
RESEARCH PAPER

MONTE CARLO ESTIMATION OF THE SOLUTION OF

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

Vassili Kolokoltsov 1, Feng Lin 2, Aleksandar Mijatović 3

Abstract

The paper is devoted to the numerical solutions of fractional PDEs
based on its probabilistic interpretation, that is, we construct approximate
solutions via certain Monte Carlo simulations. The main results represent
the upper bound of errors between the exact solution and the Monte Carlo
approximation, the estimate of the fluctuation via the appropriate central
limit theorem (CLT) and the construction of confidence intervals. More-
over, we provide rates of convergence in the CLT via Berry-Esseen type
bounds. Concrete numerical computations and illustrations are included.
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1. Introduction

The study of fractional partial differential equations (FPDEs) is a very
popular topic of modern research due to their ubiquitous application in
natural sciences. In particular, there is an immense amount of literature
devoted to numerical solution of FPDEs. However most of them exploit
the various kinds of deterministic algorithms (lattice approximation, finite
element methods, etc), see e.g. [1, 2, 3, 17] and numerous references therein.
However, there are only few papers based on probabilistic methods. For
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instance, [16] exploits the CTRW (continuous time random walk) approxi-
mation for solutions to FPDEs, and [12] is based on the exact probabilistic
representation.

CTRW approximation to the solutions of FPDEs was developed by
physicists more than half a century ago and it became one of the basic
stimulus to the modern development of fractional calculus. Exact proba-
bilistic representation appeared a bit later first for fractional equations and
then for generalized fractional (e.g. mixed fractional), see e.g. [10, 11, 8, 13]
for various versions of this representation. There are now many books with
detailed presentation of the basics of fractional calculus, see e.g. [9, 13, 7].

The paper is devoted to the numerical solutions of fractional PDEs
based on its probabilistic representation with the main new point being
the detailed discussion of the convergence rates. Namely, the main results
represent the upper bound of errors between the exact solution and the
Monte Carlo approximation, the estimate of the fluctuation via the appro-
priate central limit theorem and the construction of confidence intervals.
Concrete numerical computations and illustrations are included.

We denote C∞
(
R
d
)
:= {f : Rd → R is continuous and vanishes at

infinity}. Let g ∈ C∞
(
R
d
)
, consider the problem

(−tDa +Ax) u (t, x) = −g (x) , (t, x) ∈ (a, b]× R
d,

u (a, x) = φ (x) , x ∈ R
d,

(1.1)

where Ax is a generator of a Feller semigroup on C∞
(
R
d
)
acting on x,

φ ∈ Dom (Ax), the operator −tDa is a genetalised differential operator of
Caputo type of order less than 1 acting on the time variable t ∈ [a, b].

The solution u ∈ C∞
(
(−∞, b]× R

d
)
of the problem (1.1) exsits and is

given by [4]. u has the stochasitc representation (see [4] Equation (4) and
Theorem 4.20),

u (t, x) = E

[
φ
(
Xx

Tt

)
+

∫ Tt

0
g (Xx

s ) ds

]
, (1.2)

where {Xx
s }s�0 is the stochastic process started at x ∈ R

d generated by

Ax. Let {Y a,t
s }s�0 be the decreasing [a, b]-valued stochastic process started

at t ∈ [a, b] generated by −tDa, Tt = inf{s > 0, Y a,t
s < a}. In this paper,

we assume {Y a,t
s } is a decreasing α-stable Levy process started at t, i.e.

Y a,t
s

d
= t − s1/αη, where η is a random variable with α-stable distribution

whose Laplace transform is E[e−zη] = e−zα/ cos(πα/2)( and we denote this by
η ∼ Sα(1, 1, 0)).

Remark 1.1. Given a Levy measure ν on R+ satisfying∫ ∞

0
min{1, r}ν(dr) <∞,
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the operator −tDa is defined by

−tDaf(s) :=

∫ s−a

0
(f(s− r)− f(s))ν(dr)− (f(a)− f(s))

∫ ∞

s−a
ν(dr),

t ∈ (a, b].

When {Xx
s }s�0 is Brownian motion, then Ax would be 1

2Δ, where Δ =∑d
i=1

(
∂
∂xi

)2
. If {Y a,t

s } is the deterministic drift, i.e. −tDa = − d
dt and

g = 0, then (1.1) becomes

1

2
Δu (t, x) =

d

dt
u (t, x) , (1.3)

the heat equation that we are more familiar with.

