Home Spodoptera cosmioides (Lepidoptera: Noctuidae) as an alternative host for mass rearing the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae)
Article Open Access

Spodoptera cosmioides (Lepidoptera: Noctuidae) as an alternative host for mass rearing the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae)

  • Wilson Faustino Júnior , Breno Vieira de Moraes , Fausto Henrique Vieira Araújo , Zaira Vieira Caldeira , Sebastião Lourenço de Assis Júnior , Ricardo Siqueira da Silva , José Eduardo Serrão , Bárbara Monteiro de Castro e Castro , Angelica Plata-Rueda , Germano Leão Demolin Leite , José Cola Zanuncio and Marcus Alvarenga Soares ORCID logo EMAIL logo
Published/Copyright: July 3, 2024

Abstract

Different alternative hosts can reduce or even avoid pre-imaginal conditioning of parasitoids in mass production programs. Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) may be an alternative host for mass rearing the parasitoid Palmistichus elaeisis Delvare & LaSalle (Hymenoptera: Eulophidae). The objective of this study was to evaluate the parasitism, emergence, egg-to-adult period, progeny size, sex ratio, and consumption of host tissue per individual of P. elaeisis produced using S. cosmioides pupae in the laboratory. Newly formed S. cosmioides pupae were weighed, individualized in glass tubes and each one was exposed to six newly emerged P. elaeisis females during 48 h. These pupae were transferred to plastic pots until the emergence of P. elaeisis adults. Palmistichus elaeisis parasitized and emerged from 100.0 % and 87.5 % of the S. cosmioides pupae, respectively. The egg-to-adult period of P. elaeisis was 24.28 ± 0.18 days, with 109 ± 2 individuals emerging per host pupae. Mass consumption of the host was 2.56 ± 0.01 mg per parasitoid emerged. This is the first report of P. elaeisis parasitizing and developing in S. cosmioides pupae. The ease of rearing S. cosmioides with an artificial diet, and the high parasitism, emergence, and progeny size of P. elaeisis support the suitability of this alternative host to mass-rearing this parasitoid.

Resumo

Diferentes hospedeiros alternativos podem reduzir ou, mesmo, evitar o condicionamento pré-imaginal de parasitoides em programas de produção em massa. Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) pode ser um hospedeiro alternativo para a criação massal do parasitoide Palmistichus elaeisis Delvare & LaSalle (Hymenoptera: Eulophidae). O objetivo deste estudo foi avaliar o parasitismo, emergência, período ovo-adulto, tamanho da progênie, razão sexual, e consumo de tecido hospedeiro por indivíduo de P. elaeisis produzido a partir de pupas de S. cosmioides em laboratório. Pupas recém-formadas de S. cosmioides foram pesadas, individualizadas em tubos de vidro e cada uma delas foi exposta a seis fêmeas recém-emergidas de P. elaeisis por 48 horas. Essas pupas foram transferidas para potes plásticos até a emergência dos adultos de P. elaeisis. Palmistichus elaeisis parasitou e emergiu 100,0 % e 87,5 % das pupas de S. cosmioides, respectivamente. O período ovo-adulto de P. elaeisis foi de 24,28 ± 0,18 dias, com 109 ± 2 indivíduos emergidos por pupa hospedeira. O consumo de massa do hospedeiro foi de 2,56 ± 0,01 mg por parasitoide emergido. Este é o primeiro relato de P. elaeisis parasitando e se desenvolvendo em pupas de S. cosmioides em laboratório. A facilidade de criação de S. cosmioides com dieta artificial e o alto parasitismo, emergência e tamanho da progênie de P. elaeisis aumentam a aptidão deste hospedeiro alternativo para a criação massal deste parasitoide.

