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Abstract

In this paper, we consider a discrete-time fractional model of abstract
form involving the Riemann-Liouville-like difference operator. On account
of the Cy-semigroups generated by a closed linear operator A and based
on a distinguished class of sequences of operators, we show the existence
of stable solutions for the nonlinear Cauchy problem by means of fixed
point technique and the compact method. Moreover, we also establish the
Ulam-Hyers-Rassias stability of the proposed problem. Two examples are
presented to explain the main results.
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1. Introduction

Fractional calculus plays an increasingly important role in many fields
due to its applications, such as physics, biology and engineering, etc. It pro-
vides an excellent tool for modeling the memory properties of viscoelasticity
materials and the diffusion process of particles, see [111 22, 23]. Meanwhile,
the study of the fractional derivatives of differential equations is still a hot
topic and there are many interesting results for the qualitative analysis, see
the monographs [12, 17, 20] and the papers [8], [I3] and reference therein.
Compared with the continuous fractional differential models, some scholars
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found that the discrete time fractional differential equations (or called frac-
tional difference equations) can still capture certain hidden aspects of real
world phenomena with memory effects, further it will appear some new in-
teresting properties which are different from the continuous case. Cermék,
Gyori and Nechvatal [4] investigated the stability behaviors of discrete frac-
tional systems. Wu and Baleanu [I8] [19] considered the discrete fractional
logistic map and its chaos whose point out there some new degrees of free-
dom in discrete fractional models. Abadias and Mianab [2] generalized the
algebraic structure of Cesaro sums in the discrete fractional operators set-
ting, several subjects of interest in harmonic and functional analysis are
displayed. Goodrich and Lizama [9] showed the positivity, monotonicity,
and convexity of functions under a different definition for fractional delta
operator (see Definition [2.2]) which can be derived by a transference prin-
ciple from known fractional difference operators [3].

In this paper, we study the following nonlinear abstract fractional dif-
ference equations

A%u(n) = Au(n + 1) + f(n,u(n)), n € No,

w(0) = up, (1.1)
where A® is the Riemann-Liouville-like fractional difference operator of
order 0 < a <1, f: Ng — X, A is the infinitesimal generator of a bounded
Co-semigroup {7'(t)}+>0 with domain D(A) defined on a Banach space X,
No = {0,1,2,...}. It is important to remark that such problem has been
studied in [I5] with A bounded. When f = 0 in (1)), [I4] considered
the existence and stability for abstract difference equations with Caputo-
like fractional difference operator by means of operator theory. Also in
[10], the authors derived a structure of the solutions for the inhomogenous
Cauchy problem of abstract fractional difference equations (LI]) and further
investigated the existence results to the proposed problem.

To the best of our knowledge, there are few papers dealing with the anal-
ysis of existence for the discrete time abstract fractional differential equa-
tions, especially the Ulam-Hyers-Rassias stability study of problem (L))
has not yet been investigated. However, there are some studies involving
the fractional difference operators of Riemann-Liouville and /or Caputo-like,
which focus on the stability results of Ulam-Hyers and Ulam-Hyers-Rassias
in finite interval of discrete points, Chen and Zhou [7] considered the Ulam-
Hyers stability of solutions for a discrete fractional boundary value problem,
Chen, Bohner and Jia [5] studied the Ulam-Hyers stability of a initial value
problem of Caputo-like fractional difference equations. Obviously, it’s not
a very captivating situation that it does not take the whole values on infi-
nite interval of discrete points, for this purpose, we will consider the case
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of whole values on N in the current paper. It should be noted that the
Ulam-Hyers stability may not exist on N of problem (1) due to the fact

that the series 372 k(j) = >°7, % is divergent for o > 0.

This paper is organized as follows: In Section B, we introduce some
important preliminary definitions and results. In Section [8] we consider
a nonlinear discrete time abstract fractional differential equation modeled
as (LI)), by using a different argument involving the compactness of the
semigroup 7T'(t) associated with f satisfying growth type condition in the
second variable, we obtain an existence criterion of stable solutions. In
Section [, the Ulam-Hyers-Rassias stability is also established.