We assume {Xx
s }s�0 is isotropic β-stable.(What ‘isotropic’ means is

explained in Section 2, after Lemma 2.1) In this paper we shall investigate
some properties of the representation (1.2) and its Monte-Carlo estimator,
i.e.

uhN (t, x) =
1

N

N∑
k=1

⎛
⎝φ(Xx,k

T k
t

)
+

�T k
t /h�∑
i=1

hg
(
Xx,k

tki

)⎞⎠ , (1.4)

where h > 0 is the step length, T k
t are iid samples of Tt, and t

k
i = (i− 1) h.

Note that we can sample the stopping time Tt (see Lemma 2.1 below),
then sample the isotropic β-stable process {Xx

s } and finally simulate the
estimator (1.4).

In Section 2 we mainly focus on the situation when g = 0, i.e. the
estimator now is

uN (t, x) =
1

N

N∑
k=1

φ
(
Xx,k

T k
t

)
. (1.5)

To make central limit theorem and Berry-Esseen bound hold, we only
need to estimate the tail of the stable process at some stopping time, i.e.
P
[|Xx

Tt
| > s

]
for large s. And we begin with showing that the order of

the tail of multidimentional stable distribution has the same order of the
tail of each component of itself. In Section 3 we study the property of
the Monte-Carlo estimator when the forcing term g �= 0. We estimate the
upper bound of the second moment of the estimator and then, the L2 error
between the estimator and the solution. Besides, we use there properties
to show that the central limit theorem holds using the triangular arrays.
In Section 4 we give numerical examples, demonstrating the performance
of our simulation algorithm.
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2. Properties of the estimator when the forcing term g=0

In this paper, for function f, g : Rd → R, we use the notation f (x) =

O (g (x)), meaning that |f(x)g(x) | is bounded as |x| → ∞. Also we use the

notation f(x) ∼ g(x), meaning that both |f(x)g(x) | and | g(x)f(x) | are bounded as

|x| → ∞.

In this section, we study the situation when g (x) = 0 for all x ∈ R
d,

then the stochastic representation (1.2) becomes

u (t, x) = E
[
φ
(
Xx

Tt

)]
(2.1)

and the estimator now is defined in (1.5).

Our main results tell us how close uN (t, x) and u (t, x) are, namely:

Theorem 2.1. (i) For all continuous function φ : Rd → R,

uN (t, x)
a.s.→ u (t, x) , as N → ∞. (2.2)

(ii) Let SN (t, x) =
√
N (uN (t, x)− u (t, x)) /σ (t, x) andW be the stan-

dard normal distribution. If φ (x) satisfies φ (x) = O
(
|x| β

2+δ

)
,

where δ > 0, then the central limit theorem holds, i.e. for all
bounded uniformly continuous funtion ψ,

E [ψ (SN (t, x))] → E [ψ (W )] as N → ∞.

(iii) Let Y (t, x) := φ
(
Xx

Tt

)−E
[
φ
(
Xx

Tt

)]
, denote E

[
Y (t, x)2

]
= σ (t, x)2,

E
[|Y (t, x) |3] = ρ (t, x). If φ (x) satisfies φ (x) = O

(
|x| β

3+δ

)
, where

δ > 0, then for all C3 functions ψ : R → R,

|E [ψ (SN (t, x))]− E [ψ (W )] | � 0.433||ψ′′′||∞ ρ (t, x)√
Nσ (t, x)3

.

Here C3 means the space of functions with bounded third deriva-
tives.

In other words, the central limit theorem can be written using conver-
gence in distribution:√

N (uN (t, x)− u (t, x))
d→ N

(
0, σ (t, x)2

)
as N → ∞.

Since the estimator is unbiased, Theorem 2.1(i) holds because of the
strong law of large numbers. For (ii), it is the standard central limit theorem

and we only need to show that E
[
φ
(
Xx

Tt

)2]
< ∞. For (iii), it is a version

of the Berry-Esseen bound and we need to show that E
[|φ (Xx

Tt

) |3] < ∞.
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These facts are evident if φ (x) is bounded. To deal with unbounded φ (x),
let us recall the following fact: for any random variable U ,

E
[
U2
]
=

∫ ∞

0
P
[
U2 > t

]
dt. (2.3)

It is finite if P [|U | > t] = O
(
t−(2+δ)

)
, where δ is a positive constant. Now

let us look back at our problems. Once we know the tail of Xx
Tt

and the

growth rate of φ (x), the tail of φ
(
Xx

Tt

)
would be clear as well as the

finiteness of the moments of φ
(
Xx

Tt

)
.