Biological control with parasitoids is a component of integrated pest management (IPM) with potential to reduce pesticide use (Costa et al. 2020). The gregarious pupal endoparasitoid Palmistichus elaeisis Delvare & LaSalle (Hymenoptera: Eulophidae) is available in the Brazilian market with a reference specification (ER50 – Precedes the registration of a phytosanitary product with approved use in organic agriculture) from the Ministério da Agricultura, Pecuária e Abastecimento (MAPA) to manage lepidopteran pests (MAPA 2022). This natural enemy parasitized species of the Arctiidae, Bombycidae, Crambidae, Geometridae, Lymantriidae, Noctuidae, Nymphalidae, Papilionidae, Riodinidae, Saturniidae (Lepidoptera), and Tenebrionidae (Coleoptera) families (Da Silva Rolim et al. 2020; Martins et al. 2019; Rodríguez-Dimaté et al. 2016). Generalist behavior, easy rearing, high percentage parasitism and percentage emergence, and regulated market support the importance of the parasitoid P. elaeisis in IPM (De La Cruz et al. 2017).

Mass production and commercialization of parasitoids depend on the availability of suitable hosts (Tepa-Yotto et al. 2021). Palmistichus elaeisis is often reared on Tenebrio molitor (Linnaeus) (Coleoptera: Tenebrionidae) pupae in the laboratory (Martins et al. 2019). The choice of alternative hosts is important because it can reduce or even prevent the pre-imaginal conditioning of parasitoids when they lose the ability to recognize the chemical signals of the natural host (Ghaemmaghami et al. 2021; Moraes et al. 2023).

Spodoptera cosmioides caterpillars (Walker) (Lepidoptera: Noctuidae) feed on many cultivated or weed plants (Da Silva et al. 2017). This pest has a high leaf consumption rate, causing damage in many crops of economic importance, such as beans, coffee, cotton, eucalyptus, maize, rice, and soybean in Brazil (Lutz et al. 2018; Machado et al. 2020). Approximately 126 plants from 41 families are hosts for S. cosmioides (Paez Jerez et al. 2022). This insect can be reared using an artificial diet in the laboratory, allowing researchers to develop management strategies against this pest and to use its pupae to multiply natural enemies in biofactories (Da Silva et al. 2017).

Spodoptera cosmioides pupae may be an alternative host for mass-rearing parasitoids. The objective of this study was to evaluate the parasitism, emergence, egg-to-adult period, progeny size, sex ratio, and consumption of host tissue per individual of P. elaeisis produced using S. cosmioides pupae in the laboratory.

The study was carried out at the Forest Entomology Laboratory (FEL) (18.2022 °S, 43.5715 °W) of the Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM) in Diamantina, Minas Gerais state, Brazil in an acclimatized room with temperature of 25 ± 1 °C, relative humidity of 70 ± 10 % and a photoperiod of 12 h L:D.

The insects were obtained from the rearing facility of the Laboratory of Biological Control of Insects (LBCI) at the UFVJM. Palmistichus elaeisis was reared in plastic pots (500 mL) with pupae (<24 h old) of the alternative host Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae) and the adults of this natural enemy were fed honey droplets. Spodoptera cosmioides caterpillars were reared in plastic pots (100 mL) using an artificial diet (Pantoja et al. 1987), and its adults were kept in cylindrical cages (50 × 20 cm) made of polyvinyl chloride (PVC) and provided with a solution of water, sugar, and ascorbic acid (Oliveira et al. 1990).

Ten newly formed pupae (<24 h) of S. cosmioides were weighed (280.40 ± 2.07 mg) on an analytical balance (accuracy of 0.01 g), individualized in glass tubes (14 × 2.2 cm) and exposed, each one, to six newly emerged P. elaeisis females for 48 h (Caldeira et al. 2022). Eight of these pupae were transferred to plastic pots (250 mL) until the emergence of P. elaeisis to collect biological data on this parasitoid. Five other non-parasitized S. cosmioides pupae were weighed before and after 48 h, and both masses were used to calculate their natural weight losses (0.16 ± 0.01 mg). The percentage of parasitism [(number of S. cosmioides pupae with parasitoid emergence + pupae without adult S. cosmioides emergence)/(total number of pupae) × 100] and emergence [(number of S. cosmioides pupae with parasitoid emergence)/(number of parasitized pupae) × 100], egg-to-adult period (days), progeny size (numbers of males + females), and sex ratio (females/males + females) of P. elaeisis and the consumption (mg) of biomass from S. cosmioides pupae per P. elaeisis individual produced were evaluated. The two remaining S. cosmioides pupae were opened with a stylet to observe the development stage of this parasitoid, one at 9 days and one at 18 days after parasitism by P. elaeisis (Figure 1A and B). Two adult specimens (one male and one female) of P. elaeisis that emerged were photographed (Figure 1C and D) with a camera Optika OPTIKAM B5 attached to a stereomicroscope with Optika Vision Lite 2.1 software.