2. Preliminaries

Let Ny = N and Nyo = NU {0}. Let X be a Banach space with norm
I ||, B(X) stands for the space of bounded linear operators from X into X
with the norm || - || := || - ||3(x). We also consider the essentially bounded
vector-valued Banach space of sequences [°°(Np; X'), which is defined by
I°°(Np; X)) := {u: No = X, sup [Ju(n)] < oo},
n€Ng
endowed with the norm |[uc = sup,ey, [u(n)|. Additionally, for a > 0,

let I'(-) denote the Euler Gamma function, we consider a scalar sequence
{ka(n)}nENo defined by

apy . LTn+a)
H0) =t 0

One can check that k% possesses the semigroup property

n € Npy.

(k* « k%) (n Zko‘n DEP(G) = kP (n), neNy, a>0, >0,

where * denotes the finite convolution. It is easy to see that for all n € Ny
and for any a € (0, 1], k*(n) € (0, 1] and k%(n) is a non-increasing sequence.
By virtue of [21, pp.77 (1.18)] we also have

k% (n) = fga; <1+0< >> neN, a>0. (2.1)

Now, let us recall some definitions and properties of fractional differ-
ence/sum operators introduced by Lizama in [I4]. These definitions were
based on a transference principle which is applied to convert the definitions
by Atici and Eloe [3], allowing the use of cleaner, simpler and transparent
algebraic manipulations, [9].

DEFINITION 2.1. Let a > 0, the a-th order fractional sum operator is
defined by
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n

A™%u(n) =Y k*(n—ju(j), n € N.
j=0

DEFINITION 2.2. Let a € (0,1], the a-th order fractional difference
operator (in the sense of Riemann-Liouville-like) is defined by

A%(n) :== Ao A~1"Yy(n), n e Ny,
where A denotes the forward Euler operator by Au(n) := u(n+ 1) —u(n),
n € Np.

Our basic assumption is that the operator A in (L)) is the infinitesimal
generator of a bounded Cp-semigroup {7'(t)}+>0, which means that there
exists a constant M > 1 such that M = supc o) | T'()|l5 < oc. Tt is well
known from [16, pp.19, Theorem 5.2(i)] that A is closed and the domain
D(A) of operator A is dense in X. The norm of D(A) is given by a graph
norm defined as ||z]|4 = ||z]| + || Az for any = € D(A). Next, we introduce
the following notion of a-resolvent sequence that is an important tool to
deal with abstract fractional difference equations.

DEFINITION 2.3. Let a > 0 and let A be a closed linear operator with
domain D(A) defined on a Banach space X. An operator-valued sequence
{Sa(n)}nen, C B(X) is called an a-resolvent sequence generated by A if it
satisfies the following conditions:

(i) Sa(n)xr € D(A) and ASy(n)r = Sa(n)Az, for all n € Ny and

x € D(A);
(ii)) Sa(n)z = k*(n)x + A(k“ % Su)(n)x, for all n € Ny and = € X.

The main properties of a-resolvent sequences are contained in the fol-
lowing results.

LeEmMA 2.1. ([1]) Let p(A) be the resolvent set of operator A and let
{Sa(n)}nen, be an a-resolvent sequence generated by A. Then

(i) 1 € p(A), and for all z € X we have that S,(0)x = (I — A)lz.
(ii) For all * € X we have that S,(0)x € D(A) and S,(n)r € D(A?)
for all n € N.

