Home Isomorphism criteria for Witt rings of real fields
Article
Licensed
Unlicensed Requires Authentication

Isomorphism criteria for Witt rings of real fields

  • Nicolas Grenier-Boley EMAIL logo , Detlev W. Hoffmann and Claus Scheiderer
Published/Copyright: January 3, 2013

Abstract.

We prove isomorphism criteria for Witt rings and reduced Witt rings of certain types of real fields. Refined criteria are obtained under the additional assumption that the field be SAP. This leads to a generalization of a result by Koprowski on Witt equivalence of function fields of transcendence degree 1 over a real closed field. Isomorphism criteria are also obtained for Witt rings of hermitian forms over a quadratic extension of a real base field and for Witt groups of hermitian forms over a quaternion algebra with a real field as center. All these criteria are expressed in terms of properties involving topological subspaces of the space of orderings of the base field.

Received: 2010-05-25
Published Online: 2013-01-03
Published in Print: 2013-01-01

© 2013 by Walter de Gruyter Berlin Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/form.2011.097/html
Scroll to top button