorphism. The formula
GrWp π3 ≅ Hom(V3−p,p ,ℚ) gives
GrW0 π3 ≅ ℚ n(n+1)

2 , GrW1 π3 ≅ ℚ2g⋅n , GrW2 π3 ≅ ℚdd�⋅n+g(2g+1), GrW3 π3 ≅ ℚdd�⋅2g , GrW4 π3 ≅ ℚ dd�(dd�+1)
2 −1.

For example, we may take C to be the nodal cubic curve given by f(x, y, z) = y2z − x2z − x3 and C� a
smooth plane quartic. Then dd� = 12, g = 0 and n = 1. This gives

GrW0 π2 ≅ ℚ, GrW1 π2 = 0 and GrW2 π2 ≅ ℚ12;
GrW0 π3 ≅ ℚ, GrW1 π3 = 0, GrW2 π3 ≅ ℚ12, GrW3 π3 = 0 and GrW4 π3 ≅ ℚ77.

The following is a generalization of Theorem 4.1 to projective varieties of arbitrary dimension.

Theorem 4.3. Let X be a complex projective variety of dimension n with normal isolated singularities. Denote
by Σ the singular locus of X, and for each σ ∈ Σ let Lσ denote the link of σ in X. If H̃k(Lσ;ℚ) = 0 for all k ≤ n − 2
for every σ ∈ Σ, then X is a formal topological space.

Proof. The link Lσ of σ ∈ Σ in X is a smooth connected real manifold of dimension 2n − 1. Let L = ⨆σ∈Σ Lσ.
Then H0(L;ℚ) ≅ H0(Σ;ℚ). Assume that H̃k(Lσ;ℚ) = 0 for all k ≤ n − 2. By Poincaré duality the only non-
trivial rational cohomology groups of L are in degrees 0, n − 1, n and 2n − 1. Let Xreg = X − Σ. From the
Mayer–Vietoris exact sequence⋅ ⋅ ⋅ → Hk−1(L;ℚ) → Hk(X;ℚ) → Hk(Xreg;ℚ) ⊕ Hk(Σ;ℚ) → Hk(L;ℚ) → ⋅ ⋅ ⋅
it follows that the map Hk(X;ℚ) → Hk(Xreg;ℚ) is an isomorphismwhenever k < n − 1 or n + 1 < k < 2n − 1,
and injective for k = n − 1. Since Hk(X;ℚ) has weights in {0, 1, . . . , k} and Hk(Xreg;ℚ) has weights in{k, k + 1, . . . , 2k}, and the morphism Hk(X;ℚ) → Hk(Xreg;ℚ) is strictly compatible with the weight fil-
trations, it follows that for k ̸= n, n + 1, the weight filtration on Hk(X;ℚ) is pure of weight k. Furthermore,
by semi-purity we have that Hn+1(X;ℚ) is pure of weight n + 1. Therefore the only non-trivial weights of
H∗(X;ℚ) are in degree k = n. The weight spectral sequence for X has the form

E∗,∗1 (X) =
2n

n

0

∙∙∙ ∙∙ ∙∙ ∙ ∙∙ ∙ ∙∙ ∙ ∙ ∙∙ ∙ ∙ ∙∙ ∙ ∙ ∙ ∙
n

â⇒ E∗,∗2 (X) =
2n

n

0

∙∙∙∙∙∙ ∙∙ ∙∙ ∙∙ ∙
n

where the bullets denote the non-trivial elements. Consider the quasi-isomorphism of complexes

ρ : (E∗,∗2 (X), 0) → (E∗,∗1 (X), d1)
defined by taking sections of the projections Ker(dp,q1 ) �¤ Ep,q2 (X). We next show that ρ is multiplicative. Note
that by bidegree reasons, the only non-trivial products of E∗,∗2 (X) are between elements of the first column.
Since ρ is the identity on E0,∗2 (X) ≅ Ker(d0,q1 ), it preserves these products. It also preserves theunit 1 ∈ E0,02 (X).
Since Ep,q1 (X) = 0 for all q > 2(n − p), we have Ep,n−p1 (X) ⋅ Ep� ,n−p�1 (X) = 0 for all p, p� > 0. Therefore it only
remains to show that for p, q > 0, the following diagram commutes:

E0,q2 (X) × Ep,n−p2 (X)
ρ×ρ
��

// 0

��

E0,q1 (X) × Ep,n−p1 (X) // Ep,n−p+q1 (X).
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By Proposition 2.13 and since Hq(Σ) = 0 for q > 0, the term E0,q1 (X) is given by
E0,q1 (X) ⌟
��

// E0,q1 (D) ⊗ Λ(t) ⋅ t
δ1
��

H1(X̃;ℚ) j∗1
// E0,q1 (D)

while for p > 0 we have Ep,n−p1 (X) ≅ Ep,n−p1 (D) ⊗ Λ(t) ⊕ Ep−1,n−p1 (D) ⊗ Λ(t)dt. The proof now follows as in the
proof of Theorem 4.1.

Example 4.4 (Complete intersections). Let X be a complete intersection of dimension n > 1. Assume that the
singular locus Σ = {σ1, . . . , σN} is a finite number of points. The link of σi in X is (n − 2)-connected (this result
is due to Milnor [20] in the case of hypersurfaces and to Hamm [18] for general complete intersections).
Therefore by Theorem 4.3, X is formal. Note that in particular, every complex hypersurface with isolated
singularities is formal.

Theorem 4.5. Let X be a projective variety with only isolated singularities. Assume that there exists a resolution
of singularities f : X̃ → X such that the exceptional divisor D = f−1(Σ) is smooth. Then X is a formal topological
space.

Proof. Wemay assume that X is connected. By Proposition 2.13 the multiplicative weight spectral sequence
is given by

E∗,∗1 (X) ≅ E0,q1 (X) → Hq(D) ⊗ Λ(t)dt
E0,01 (X) → H0(D) ⊗ Λ(t)dt q ≥ 1

q = 0
where

E0,01 (X) ⌟
��

// H0(D) ⊗ Λ(t)
(δ0 ,δ1)

��

H0(Σ) × H0(X̃) ( g∗ 0
0 j∗ )

// H0(D)
and E0,q1 (X) ⌟

��

// Hq(D) ⊗ Λ(t)t
δ1

��

Hq(X̃) j∗
// Hq(D)

for q > 0.
The differential d1 : E0,∗1 (X) → E1,∗1 (X) is given by (x, a(t)) Ü→ a�(t)dt. The non-trivial products of E∗,∗1 (X)
are the maps E0,q1 (X) × E0,q�1 (X) → E0,q+q

�
1 (X) given by (x, a(t)) ⋅ (y, b(t)) = (x ⋅ y, a(t) ⋅ b(t)) and the maps

E0,q1 (X) × E1,q�1 (X) → E1,q+q
�

1 (X) given by (x, a(t)) ⋅ b(t)dt = a(t) ⋅ b(t)dt. The unit is (1X̃ , 1D) ∈ E0,01 (X). By
computing the cohomology of E∗,∗1 (X) we find

E∗,∗2 (X) ≅
H2n(X̃) 0

H2n−1(X̃) 0

Ker(j∗)2n−2 Coker(j∗)2n−2
...

...

Ker(j∗)1 Coker(j∗)1
H0(X̃) 0

with the non-trivial products being Ker(j∗)q × Ker(j∗)q� → Ker(j∗)q+q� . Now define a quasi-isomorphism
ρ : (E∗,∗2 (X), 0) → (E∗,∗1 (X), d1) of bigraded complexes as follows: Let ρ : E0,q2 (X) → E0,q1 (X) be defined by the
inclusion, for all q ≥ 0. Define ρ : E1,q2 (X) → E1,q1 (X) by taking a section Coker(j∗)q → Hq(D) of the projection
Hq(D) �¤ Coker(j∗)q, for all q > 0.