We next get a strong relationship between Cp-semigroup in the setting
of fractional version and a-resolvent sequence, one can find that the Pois-
son distribution also acts as a bridge between the discrete and continuous
theories; for more details see [9] [14].
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Lemma 2.2, ([I0]) Let 0 < o < 1 and let A be the generator of a
bounded Cy-semigroup {T'(t)}+>0 defined on a Banach space X. Then, A
generates an a-resolvent sequence {Sq(n)}nen, given by

Sa(n)r = /0 /0 Pn(t) fs,a(t)T(s)xdsdt, n €Ny, € X. (2.2)

where py,(t) := e"'t"/n! (n € Ny, t > 0) is the Poisson distribution and
function f, s(t) denotes the stable Lévy process given by
1 o+1i00

fs.alt) —/ e dz, 0>0,s>0,t>0 0<a<l,
g

210 Jo_ioo

in which the branch of z® is taken such that Re(z“) > 0 for Re(z) > 0.

It is mentioned that the stable Lévy process has the properties (i)
foad) > 0, A > 0,5 >0, a e (0,1); (ii) / Foa(t)ds = t*/T(a),
0
t > 0; and (iii) for all ¢ > 0, A € C, we have

/ e foat)ds = t* T E, o (—AtY),
0

where E, o(-) is the Mittag-Leffler function defined by

n

= z
Eqa = T N\ C.
al(?) nz::OF(om—Fa) Z€

Lemma 2.3, ([I0]) Let 0 < o < 1 and let A be the generator of a
bounded Cy-semigroup {T(t)}+>o defined on a Banach space X. Then,
|Sa(n)x|| < ME*(n)||lz||, forn e Ny, ze X.
Furthermore, if A is the generator of a compact Cy-semigroup {T(t)}+0-

Then, A generates a compact a-resolvent sequence {Sq(n)}nen,-

REMARK 2.1. Noting that if X is a finite dimension space, we see that
the semigroup T'(t) can be rewritten by e, and if A is the generator of a
Co-semigroup {e};>¢ with respect to ||Al|sz < 1. Then, A generates an
a-resolvent sequence if and only if {S,(n)}nen, is given by

Sa(n) =Y AT kT (n).
j=0
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In fact, by the properties of stable Lévy process (iii) and Mittag-Leffler
functions, we get for n € Ny

/ / Palt) fora(t)eM dsdt / PO B o (AE)dt
o Jo 0
=Y AEMT(p).
j=0
Conversely, it is easy to check that S,(n) satisfies the Definition 2.3] for
every n € Ny.

3. Existence of stable solutions

In this section, we study the existence of stable solutions for the non-
linear discrete time abstract fractional differential equation (ILI]). For this
purpose, we introduce the next definition of solutions, which can be seen
in [10].

DEFINITION 3.1. Let 0 < @ < 1 and A be the generator of an a-
resolvent sequence {Sq(n)}nen,. We say that u € [*°(Ny; D(A)) is a solu-
tion of (L)) if w satisfies u(0) = ug € D(A) and

n—1
u(n) = Sa(n)(I = Ayug+ > Sa(n—1—j)f(j,u(f)), neN.

J=0

According to Lemma[2.2] this definition is consistent with true solutions
of (LI). From Lemma 2.1] it follows that S,(n)x € D(A) for all z € X,
n € Ny and u(n) € D(A) for all n € Ny. In order to use the Schauder fixed
point theorem, we need the next compactness result.

LEMMA 3.1. Let U C I*°(N; X) satisfy

(a) The set H,(U) = {u(n) : u € U} is relatively compact in X, for
all n € N.

(b) lim sup |lu(n)|| = 0, that is, for each € > 0, there is a N > 0 such

n—oo wel
that ||u(n)|| < e, for each n > N and for all u € U.

Then U is relatively compact in {*°(N; X).

Proof Let {un}_; be a sequence in U, then by (a), for any given
n € N, there exists a convergent subsequence {u,, }?°; C {un}5_; such
that limg_ o0 tum, (n) = u(n), ie., for each € > 0, there exists a constant
N* = N*(n,e) > 0, such that
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|tmy (n) —u(n)|| <e, fork>N*

From the assumption (b), for each € > 0, there exists a constant N’ > 0,
such that for n > N’

510 i, ()= oy (] < 510 i, ()] + 55y 0]
n>N’ >N’ n>N'
<eg/2+4+¢e/2=¢.
Let N’ be fixed. For each 1 < n < N’, then for j,k > N = N(N',¢),
we have

sup [, (1) = i, ()
1<n<N’
< sup ||um, (n) —u(n)|| + sup ||um, (n) —u(n)||
1<n<N 1<n<N/
<e/2+4¢/2=¢.