Luckily, we have the following result:

Proposition 2.1. Assume that {Xs}s�0 is a β stable process, then
P
[|Xx

Tt
| > u

]
= O

(
u−β

)
.

To prove Proposition 2.1, we need a little lemma telling us that the
distribution of Tt is analytically accessible:

Lemma 2.1. Denote ā := t−a, then Tt d
=
(
ā
η

)α
where η ∼ Sα (1, 1, 0).

P r o o f. Note that Y a,t
s

d
= t − s1/αη. {Tt > s} = {Y a,t

s > a}, since τ
has monotone paths. Hence

P [Tt > s] = P

[
t− s1/αη > a

]
= P

[
s

1
α η < ā

]
= P [s < (ā/η)α]

�

Together with the facts that Xx
s is β stable and Lemma 2.1, we have

Xx
Tt

− x
d
= T

1
β

t X1
d
=

(
ā

η

)α
β

X1. (2.4)

Also we need Lemma 2.2 and Lemma 2.3 given below. Before that let
us explain what ‘isotropic’ means in our assumption of {Xs}s�0.

For d-dim β-stable random variable U =
(
U(1), ..., U(d)

)
on R

d, there

are a finte measure λ on sphere S and γ in R
d such that the characteristic

function of U satisfies

Û (z) :=E[ei〈z,U〉]=exp

[
−
∫
S
|〈z, ξ〉|β

(
1−i tan

πβ

2
sgn〈z, ξ〉

)
λ (dξ)+i〈γ, z〉

]
,

for β �= 1 and vice versa. Hence each component of U is 1-dim stable
random variable and the stability index is still β. Besides, for 1-dim β-
stable random variable V whose characteristic function has form

V̂ (z) = E[eiV z] = exp(−σβ|z|(1 − iρ(signz) tan(πβ/2) + iμz),
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we use the notation V ∼ Sβ(σ, ρ, μ). We say a d-dim stable random variable
U is isotropic if its coordinates have the same distribution, i.e. U(i) ∼
Sβ(σ, ρ, μ) i = 1, ..., d. We say a process {Xs}s�0 is isotropic stable if X1 is
an isotropic stable random variable.

Lemma 2.2. Let U = (U(1), ..., U(d)) be an isotropic d-dim β-stable

random variable, and U(i) ∼ Sβ (σ, ρ, μ), then P [|U | > s] ∼ s−β as s→ ∞.

P r o o f. Since {|U | =
√
U2
(1) + ...+ U2

(d) > s} ⊃ {|U(1)| > s}, we have

P[|U | > s] � P[|U(1)| > s].

Since {|U | > s} ⊂ {max1�i�d |U(i)| > s/
√
d} ⊂ ∪d

i=1{|U(i)| > s/
√
d}, we

have

P[|U | > s] �
d∑

i=1

P[U(i) > s/
√
d].

Now recall the well known result of the tail of 1-dim stable random variable:
if V ∼ Sβ(σ, ρ, μ), then

lim
s→∞ sβP [|V | > s] = Cβσ

β , (2.5)

where Cβ =
(∫∞

0 x−β sinxdx
)−1

= 1−β
Γ(2−β) cos(πβ/2)(see [15], Property 1.2.15).

Hence for any ε > 0, there exists some M , such that for all s > M and
i = 1, ..., d,

(Cβσ
β − ε)s−β � P[|U(i)| > s] �

(
Cβσ

β + ε
)
s−β.

Hence for s >
√
dM ,

P[|U | > s] �
d∑

i=1

P[|U(i)| > s/
√
d] � d1+β/2

(
ε+ Cβσ

β
)
s−β. (2.6)

Therefore P[|X| > s] ∼ s−β as s→ ∞. �

Lemma 2.3. Let U, V be positive random variables such that

lim
t→∞ tαP[U > t] � C1, lim

t→∞ tαP[V > t] � C2,

where C1 > C2, then

P[U − V > t] = O
(
t−α

)
for t→ ∞.
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P r o o f. Given a positive number M , there exsits T and ε > 0, such
that for all t > T ,

P[U − V > t] � P[U > (M + 1) t]− P[V > Mt]

� C1 + ε

(M + 1)α
t−α − C2 − ε

Mα
t−α

� 1

Mα

(
(C1 + ε)

(
M

M + 1

)α

− (C2 − ε)

)
t−α.