To see that ρ is a morphism of bigraded algebras it suffices to observe that it preserves the unit and that
ρ(Ker(j∗)) ⋅ E1,∗1 (X) = 0. Since X is connected, it has amixedHodge diagramA(X)withH0(A(X)ℚ) ≅ ℚ. Hence
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by Theorem 2.4 we have a string of quasi-isomorphisms of complex cdgas(Apl(X), d) ⊗ ℂ ∼←→ (E∗,∗1 (X), d1) ⊗ ℂ ∼←Ú (E∗,∗2 (X), 0) ⊗ ℂ ≅ (H∗(X;ℂ), 0).
To conclude that X is formal it suffices to apply descent of formality of cdgas from ℂ toℚ.
Example 4.6. Projective varietieswith only isolated ordinarymultiple points are formal. Projective cones over
smooth projective varieties are formal.

Example 4.7 (Segre cubic). The Segre cubic S is a simply connected projective threefold with ten singular
points, and is described by the set of points (x0 : x1 : x2 : x3 : x4 : x5) of ℂℙ5:

S : {x0 + x1 + x2 + x3 + x4 + x5 = 0, x30 + x31 + x32 + x33 + x34 + x35 = 0}.
A resolution f : M0,6 → S of S is given by the moduli space M0,6 of stable rational curves with six marked
points, and f−1(Σ) = ⨆10

i=1ℂℙ1 × ℂℙ1, where Σ = {σ1, . . . , σ10} is the singular locus of S. We have

Ẽ∗,∗1 (S) ≅
ℚ
0ℚ16 �¤ ℚ10
0 0ℚ16 → ℚ20
0 0ℚ11 �¤ ℚ10

â⇒ E∗,∗2 (S) =
ℚ
0ℚ6 0
0 0ℚ ℚ5
0 0ℚ 0

.

Hence S has a non-trivial weight filtration, with 0 ̸= GrW2 H3(S;ℚ) ≅ ℚ5. By Theorem 4.5 and since S is sim-
ply connected, we may compute the rational homotopy groups π∗(S) ⊗ ℚ with their weight filtration from
a minimal model of E∗,∗2 (S). Since S is a hypersurface of ℂℙ4, the map S → ℂℙ4 induces an isomorphism
Hk(ℂℙ4) ≅ Hk(S) for k ̸= 3, 4 (see [10, Theorems V.2.6 and V.2.11]). We deduce that

E∗,∗2 (S) ≅ ℚ[a, b1, ⋅ ⋅ ⋅ , b5, c0, ⋅ ⋅ ⋅ , c5, e]
with the only non-trivial products a2 = c0 and a3 = e. The bidegrees are given by |a| = (0, 2), |bi| = (1, 2),|ci| = (0, 4) and e = (0, 6). In low degrees we obtain

GrW2 π2 ≅ ℚ, GrW2 π3 ≅ ℚ5, GrW4 π4 ≅ ℚ5, GrW3 π5 ≅ ℚ10, GrW5 π5 ≅ ℚ5,
GrW4 π6 ≅ ℚ25, GrW5 π6 ≅ ℚ25, GrW4 π7 ≅ ℚ40, GrW5 π7 ≅ ℚ50, GrW7 π7 ≅ ℚ26.

5 Contractions of subvarieties
Let Y í→ X be a closed immersion of complex projective varieties. Assume that Y contains the singular locus
of X and denote by X/Y the space obtained by contracting each connected component of Y to a point. In
general, X/Y is not an algebraic variety. For instance, the contraction of a rational curve in a smoothprojective
surface is a complex algebraic variety if and only if the self-intersection number of the curve is negative. For
contractions of divisors in higher-dimensional varieties there are general conditions on the conormal line
bundle, which ensure the existence of contractions in the categories of complex analytic spaces and complex
algebraic varieties respectively (see for example [2, 13]). In the general situation in which X/Y is a pseudo-
manifold with normal isolated singularities, we can endow the rational homotopy type of X/Y with a mixed
Hodge structure, coming from the mixed Hodge structures on X and Y as follows.