Therefore, one has |[tum, — Um;llcc < €. This means that {um,};2, is a
Cauchy subsequence in [*°(N; X). We thus derive that {u,, }3>, has a
convergence element u € [°°(N; X), which implies that U is relatively com-
pact in [*°(N; X). O

For a given function f : Ng x X — X, the Nemytskii operator Ny :
[°(N; X) — [°°(N; X) (with f restricted to N) is defined by

Ng(u)(n) := f(n,u(n)), neN.

In order to obtain our main result, we will need the following assump-
tions:

(H1) A is the generator of a compact Cp-semigroup {T'(t)}s~0 and a-
resolvent sequence defined in ([2.2]) for 0 < oo < 1.

(H2) There exist constant Ly > 0 and a positive sequence a(-) € I°°(No)
such that |a(n)] < Lyk'™#(n) (0 < a < B < 1) and function
If(n,x)|| < a(n)|z], for all n € Ny and x € X.

(H3) The Nemytskii operator Ny is continuous in [*°(N; X).

We mention that a vector-valued sequence u € [°°(Np, X) is said to be
stable if ||u(n)|| = 0, as n — oo. Obviously, f is stable for any = € X
according to (H2) and the approximate behavior of a(n) — 0 as n — oo in
view of (2.I)). Now, we get the following main result.

THEOREM 3.1. Assume that operator A satisfies (H1) and f satisfies
(H2)-(H3). Then, the problem (I1) with ug € D(A) has at least one stable
solution.
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P roof. Let us define the map P : [**(No; D(A)) — [*°(Np; D(A)) as
follows
n—1
(Pu)(n) := Sa(n)(I — Ayug + Y _ Sa(n—1—4)f(j,u(4)), n €N,
5=0
and (Pu)(0) = ug. We first show that P is well defined. In fact, let u €
1>°(No; D(A)) be given, it follows from (H2) that

n—1
I(Pu) ()| <[[Sa(n)(I = A)uoll + D 1Saln =1 = )£ (G, u(5))ll
7=0
n—1
<MK (n)|(I = AJuoll + MLy Yk (n =1~ ja(i)u(i)l;
7=0

additionally, in view of Lemma 2.3 and observing that 1+« — 5 € (0, 1]
for 0 < a < B < 1, using the semigroup relationship (k® * k'=%)(n — 1) =
E'*e=B(n — 1) for each n € N we obtain
n—1
I(Pu) ()| <ME*(n)|[(I = A)uoll + MLs Y k*(n = 1= 5K P (j)][u()]
=0
<2Mk*(n)||uolla + MLglullock™ = (n — 1)
<2M [uoll4 + M Ly |[ulloo,
where we also use the fact that 0 < k%(n) < k°(0) = 1 owing to the
nonincreasing property of k°(n) for each 0 < s < 1 and n € N. This
proves that P is well defined. Now, we show that P is continuous. Let

{um }50_; € 1°°(Np; D(A)) be a sequence such that w,, — u as m — oo in
the norm topology of [°°(Ny; D(A)). First, we have

1 Gy um (7)) = f (G wGD < MIg([umlloo + llulloo) =7 (),

and using the semigroup property of k*(n) for all n € Ny, we get

n—1

(P ) (n) = (Pu)(n)l| <MY~ k*(n = 1= §)I| £ (o um (7)) = f (G u(i)]

j=0
<ML (|[tmlloo + [|ulloc)e TP (n — 1)
<MLy ([lumlloc + [lulloc)-

Therefore, for all n € N, be virtue of the property of series, it is easy to
check that

[(Pum)(n) = (Pu)(n)|| < MAT*[(Ny(um) — Ny (u))(n = 1] = 0,
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as m — oo, which implies that |Puy, — Pullec — 0 as m — oo. Therefore
P is continuous.