Figure 1: 
Larvae (A) and pupae (B) of Palmistichus elaeisis (Hymenoptera: Eulophidae) in pupae of Spodoptera cosmioides (Lepidoptera: Noctuidae), emergence holes of P. elaeisis (C) and adults (D) of P. elaeisis, male (♂) and female (♀), emerged from S. cosmioides pupae.
Figure 1:

Larvae (A) and pupae (B) of Palmistichus elaeisis (Hymenoptera: Eulophidae) in pupae of Spodoptera cosmioides (Lepidoptera: Noctuidae), emergence holes of P. elaeisis (C) and adults (D) of P. elaeisis, male (♂) and female (♀), emerged from S. cosmioides pupae.

Palmistichus elaeisis parasitized 100 % and emerged from 87.5 % of S. cosmioides pupae. The high percentage of parasitism and emergence of P. elaeisis in S. cosmioides pupae was similar to that reported for this natural enemy in Anticarsia gemmatalis Hubner (Lepidoptera: Noctuidae) and Bombyx mori Linnaeus (Lepidoptera: Bombycidae) pupae with 100 % and 100 % parasitism and 85 % and 90 % emergence, respectively (De Sousa Pereira et al. 2018; Pereira et al. 2009). The parasitism of all S. cosmioides pupae and the high emergence of P. elaeisis confirm that the immune response is low and the quality of this host is adequate for the development of the parasitoid offspring.

The egg-adult period of P. elaeisis in S. cosmioides pupae was 24.28 ± 0.18 days, longer than that of this parasitoid in A. gemmatalis, Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), and Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae) with 18.9, 19.5, 22.0, 19.7, and 20.2 days, respectively (Martins et al. 2020). This may be related to the host species, diet, and weight affecting the development period of parasitoids (Rodríguez-Dimaté et al. 2016). The morphophysiological and nutritional properties of hosts must be adequate for the development of parasitoids that, when feeding, accumulate reserves to complete the immature stage (Tiago et al. 2019). The longer egg-adult period of parasitoids reduces the number of their generations (Badran et al. 2020) and, consequently, the numbers of individuals produced for biological control programs.

The progeny size of P. elaeisis emerged per S. cosmioides pupae was 109 ± 2 individuals. The progeny size of P. elaeisis per S. cosmioides pupa was higher than that of this parasitoid in T. molitor pupae (69 ± 7), similar to that on A. gemmatalis (108 ± 17), and lower than that on Methona themisto (Hübner) (Lepidoptera: Nymphalidae) (138 ± 9), Citioica anthonilis (Herrich-Schaeffer) (Lepidoptera: Saturniidae) (286 ± 29), and Heraclides anchisiades capys (Hübner) (Lepidoptera: Papilionidae) (323 ± 38) pupae (Tavares et al. 2018). This is due to the size of the host pupa, with larger parasitoid progeny size in bigger pupae with more space and food available and reduced competition between their immatures (Iqbal et al. 2019). In addition, injection of toxins during multiple ovipositions by gregarious parasitoids, such as P. elaeisis, reduces or neutralizes the host’s immune response (De Sousa Pereira et al. 2017) allowing the development of its offspring.

The sex ratio of P. elaeisis in S. cosmioides pupae was 0.85 ± 0.03, similar to that of this parasitoid in T. molitor pupae (0.81 ± 0.02) (Martins et al. 2020). The high sex ratio of P. elaeisis, above 0.80, in S. cosmioides pupae is a characteristic of Eulophidae parasitoids (Caldeira et al. 2022). Females are responsible for parasitism and progeny production and the largest proportion of them is important for maintaining laboratory rearing, conducting experiments, and selection of individuals for release into the field (Camilo et al. 2016). The sex ratio of parasitoids above 0.50 increases their importance in the biological control of pests (Rossoni et al. 2016), following the quality control processes of natural enemies.