Proposition 5.1. Let Y í→ X be a closed immersion of complex projective varieties. Assume that Y contains the
singular locus of X and that X is connected.
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(1) The rational homotopy type of X/Y carries mixed Hodge structures.
(2) Let f : X̃ → X be a resolution of X such that D := f−1(Y) is a simple normal crossings divisor. Denote by Σ the

singular locus of X/Y. There is a string of quasi-isomorphisms from Apl(X/Y) ⊗ ℂ to E∗,∗1 (X/Y) ⊗ ℂ, where
E∗,∗1 (X/Y) is the bigraded algebra given by

E∗,∗1 (X/Y) = sTW(H∗(Σ;ℚ) × H∗(X̃;ℚ) Â± E∗,∗1 (D)).
Proof. Take mixed Hodge diagrams A(Σ) and A(X̃) with trivial weight filtrations, and let A(D) be a mixed
Hodge diagram for D, as defined in the proof of Proposition 2.11. Let

A(X/Y) := sTW(A(Σ) ×A(X̃) Â± A(D)).
By cohomological descent we haveA(X/Y)ℚ ≃ Apl(X/Y). Indeed, since the category of cdgas with the Thom–
Whitney simple and the class of quasi-isomorphisms is a cohomological descent category (see [15, Proposi-
tion 1.7.4]), it suffices to show that H∗(X̃, D) ≅ H∗(X/Y, Σ). This follows from excision, since the composition
X̃ → X → X/Y is an isomorphism outside Σ. Hence by Lemma 2.10, A(X/Y) is a mixed Hodge diagram for
X/Y. This proves (1). Assertion (2) follows from Lemma 2.9 and Theorem 2.4.

The weight filtration on the cohomology of a projective variety with isolated singularities has some prop-
erties special to the algebraic case, which are not satisfied in the general setting of contractions. For
instance, the weight filtration on the cohomology H∗(X/Y;ℚ) is not semi-pure in general. Another feature of
the weight filtration that is only applicable to algebraic varieties is the existence on a non-zero cohomology
class w ∈ GrW2 H2(X;ℚ), as a consequence of hard Lefschetz theory. Therefore the weight filtration on the
cohomology of a contraction may serve as an obstruction theory for such contraction to be an algebraic
variety.

Example 5.2. Consider two projective lines in ℂℙ2 intersecting at a point, and let X denote the topological
space given by contraction of the two lines to a point in ℂℙ2:ℂℙ1 ∪ ℂℙ1

�� ��

// ℂℙ2
��{∗} // X.

Then the weight spectral sequence is given by

Ẽ∗,∗1 (X) ≅
ℚ
0ℚ → ℚ2
0 0ℚ2 → ℚ2 → ℚ

â⇒ Ẽ∗,∗2 (X) ≅
ℚ
0
0 ℚ
0 0ℚ 0 0

.

Since GrW2 H3(X;ℚ) ̸= 0, the weight filtration on H∗(X) is not semi-pure. Furthermore, we have H2(X;ℚ) = 0.
This is a proof of the fact that X is not algebraic. Since X is a simply connected topological space of dimen-
sion 4, it is formal (see for example [12, Proposition 2.99]). We may compute the rational homotopy groups
πi := πi(X) ⊗ ℚwith their weight filtration from a minimal model of E∗,∗2 (X) ≅ Λ(a3, b4)/(a3 ⋅ b4, b24). In low
degrees, we have

π2 = 0, GrW2 π3 ≅ ℚ, GrW4 π4 ≅ ℚ, π5 = 0, GrW6 π6 ≅ ℚ and GrW8 π7 ≅ ℚ.
We now prove analogue statements of Theorems 3.3, 4.3 and 4.5 for contractions of subvarieties.