Since T'(t) is compact for ¢ > 0, then from Lemma 2.3] we know that
the sequence of operators {S,(n)}nen, is compact. Let » > 0 be given. We
define a set by

Sy i={wel®(N;D(A4)) : ||w|loo <7}
Clearly, S, is a bounded, closed and convex subset of {*°(N; D(A)). In view
of (H2), we can deduce that P maps S, into itself. Thus, it remains to
show that P is a compact operator.

In order to prove that U := PS, is relatively compact, we will use
Lemma 311 We check that the conditions in this lemma are satisfied, and
now we check that U satisfies all the assumptions:

(a) Let v = Pu for any u € S,. We have

n—1
v (n) = (Pfu)(n) =Y S5()f(n—1—juln—1-j), n€N,
=0
where

Se(j)x = /000 /oo D (t) fs,a(t)T(s)x dsdt
—T() /0 - / (O fea(t)T(s — ) dsdt, w € X,

where we use the semigroup property of 7'(¢). Hence, it remains to prove
that (Q x f)(n — 1) is bounded, where

Q(j)z = /OOO /OO pi(t) fo.a(t)T(s — &)z dsdt.

In fact, noting that from the properties of stable Lévy process (ii), we have
the following identity

|| msaattdsie = 12G), e o
0 0

it is easy to check

nf Q(j)f(n—1— j.u(n — 1))
j=0

n—1 .00 proo
< i () fsaOIT(s —e)f(n—1—j,u(n —1—j))| dsdt
;}/0 /6 P 3 j j

n—1
<ML; > k()" P (n—1—j)r < MLyr.
=0
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For any fixed 7 € N and for all n > 7 + 1, since

n—1
S EGE TP (n—1—-j) < kTP - 1),
j=n

e o (7))

for n large enough, it follows that for any § > 0 there is n, € N large
enough such that n, +1 < n with n large enough and

and by (2.1)) we have

k1+°‘_5(n —-1)=

n—1
S EGE TP n—1-4) <
J=nsx

QAfoT‘

Therefore, one has

n—1

> (Sali) = SEW)f(n =1 = jou(n = 1= )|

J=n
n—1

<2MLg Y Kk (n =1 = j)llutn — 1= )| <.
J=ns
For all n € N, by the proof of [I0, Corollary 3.2.], we know ||(Sa(n) —
Se(n))x|| < e for all n € Ny and for z € X. Hence, we get

nyx—1

D 1Sals) = Sa(G)f(n =1 = jyuln = 1= §))|| < MLsren..
j=0

Together the above arguments, we see that

nx—1

lo(n) = v ()l < Y 1(Sali) = Sa))f(n =1 ju(n — 1= 5))|
5=0

n—1
+ > 1Sali) = Sa@)f(n— 1= Gun —1—5)|

J=nx
<MLjgren, + 6.
For the arbitrariness of d, it yields that ||v(n) —v*(n)|| = 0 as ¢ — 0. We
thus conclude that the set H,(U) is relatively compact in X for all n € N.
(b) Let u € S, and v = Pu. For each n € N we have
n—1

lo(m)| <MLy > k*(n—1— )k P (G)u()]
§=0



STABILITY ANALYSIS FOR DISCRETE TIME ... 317

<SMLyullock® P (n — 1),

which implies that lim,,_,« [|v(n)|| = 0 independently of v € S,. Therefore,
U = PS, is relatively compact in [*°(N; D(A)) from Lemma [3.1, and by
applying the continuity of operator P, we conclude that P is a completely
continuous operator. Thus, the Schauder’s fixed point theorem shows that
P has at least one fixed point u € [*°(Ng; D(A)).

