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Abstract

For 1 < ν ≤ 2 a real number and T ≥ 3 a natural number, conditions
are given for the existence of solutions of the νth order Atıcı-Eloe fractional
difference equation, Δνy(t)+f(t+ν−1, y(t+ν−1)) = 0, t ∈ {0, 1, . . . , T},
and satisfying the left focal boundary conditions Δy(ν−2) = y(ν+T ) = 0.
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1. Introduction

In this paper, for 1 < ν ≤ 2 a real number and T ≥ 3 a natural number,
we are concerned with local solutions of the nonlinear νth order fractional
difference equation,

Δνy(t) + f(t+ ν − 1, y(t+ ν − 1)) = 0, t ∈ {0, 1, . . . , T}, (1.1)

satisfying the left focal boundary conditions,

Δy(ν − 2) = 0, y(ν + T ) = 0, (1.2)

where Δ is the forward difference operator with step-size 1, Δν is the Atıcı-
Eloe fractional difference, and f(x, r) : {ν − 1, ν, . . . , ν + T − 1} × R → R

is continuous. Our methods rely on application of the Leray-Schauder
Nonlinear Alternative [17], which will involve imposing growth restrictions
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on f as well as restrictions on the natural number T . Since the paper
involves restrictions on the size of T , classically such a result is called a
local existence result as opposed to a global existence result. Primary
motivation for this work is the recent paper by Henderson [18] devoted to
local solutions of Dirichlet boundary value problems for fractional difference
equations.

A good deal of the current interest in fractional difference equations,
devoted to both their theoretical development and their applications, was
spawned by the Atıcı and Eloe definitions [1, 2], in the context of discrete
domains, of fractional sums and fractional differences. Soon afterwards,
Goodrich further developed and extended those papers [9, 10, 11]. Atıcı
and Eloe dealt in their first paper with initial value problems for frac-
tional difference equations, and then followed in their second paper with
applications of their definitions in obtaining positive solutions for Dirichlet
boundary value problems for fractional difference equations. Their sec-
ond work involved a Guo-Krasnosel’skii fixed point argument requiring the
construction of a Green’s function for their fractional problem. Some of
Goodrich’s subsequent research that required construction of appropriate
Green’s functions has focused on questions extending the Atıcı and Eloe
results and can be found in [12, 13, 14, 15, 16]. For some other researchers’
closely related works involving boundary value problems for fractional dif-
ference equations, we cite [4, 5, 8, 19, 20, 27, 28, 29, 30, 31].

It is natural that discrete fractional calculus and fractional difference
equations often appear in modeling natural processes such as found in the
paper by Atıcı and Şengül [3] and in the paper by Metzler et al. [22].
Especially prominent is the current use of boundary value problems for
discrete fractional difference equations in its applications to discrete control
processes; see, for example, this list of monographs devoted to discrete
fractional control [6, 7, 21, 23, 24, 25].

2. Some preliminaries and the Green function

We begin this section with the Atıcı-Eloe definitions of fractional sum
and fractional difference in the context of a discrete domain.

Definition 2.1. Let n ∈ N and n− 1 < κ ≤ n be a real number, and
let a ∈ R. For t ∈ {a+κ, a+ κ+1, . . .}, the κth order Atıcı-Eloe fractional
sum, Δ−κu, of the function u is defined by

Δ−κu(t) :=
1

Γ(κ)

t−κ∑
s=a

(t− s− 1)(κ−1)u(s),



326 J. Henderson, J. T. Neugebauer

where t(κ) := Γ(t+1)
Γ(t+1−κ) is the falling function.

For t ∈ {a+n−κ, a+n+1−κ, . . .}, the κth order Atıcı-Eloe fractional
difference, Δκu, of the function u is defined by

Δκu(t) := Δn−(n−κ)u(t) := Δn(Δ−(n−κ)u(t)),

where Δ is the forward difference defined by Δu(t) = u(t + 1) − u(t), and
Δiu(t) = Δ(Δi−1u(t)), i = 2, 3, . . . .

Remark 2.1. We note that, for u defined on {a, a+1, . . .}, then Δ−κu
is defined on {a+ κ, a+ κ+ 1, . . .}.

In [11], for 1 < ν ≤ 2, Goodrich constructed the Green function, G(t, s),
for −Δνy(t) = 0, t ∈ {0, 1, . . . , T}, satisfying the left focal boundary con-
ditions (1.2). In particular, by direct computation, Goodrich obtained

G(t, s) =
c(ν, T )

Γ(ν)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ(ν)(ν + T − s− 1)(ν−1),
t = ν − 2, ν − 1,

[
(2− ν)t(ν−1) + (ν − 1)(ν−2)

]×
(ν + T − s− 1)(ν−1),

0 ≤ t− ν ≤ s ≤ T,

[
(2− ν)t(ν−1) + (ν − 1)(ν−2)

]×
(ν + T − s− 1)(ν−1)

− 1
c(ν,T )(t− s− 1)(ν−2),

0 ≤ s < t− ν ≤ T,

with

c(ν, T ) =
1

(ν + T )(ν−2) [(ν − 1) + (2− ν)(T + 2)]
.

Goodrich also obtained the following properties of G(t, s) which will be
of importance to us:

(a) For each s ∈ {0, . . . , T},
ΔtG(ν − 2, s) = 0 and G(ν + T, s) = 0.