The biomass consumed from S. cosmioides pupae was 2.56 ± 0.01 mg per individual of P. elaeisis produced. The consumption of biomass from S. cosmioides per individual of P. elaeisis was higher than that of this parasitoid with pupae of T. molitor (1.35 ± 0.16) and H. anchisiades (1.32 ± 0.31), similar in those of A. gemmatalis (2.59 ± 0.43) and C. anthonilis (2.61 ± 0.62) and lower than in those of M. themisto (3.10 ± 0.42) (Tavares et al. 2018). Biomass consumption by parasitoids varies with host quality (Sanders et al. 2016). A maximum number of P. elaeisis should be produced with the lowest possible biomass of S. cosmioides pupae per individual of this parasitoid.

This is the first report of P. elaeisis parasitizing and successfully developing within S. cosmioides pupae. The ability to rear S. cosmioides with an artificial diet, along with the high parasitism, emergence, and offspring production of P. elaeisis, supports the suitability of this alternative host for the mass-rearing of this parasitoid.


Corresponding author: Marcus Alvarenga Soares, Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 39.100-000, Brazil, E-mail:

Award Identifier / Grant number: 001

Award Identifier / Grant number: 308993/2021-7

Funding source: Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)

Funding source: Programa Cooperativo sobre Proteção Florestal (PROTEF) do Instituto de Pesquisas e Estudos Florestais (IPEF)

Acknowledgments

We extend our appreciation to Elizangela Souza Pereira Costa, PhD in Plant Science from UFVJM, for the figures.

  1. Research ethics: Not applicable.

  2. Author contributions: Conceptualization: W. Faustino Júnior, S. L. de Assis Júnior, M. A. Soares; methodology: W. Faustino Júnior, B. V. de Moraes, F. H. V. Araújo, Z. V. Caldeira; formal analysis: W. Faustino Júnior, Z. V. Caldeira, R. S. da Silva, J. E. Serrão, B. M. de Castro e Castro, A. Plata-Rueda, G. L. Demolin Leite, J. C. Zanuncio, and M. A. Soares; investigation: W. Faustino Júnior, B. V. de Moraes, F. H. V. Araújo, Z. V. Caldeira, B. M. de Castro e Castro, A. Plata-Rueda; resources: J. C. Zanuncio, M. A. Soares; supervision: S. L. de Assis Júnior, M. A. Soares; project administration: S. L. de Assis Júnior, J. C. Zanuncio, M. A. Soares; funding acquisition: J. C. Zanuncio, M. A. Soares; wrote the manuscript: W. Faustino Júnior, S. L. de Assis Júnior, R. S. da Silva, J. E. Serrão, B. M. de Castro e Castro, A. Plata-Rueda, J. C. Zanuncio, and M. A. Soares. All authors read and approved the final manuscript.

  3. Competing interests: The authors declare that they have no competing interests.

  4. Research funding: This study was supported by Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES – Financial Code 001), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – Financial Code: 308993/2021–7) and Programa Cooperativo sobre Proteção Florestal (PROTEF) do Instituto de Pesquisas e Estudos Florestais (IPEF).

  5. Data availability: The raw data can be obtained on request from the author Wilson Faustino Júnior ().

References

Badran, F., Fathipour, Y., Bagheri, A., Attaran, M., and Reddy, G.V.P. (2020). Effects of prolonged mass rearing on life history traits of Habrobracon hebetor (Hymenoptera: Braconidae). Int. J. Pest Manage. 68: 246–255, https://doi.org/10.1080/09670874.2020.1830198.Search in Google Scholar