Additionally, let u* be a solution of problem (Il in [°°(Ny; D(A)),
which means that there is a constant C' > 0 such that ||u*||cc < C and

n—1

u*(n) = Sa(n)(I — A)ug + ZSa(n —1-5f0U,u"(y)), neN,
§=0

moreover, in view of (2.I]) we have

n—1

[ ()| <[1Sa(n)(I = A)uoll + > 1Saln =1 = ) f(j,u"(7)]
j=0
n—1
<SMEC(n)II(I = Ayuoll + MLy Y k*(n— 1= k' =P (G)llu* ()]
7=0

<2ME*(n)||uplla + MLfC’k:HO‘_fB(n -1)
— 0, asn — oo.

Thus, u* is a stable solution. The proof is completed. O

REMARK 3.1. Theorem B.1] shows that it is not necessary to use the
Lipschitz condition to establish the existence for problem (L.1J), and this is
a general result of the paper [10].

EXAMPLE 3.1. Let Q = [0,7] and X = L?(Q2). We consider the
following discrete abstract Cauchy problem

d2
A%u(n,z) = @u(n +1,2) + k' P()u(n,z), neNy, zeQ,

u(n,0) = u(n,7) =0, n € Ny, (3.1)

u(0,2) =0, z € Q,
where A® is the Riemann-Liouville-like fractional difference operator of

order 0 < a < B < 1.
Let us consider the operator A : D(A) C X — X defined by

DA)={veX: v, v eX, v)=uv(r)=0}, Av=1".
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Clearly A is closed densely defined in X and it is well known that A gener-
ates a compact, uniformly bounded and analytic Cyp-semigroup {7'(¢)}¢o-
Furthermore, A has a discrete spectrum with eigenvalues of the form —m?,
m € N, and corresponding normalized eigenfunctions given by ¢,,(z) =
V/2/msin(mz). In addition, {¢., }men is an orthogonal basis for X, and

u—Ze Yy dm)pm,  u € D(A).

Hence, by applying Lemmasm we get the discrete compact a-resolvent
family {Sa(n)}nen, as follows

n)u = Z_:lfo P (Ot By o (—m2t®)dt(, dum) .-

Let
Sm(n) = / ()t Ey o (—m?t®)dt,
0

since the inequalities |Eq o(—m*t®)| < 1/T'(a) for all m € N, ¢t € R, and
|Sm(n)| < k%(n) for n € Ny, it follows that S,,(n) tend to zero as n — oo
for all m € N. Thus, we have

u—zs ) (W, bm)dm; 1 € No.

Therefore, let f(n,u(n)) = kl_ﬁ(n)u(n), the problem (B.I) possesses a
stable solution by Theorem B.1] and its expression form is given by

co n—1

Zzsmn_l_] )G uld))s dm)Pm, n € N.
m=1 j=0
4. Ulam-Hyers-Rassias stability results

In this section, we obtain the Ulam-Hyers-Rassias stability for problem
(LI). We now introduce the following adaptation definition of Ulam-Hyers-
Rassias stability for the discrete form of fractional differential equation.

DEFINITION 4.1. If u(n) satisfies
[A%u(n) — Au(n +1) = f(n,u(n))|| <9(n), neNo,  (41)

where J(n) > 0 for all n € Ny, and there exist a solution v(n) of the problem
(LI) and a constant C' > 0 independent of u(n) and v(n) with

[u(n) —v(n)|| < CI(n), n €N,
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for all n € Ny, then problem (L)) is called the Ulam-Hyers-Rassias stability.
In particular, if ¥(n) is substituted for a constant in the above inequalities,
then problem (L.I]) is called the Ulam-Hyers stability.

REMARK 4.1.  Obviously, v solves (4I]) if and only if there exists
g : Ng = X satisfying
lg()l < 9(n), n e No.
such that

A%(n) = Av(n 4+ 1) + f(n,v(n)) + g(n), n € Ny.