Theorem 5.3. Let X be a connected complex projective variety of dimension n and let Y í→ X be a closed
immersion such that Y contains the singular locus of X. If one of the following conditions is satisfied, then X/Y
is a formal topological space.



56 | D. Chataur and J. Cirici, Rational homotopy of projective varieties

(a) The weight filtration on Hk(X/Y) is pure of weight k, for each k ≥ 0.
(b) The link Li := L(σi , X/Y) of each singular point σi ∈ X/Y in X/Y is (n − 2)-connected.
(c) The link L�i := L(Yi , X) of each connected component Yi of Y in X is (n − 2)-connected.
(d) There is a resolution of singularities f : X̃ → X such that D = f−1(X) is smooth.
Proof. Assume that (a) is satisfied. By Proposition 5.1 (2), the proof of Theorem 3.3 is valid in this setting.
Hence purity of the weight filtration implies formality. Note that (b) and (c) are equivalent, since, the links
Li = L(σ, X/Y) and L�i := L(Yi , X) are homeomorphic (see [11, Application 4.2]). Assume that (b) is satisfied.
Let L = ⨆i Li. From the Mayer–Vietoris exact sequence⋅ ⋅ ⋅ → Hk−1(X/Y − Σ) ⊕ Hk−1(Σ) → Hk−1(L) → Hk(X/Y) → Hk(X/Y − Σ) ⊕ Hk(Σ) → Hk(L) → ⋅ ⋅ ⋅
we find that for k ̸= n, n + 1, the weight filtration on Hk(X/Y;ℚ) is pure of weight k. Note that since X/Y is
not algebraic in general, the weight filtration is not necessarily semi-pure. Hence Hn+1(X/Y;ℚ) may have
non-trivial weights. The weight spectral sequence for X/Y has the form

E∗,∗1 (X/Y) =
2n

n

0

∙∙∙ ∙∙ ∙∙ ∙ ∙∙ ∙ ∙∙ ∙ ∙ ∙∙ ∙ ∙ ∙∙ ∙ ∙ ∙ ∙
n

â⇒ E∗,∗2 (X/Y) =
2n

n + 1
n

0

∙∙∙∙∙ ∙∙ ∙ ∙∙ ∙ ∙∙ ∙∙ ∙
n

where the bullets denote non-trivial elements. Consider the quasi-isomorphism of complexes

ρ : (E∗,∗2 (X/Y), 0) → (E∗,∗1 (X/Y), d1)
defined by taking sections of the projections Ker(dp,q1 ) �¤ Ep,q2 (X/Y). We next show that ρ is multiplicative. By
bidegree reasons, the non-trivial products in E∗,∗2 (X/Y) are

E0,q2 × E0,q�2 → E0,q+q
�

2 for q, q� ≥ 0
and

E0,12 × Ep,n−p2 → Ep,n+1−p2 for 0 < p < n.
Since ρ is the identity on E0,∗2 (X) ≅ Ker(d0,q1 ), it preserves the former products. It also preserves the unit
1 ∈ E0,02 (X). Arguing as in the proof of Theorem 4.3, and using the description of E∗,∗1 (X/Y) given by Propo-
sition 2.13, it is straightforward to see that the latter products are trivial and that the diagram

Ker(d0,11 ) × Ep,n−p2 (X/Y)
ρ×ρ
��

// 0

��

E0,11 (X/Y) × Ep,n−p1 (X/Y) // Ep,n+1−p1 (X/Y)
commutes. We may now proceed as in the proof of Theorem 4.3. Hence the equivalent conditions (b) and (c)
imply that X/Y is formal. Lastly, assume that (d) is satisfied. The proof of Theorem 4.5 is valid for X/Y. Hence
X/Y is formal.

Example 5.4. Let Y í→ X be a closed immersion of smooth projective varieties, with X connected. Then X/Y
is a formal topological space.
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