Caldeira, Z.V., Soares, M.A., Von dos Santos Veloso, R., Souza Silva, C., Souza Pereira Costa, E., Martins dos Santos, M., Moreira da Silva, I., Silva, W.M., and Zanuncio, J.C. (2022). Acute and chronic toxicity of neem oil to the endoparasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). J. Econ. Entomol. 115: 1545–1550, https://doi.org/10.1093/jee/toac109.Search in Google Scholar PubMed

Camilo, S.S., Soares, M.A., Leite, G.L., Dos Santos, J.B., De Assis Júnior, S.L., and Zanuncio, J.C. (2016). Do floral resources in Eucalyptus plantations affect fitness parameters of the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae)? Phytoparasitica 44: 651–659, https://doi.org/10.1007/s12600-016-0549-7.Search in Google Scholar

Costa, E.S.P., Soares, M.A., Caldeira, Z.V., Von dos Santos Veloso, R., Silva, L.A., Silva, D.J.H., Santos, I.C.L., Castro, B.M.C., Zanuncio, J.C., and Legaspi, J.C. (2020). Selectivity of deltamethrin doses on Palmistichus elaeisis (Hymenoptera: Eulophidae) parasitizing Tenebrio molitor (Coleoptera: Tenebrionidae). Sci. Rep. 10: e12395, https://doi.org/10.1038/s41598-020-69200-x.Search in Google Scholar PubMed PubMed Central

Da Silva, D.M., De Freitas Bueno, A., Dos Santos Stecca, C., Andrade, K., Neves, P.M.O.J., and Oliveira, M.C.N. (2017). Biology of Spodoptera eridania and Spodoptera cosmioides (Lepidoptera: Noctuidae) on different host plants. Fla. Entomol. 100: 752–760, https://doi.org/10.1653/024.100.0423.Search in Google Scholar

Da Silva Rolim, G., Plata-Rueda, A., Martínez, L.C., Ribeiro, G.T., Serrão, J.E., and Zanuncio, J.C. (2020). Side effects of Bacillus thuringiensis on the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). Ecotoxicol. Environ. Saf. 189: 109978, https://doi.org/10.1016/j.ecoenv.2019.109978.Search in Google Scholar PubMed

De La Cruz, R.A., Zanuncio, J.C., Lacerda, M.C., Wilcken, C.F., Fernandes, F.L., De Souza Tavares, W., Soares, M.A., and Sediyama, C.S. (2017). Side-effects of pesticides on the generalist endoparasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). Sci. Rep. 7: e10064, https://doi.org/10.1038/s41598-017-10462-3.Search in Google Scholar PubMed PubMed Central

De Sousa Pereira, K., Guedes, N.M.P., Serrão, J.E., Zanuncio, J.C., and Guedes, R.N.C. (2017). Superparasitism, immune response and optimum progeny yield in the gregarious parasitoid Palmistichus elaeisis. Pest Manage. Sci. 73: 1101–1109, https://doi.org/10.1002/ps.4534.Search in Google Scholar PubMed

De Sousa Pereira, K., Chediak, M., Zanuncio, J.C., and Guedes, R.N.C. (2018). Chlorantraniliprole impact on survival and progeny quality of the pupa of the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae). Can. Entomol. 151: 94–100, https://doi.org/10.4039/tce.2018.49.Search in Google Scholar

Ghaemmaghami, E., Fathipour, Y., Bagheri, A., Talebi, A.A., and Reddy, G.V.P. (2021). Quality control of the parasitoid wasp Trichogramma brassicae (Hymenoptera: Trichogrammatidae) over 45 generations of rearing on Sitotroga cerealella. Insect Sci. 28: 180–190, https://doi.org/10.1111/1744-7917.12757.Search in Google Scholar PubMed

Iqbal, A., Chen, Y.M., Hou, Y.Y., Zhang, L., Desneux, N., and Zang, L.S. (2019). Factitious host species impact on the outcome of multiparasitism between egg parasitoids. J. Pest Sci. 92: 1261–1269, https://doi.org/10.1007/s10340-019-01122-8.Search in Google Scholar