Furthermore, if v € [°°(Ny, X) is a solution of inequality (Z.I]), there
exists a constant C' > 0 such that v is a solution of the following inequality

o)~ Satyz Z (n=1= G0 0)|

n—1
<C ) [ISa(n—1=j)[BY0).
7=0

REMARK 4.2. It is hard to get the Ulam-Hyers stability of problem
(LI), because if we substitute the sequence ¥(n) for a constant, then from
Remark A1, we see that

Hv(n)—Sa( (L ZS (n—1-9)f H<CZI<:°‘

in which » 22 k*(j) is dlvergent according to the Raabe’s discriminant,
hence the above inequality does not make sense and we can not find a
suitable stability in the sense of Ulam-Hyers.

(H4) there exists a nonnegative sequence L(n), such that
1f(n,x) = f(n, )| < L(n)llz — yl, for any z,y € X, n € Ny,
with respect to series ) > L(j) convergence absolutely.
THEOREM 4.1. Assume that (H4) holds. Let 9(n) : Ng — Ry be an
increasing sequence such that Z;:ol 9(7) <9(n) and let u € 1°°(Ng, D(A))

be a solution of inequality (4.1)), then problem (L)) is Ulam-Hyers-Rassias
stable.
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Proof. Let v € {*(Np,D(A)) be a solution of inequality (41]). B
Remark 1] from the property of 0 < k%(n) <1 for a € (0,1), n € Ny, we
have

n—1
o) = ) = 4)0(0) = 3" Satn = 1= f(,0())|
=0
n—1
<Y 18a(n =1 = )lld()
7=0
n—1

Let us denote by u € {°°(Np, D(A)) the unique solution of the Cauchy
problem

A%u(n) = Au(n+1) + f(n,u(n)), n € Ny;
{u(O) =v(0).
The solution u of above equation satisfies
u(n) = Sa(n)(I — A)v(0) 4+ (Sa * f)(n — 1,u(n — 1)),
therefore, it follows that

[u(n) = v(n)[| <MD (n +ZIIS (n =1 =)0 u@) = FGvE)I
<Md(n +Zkan—1—3 L)) = v()l

<Md(n +ZL Mu(G) = v()]-

On the other hand, let b(n) = |lu(n) — v(n)|], from 0 < b(n) < a(n) +
Z;:& L(j)b(j) with respect to a increasing sequence a(n) for all n € Ny,
we get

n—1
n) < a(n H1+L<j)>, ne{2,3, -} =N,
In fact, in view of b(0) = 0 e have for n = 1 that b(1) < a(1); for n = 2,

we get that b(2) <a(2)+a(1)L(1) < a(2)(1+ L(1)). Assume that it is true
for some n =k € N2 Let n =k + 1, then the induction implies

b(k+1) < +ZL
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k j—1

<a(k) + Z L(7)a(7) H(l + L(#)) + L(1)b(1)

k—1
<a(k) |1+ L) + L) [JA+LG) + -+ Lk) [TA+ L(G)) |
i j=1 j=1

which implies the desired inequality. Since » 22, L(j) is convergent ab-
solutely, it follows that J[;Z,(1 + L(j)) is convergent absolutely and then
there exists a constant M, > 0 such that

[Ta+1z0) < M.
j=1
Thus, let a(n) = MY(n), there exists a constant C' := M M, > 0 such that

|lu(n) —v(n)|| < CY¥(n), n e Np.

Therefore, we conclude the desired result. The proof is completed. O

ExXAMPLE 4.1. For any 0 < A < 1 and 0 < o < 1, let us consider the

following fractional difference equation
A%u(n) = =du(n + 1) + vg(n)sin(u(n)), n € Ny, (4.2)
where g(n) is a bounded sequence on [*°(Ng) with n?|g(n)| < 1, parameter
v > 0. Clearly, A > 0 is the generator of the exponentially bounded Cjy-
semigroup T'(t) = e * for t > 0. Hence, (H1) holds. Let f(n,u) =
vg(n)sin(u), it is easy to check the condition (H4) and if ¥(n) = 2" for all
n € Ny and the inequality
[A%u(n) = Au(n +1) = f(n,u(n))|| <9(n), n e N,

holds, then (4.2)) is the Ulam-Hyers-Rassias stable by Theorem .11
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