(b) G(t, s) > 0, for (t, s) ∈ {ν − 2, . . . , ν + T − 1} × {0, . . . , T}.
(c) maxt∈{ν−2,...,ν+T}G(t, s) = G(s + ν − 1, s), for s ∈ {0, . . . , T}.

We remark that y is a solution of the linear discrete fractional difference
equation, Δνy(t) + h(t+ ν − 1) = 0, t ∈ {0, . . . , T}, and satisfying (1.2), if
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and only if y : {ν − 2, . . . , ν + T} → R has the form

y(t) =

T∑
s=0

G(t, s)h(s + ν − 1), t ∈ {ν − 2, . . . , ν + T}.

In the next section, G(t, s) will play the role of the kernel of a completely
continuous summation operator.

3. Local existence of solutions

In this section, we make application of the the Leray-Schauder Nonlin-
ear Alternative [17] in obtaining local solutions of (1.1)-(1.2). In doing so,
we impose restrictions on f and restrictions on the natural number T .

Theorem 3.1. [Leray-Schauder Nonlinear Alternative]. Let (E, ‖ ·
‖) be a Banach space, K be a closed and convex subset of E, U be a
relatively open subset of K such that 0 ∈ U, and N : U → K be completely
continuous. Then, either

(i) u = Nu has a solution in U ,

or

(ii) There exist u ∈ ∂U and λ ∈ (0, 1) such that u = λNu.

For 1 < ν ≤ 2 a real number and T ≥ 3 a natural number, assume
f(x, r) : {ν − 1, ν, . . . , ν + T − 1} × R → R is continuous, and let

m := max
s∈{0,...,T}

G(s + ν − 1, s).

We now present the result of this paper.

Theorem 3.2. Assume

(A) There exist σ : {ν−1, . . . , T +ν−1} → [0,∞) and a nondecreasing
function ψ : [0,∞) → [0,∞) such that

|f(x, r)| ≤ σ(x)ψ(|r|), (x, r) ∈ {ν − 1, . . . , T + ν − 1} × R,

and

(B) There exists � > 0 such that

�

mψ(�)(T + 1)maxx∈{ν−1,...,T+ν−1} σ(x)
> 1.

Then, (1.1)-(1.2) has a solution defined on {ν − 2, . . . , T + ν}.



328 J. Henderson, J. T. Neugebauer

P r o o f. Let the Banach space E := {h : {ν − 2, . . . , T + ν} →
R | Δh(ν − 2) = h(T + ν) = 0} be equipped with the norm

‖h‖ := max
x∈{ν−2,...,T+ν}

|h(x)|.

We seek fixed points of the mapping N : E → E defined by

(Nh)(t) :=

T∑
s=0

G(t, s)f(s+ν−1, h(s+ν−1)), h ∈ E, t ∈ {ν−2, . . . , T+ν},

where G(t, s) is the Green function of Section 2. We note that u ∈ E is a
solution of (1.1)-(1.2) if and only if u is a fixed point of N.

We first show that N maps bounded sets into bounded sets. In that
direction, for r > 0, let

Br := {h ∈ E | ‖h‖ ≤ r}
be a bounded subset of E. Then, by (A), for t ∈ {ν − 2, . . . , T + ν} and
h ∈ Br,

|(Nh)(t)| ≤
T∑

s=0

G(t, s)|f(s + ν − 1, h(s + ν − 1))|

≤
T∑

s=0

G(s + ν − 1, s)|f(s+ ν − 1, h(s + ν − 1))|

≤
T∑

s=0

mσ(s + ν − 1)ψ(|h(s + ν − 1)|)

≤ m
T∑

s=0

max
x∈{ν−1,...,T+ν−1}

σ(x)ψ(r)

= mψ(r) max
x∈{ν−1,...,T+ν−1}

σ(x)(T + 1).

Hence, ‖Nh‖ ≤ mψ(r)maxx∈{ν−1,...,T+ν−1} σ(x)(T +1), and so N maps Br

into a bounded set.
Since {ν − 2, . . . , T + ν} is a discrete set, it follows immediately that

N maps Br into an equicontinuous set. Therefore, by the Arzelà-Ascoli
Theorem, N is completely continuous.

Next, we suppose h ∈ E and that for some 0 < λ < 1, h = λNh. Then,
for t ∈ {ν − 2, . . . , T + ν}, and again by (A),
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|h(t)| = |λ(Nh)(t)|

≤
T∑

s=0

G(t, s)|f(s+ ν − 1, h(s + ν − 1))|

≤
T∑

s=0

G(s+ ν − 1, s)|f(s + ν − 1, h(s + ν − 1))|

≤ m
T∑

s=0

σ(s+ ν − 1)ψ(‖h‖)

≤ m max
x∈{ν−1,...,T+ν−1}

σ(x)ψ(‖h‖)(T + 1),

which yields
‖h‖

mmaxx∈{ν−1,...,T+ν−1} σ(x)ψ(‖h‖)(T + 1)
≤ 1.

It follows from (B) that ‖h‖ 	= �. If we set

U := {h ∈ E | ‖h‖ < �},
then the operator N : U → E is completely continuous. From the choice
of U , then there is no h ∈ ∂U such that h = λNh, for some 0 < λ < 1.
It follows from Theorem 3.1 that N has a fixed point y ∈ U , which is a
desired solution of (1.1)-(1.2). �
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