Lutz, A.L., Bertolaccini, I., Scotta, R.R., Curis, M.C., Favaro, M.A., Fernandez, L.N., and Sánchez, D.E. (2018). Lethal and sublethal effects of chlorantraniliprole on Spodoptera cosmioides (Lepidoptera: Noctuidae). Pest Manage. Sci. 74: 2817–2821, https://doi.org/10.1002/ps.5070.Search in Google Scholar PubMed

Machado, E.P., Dos Santos Rodrigues Junior, G.L., Somavilla, J.C., Führ, F.M., Zago, S.L., Marques, L.H., Santos, A.C., Nowatzki, T., Dahmer, M.L., Omoto, C., et al.. (2020). Survival and development of Spodoptera eridania, Spodoptera cosmioides and Spodoptera albula (Lepidoptera: Noctuidae) on genetically‐modified soybean expressing Cry1Ac and Cry1F proteins. Pest Manage. Sci. 76: 4029–4035, https://doi.org/10.1002/ps.5955.Search in Google Scholar PubMed PubMed Central

MAPA (Ministério da Agricultura, Pecuária e Abastecimento) (2022). Especificações de Referência, [online], Available at: www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/agrotoxicos/produtos-fitossanitarios/especificacao-de-referencia (Accessed 14 June 2022).Search in Google Scholar

Martins, D.J., Dos Santos, M.M., Sales, T.S., Da Silva, I.M., Soares, M.A., and De Assis Júnior, S.L. (2019). Do parasitoid density and host age affect the parasitism of Palmistichus elaeisis (Hymenoptera: Eulophidae)? Arq. Inst. Biol. 86: e0772017, https://doi.org/10.1590/1808-1657000772017.Search in Google Scholar

Martins, D.J., De Assis Júnior, S.L., De Oliveira Júnior, G.G.S., Soares, M.A., Pinto, N.A.V.D., and Santos, T. (2020). Palmistichus elaeisis (Hymenoptera: Eulophidae) rearing in Tenebrio molitor (Coleoptera: Tenebrionidae) submitted to different diets. Arq. Inst. Biol. 87: e0512019, https://doi.org/10.1590/1808-1657000512019.Search in Google Scholar

Moraes, R.J.S., Silva-Torres, C.S., Barbosa, P.R., and Torres, J.B. (2023). Olfaction response and fertility life table parameters of Tetrastichus howardi (Hymenoptera: Eulophidae) parasitizing Plutella xylostella (Lepidoptera: Plutellidae) and the factitious host Tenebrio molitor (Coleoptera: Tenebrionidae). Neotrop. Entomol. 52: 921–931, https://doi.org/10.1007/s13744-023-01068-8.Search in Google Scholar PubMed

Oliveira, L.J., Parra, J.R.P., and Cruz, I. (1990). Biologia da lagarta-do-cartucho em milho cultivado em solo corrigido para três níveis de alumínio. Pesqui. Agropecu. Bras. 25: 157–166.Search in Google Scholar

Paez Jerez, P.G., Hill, J.G., Pereira, E.J., Medina Pereyra, P., and Vera, M.T. (2022). The role of genetically engineered soybean and Amaranthus weeds on biological and reproductive parameters of Spodoptera cosmioides (Lepidoptera: Noctuidae). Pest Manage. Sci. 78: 2502–2511, https://doi.org/10.1002/ps.6882.Search in Google Scholar PubMed

Pantoja, A., Smith, C.M., and Robinson, J.F. (1987). Development of fall armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), strains from Louisiana and Puerto Rico. Environ. Entomol. 16: 116–119, https://doi.org/10.1093/ee/16.1.116.Search in Google Scholar

Pereira, F.F., Zanuncio, J.C., Serrão, J.E., Oliveira, H.N., Fávero, K., and Grance, E.L. (2009). Progeny of Palmistichus elaeisis Delvare & LaSalle (Hymenoptera: Eulophidae) parasitising pupae of Bombyx mori L. (Lepidoptera: Bombycidae) of different ages. Neotrop. Entomol. 38: 660–664, https://doi.org/10.1590/s1519-566x2009000500016.Search in Google Scholar PubMed

Rodríguez-Dimaté, F.A., Poderoso, J.C.M., Ribeiro, R.C., Brügger, B.P., Wilcken, C.F., Serrão, J.E., and Zanuncio, J.C. (2016). Palmistichus elaeisis (Hymenoptera: Eulophidae) parasitizing pupae of the passion fruit pest Agraulis vanillae vanillae (Lepidoptera: Nymphalidae). Fla. Entomol. 99: 130–132, https://doi.org/10.1653/024.099.0127.Search in Google Scholar

Rossoni, C., Pereira, F.F., Kassab, S.O., Rodrigues, A., Barbosa, R.H., and Zanuncio, J.C. (2016). Development of Eulophidae (Hymenoptera) parasitoids in Diatraea saccharalis (Lepidoptera: Crambidae) pupae exposed to entomopathogenic fungi. Can. Entomol. 148: 716–723, https://doi.org/10.4039/tce.2016.15.Search in Google Scholar

Sanders, D., Moser, A., Newton, J., and Veen, F.J.F. (2016). Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain. Proc. R. Soc. B 283: 20153043, https://doi.org/10.1098/rspb.2015.3043.Search in Google Scholar PubMed PubMed Central

Tavares, W.D.S., Masson, M.V., Ferreira-Filho, P.J., Barbosa, L.R., Silva, W.M., Wilcken, C.F., and Zanuncio, J.C. (2018). Parasitism of lepidopteran defoliators of urban plants by Palmistichus elaeisis (Hymenoptera: Eulophidae). Fla. Entomol. 101: 453–457, https://doi.org/10.1653/024.101.0302.Search in Google Scholar

Tepa-Yotto, G.T., Tonnang, H.E., Goergen, G., Subramanian, S., Kimathi, E., Abdel-Rahman, E.M., Flø, D., Thunes, K.H., Fiaboe, K.K.M., Niassy, S., et al.. (2021). Global habitat suitability of Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae): key parasitoids considered for its biological control. Insects 12: e273, https://doi.org/10.3390/insects12040273.Search in Google Scholar PubMed PubMed Central

Tiago, E.F., Pereira, F.F., Kassab, S.O., Barbosa, R.H., Cardoso, C.R.G., Sanomia, W.Y., Pereira, H.C., Silva, R.M.M.F., and Zanuncio, J.C. (2019). Biological quality of Tetrastichus howardi (Hymenoptera: Eulophidae) reared with Tenebrio molitor (Coleoptera: Tenebrionidae) pupae after cold storage. Fla. Entomol. 102: 571–576, https://doi.org/10.1653/024.102.0345.Search in Google Scholar

Received: 2024-07-06
Accepted: 2024-12-09
Published Online: 2024-07-03

© 2024 the author(s), published by De Gruyter on behalf of the Florida Entomological Society

This work is licensed under the Creative Commons Attribution 4.0 International License.

Articles in the same Issue

  1. Frontmatter
  2. Research Articles
  3. Distribution and dispersal of adult spotted wing drosophila, Drosophila suzukii (Diptera: Drosophilidae), in organically grown strawberries in Florida
  4. A comparison of the capture of non-target arthropods between control methods and monitoring traps of Anastrepha ludens in citrus agroecosystems
  5. Development of microsatellite markers for colony delineation of the invasive Asian subterranean termite (Blattodea: Rhinotermitidae) in South Florida and Taiwan
  6. Biology and life table of Oligonychus punicae Hirst (Trombidiformes: Tetranychidae) on three host plants
  7. Relative captures and detection of male Ceratitis capitata using a natural oil lure or trimedlure plugs
  8. Evaluation of HOOK SWD attract-and-kill on captures, emergence, and survival of Drosophila suzukii in Florida
  9. Rearing Neoseiulus cucumeris and Amblyseius swirskii (Mesostigmata: Phytoseiidae) on non-target species reduces their predation efficacy on target species
  10. Response of male Bactrocera zonata (Diptera: Tephritidae) to methyl eugenol: can they be desensitized?
  11. Monitoring of coccinellid (Coleoptera) presence and syrphid (Diptera) species diversity and abundance in southern California citrus orchards: implications for conservation biological control of Asian citrus psyllid and other citrus pests
  12. Topical treatment of adult house flies, Musca domestica L. (Diptera: Muscidae), with Beauveria bassiana in combination with three entomopathogenic bacteria
  13. Laboratory evaluation of 15 entomopathogenic fungal spore formulations on the mortality of Drosophila suzukii (Diptera: Drosophilidae), related drosophilids, and honeybees
  14. Effect of diatomaceous earth on diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), larval feeding and survival on cabbage
  15. Bioactivity of seed extracts from different genotypes of Jatropha curcas (Euphorbiaceae) against Spodoptera frugiperda (Lepidoptera: Noctuidae)
  16. Assessment of sugarberry as a host tree of Halyomorpha halys (Hemiptera: Pentatomidae) in southeastern USA agroecosystems
  17. The importance of multigeneration host specificity testing: rejection of a potential biocontrol agent of Nymphaea mexicana (Nymphaeaceae) in South Africa
  18. Endophytic potential of entomopathogenic fungi associated with Urochloa ruziziensis (Poaceae) for spittlebug (Hemiptera: Cercopidae) control
  19. The first complete mitogenome sequence of a biological control agent, Pseudophilothrips ichini (Hood) (Thysanoptera: Phlaeothripidae)
  20. Exploring the potential of Delphastus davidsoni (Coleoptera: Coccinellidae) in the biological control of Bemisia tabaci MEAM 1 (Hemiptera: Aleyrodidae)
  21. Behavioral responses of Ixodiphagus hookeri (Hymenoptera; Encyrtidae) to Rhipicephalus sanguineus nymphs (Ixodida: Ixodidae) and dog hair volatiles
  22. Illustrating the current geographic distribution of Diaphorina citri (Hemiptera: Psyllidae) in Campeche, Mexico: a maximum entropy modeling approach
  23. New records of Clusiidae (Diptera: Schizophora), including three species new to North America
  24. Photuris mcavoyi (Coleoptera: Lampyridae): a new firefly from Delaware interdunal wetlands
  25. Bees (Hymenoptera: Apoidea) diversity and synanthropy in a protected natural area and its influence zone in western Mexico
  26. Temperature-dependent development and life tables of Palpita unionalis (Lepidoptera: Pyralidae)
  27. Orchid bee collects herbicide that mimics the fragrance of its orchid mutualists
  28. Importance of wildflowers in Orius insidiosus (Heteroptera: Anthocoridae) diet
  29. Bee diversity and abundance in perennial irrigated crops and adjacent habitats in central Washington state
  30. Comparison of home-made and commercial baits for trapping Drosophila suzukii (Diptera: Drosophilidae) in blueberry crops
  31. Miscellaneous
  32. Dr. Charles W. O’Brien: True Pioneer in Weevil Taxonomy and Publisher
  33. Scientific Notes
  34. Nests and resin sources (including propolis) of the naturalized orchid bee Euglossa dilemma (Hymenoptera: Apidae) in Florida
  35. Impact of laurel wilt on the avocado germplasm collection at the United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station
  36. Monitoring adult Delia platura (Diptera: Anthomyiidae) in New York State corn fields using blue and yellow sticky cards
  37. New distribution records and host plants of two species of Hypothenemus (Coleoptera: Curculionidae: Scolytinae) in mangrove ecosystems of Tamaulipas, Mexico
  38. First record of Trichogramma pretiosum parasitizing Iridopsis panopla eggs in eucalyptus in Brazil
  39. Spodoptera cosmioides (Lepidoptera: Noctuidae) as an alternative host for mass rearing the parasitoid Palmistichus elaeisis (Hymenoptera: Eulophidae)
  40. Effects of biochar on ambrosia beetle attacks on redbud and pecan container trees
  41. First report of Diatraea impersonatella (Lepidoptera: Crambidae) on sugarcane (Saccharum officinarum L.) in Honduras
  42. Book Reviews
  43. Kratzer, C. A.: The Cicadas of North America
Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/flaent-2024-0037/html
Scroll to top button