If we pick M big enough, we have P[U − V > t] � Ct−α for some constant
C. On the other hand, for large t,

P[U − V > t] =

∫
V >0

P[U − v > t]P[V ∈ dv]

�
∫
V >0

P[U > t]P[V ∈ dv]

�
∫
C1t

−α
P[V ∈ dv]

� C1t
−α.

Therefore P[U − V > t] ∼ t−α as s→ ∞. �

Lemma 2.2 tells us the order of tail of high dimentional stable process.
Lemma 2.3 shows the order of the difference between certian random vari-
ables and we can apply it to the logarithm of (2.4), i.e. log |X1|+ α

β log ā−
α
β log τ1.

Now we can come back to the proof of Proposition 2.1.

P r o o f o f P r o p o s i t i o n 2.1. Now let us estimate the tail of Xx
Tt
.

For large u > 0,

P
[|Xx

Tt
| > u

]
=P

[
|
(
ā

η

)α
β

X1 + x| > u

]
� P

[(
ā

η

)α
β

|X1| > u− |x|
]

=P

[
log |X1| − α

β
log η > log (u− |x|)− α

β
log ā

]
=P[A−B > r,A > 0, B > 0] + P[A−B > r,A > 0, B < 0]+

P[A−B > r,A < 0, B < 0],
(2.7)

where A := log |X1|, B := α
β log (η), r := log (u− |x|)− α

β log ā. (Note that

for large u we have r > 0).
Let X1 = (X(1), ...,X(d)) and X(i) ∼ Sβ(σ, ρ, μ), i = 1, ..., d. By the

Proof of Lemma 2.2, for any ε > 0, there exists some M , such that for all
s > M and i = 1, ..., d,
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P[|X(i)| > s] �
(
Cβσ

β + ε
)
s−β.

Hence for s >
√
dM ,

P[|X1| > s] �
d∑

i=1

P[|X(i)| > s/
√
d] � d1+β/2

(
ε+ Cβσ

β
)
s−β,

and for t > log(
√
dM),

P[log |X1| > t] = P[|X1| > et] � d1+β/2
(
ε+Cβσ

β
)
e−βt.

Now let us discuss (2.7) in three conditions. For r > log(
√
dM):

(1) When A > 0, B > 0, we have

P[A−B > r,A > 0, B > 0] � P[A > r] = P[|X1| > es]

� d1+β/2
(
ε+ Cβσ

β
)
e−βr.

(2.8)

(2) When A > 0, B < 0, pick integer k = �r/S�, and we divide the
event {A+ (−B) > r} into k parts:

{A+ (−B) > r} =

k−1⋃
i=1

{A+ (−B) > r,−B ∈
(
i− 1

k
r,
i

k
r

]
}

⋃
{A+ (−B) > r,−B >

k − 1

k
r}

⊂
k−1⋃
i=1

{A >
k − i

k
r,−B ∈

(
i− 1

k
r,
i

k
r

]
}
⋃

{−B >
k − 1

k
r}

⊂
k⋃

i=1

{A >
k − i

k
r,−B >

i− 1

k
r}.

(2.9)
Hence,

P[A+ (−B) > r,A > 0, B < 0] �
k∑

i=1

P[A >
k − i

k
r,−B >

i− 1

k
r]

=

k∑
i=1

P[A >
k − i

k
r]P[−B >

i− 1

k
r].

(2.10)
Recall that

P[log |X1| > k − i

k
r] � d1+β/2

(
ε+ Cβσ

β
)
e−

k−i
k

βr. (2.11)
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Using the result (3.7) that we shall mention later, we have

E[η−2α] =
(
cos

(πα
2

))2 2

Γ (1 + 2α)
. (2.12)

By the Markov inequality,

P[
α

β
log

(
η−1

)
� i− 1

k
r] = P[η−1 > e

β
α

i−1
k

r] � E[τ−2α
1 ](

e
β
α

i−1
k

r
)2α � 2e−2 i−1

k
βr.

(2.13)
Combining (2.10), (2.11) and (2.13), we have

P[A+ (−B) > r,A > 0, B < 0] �
k∑

i=1

d1+β/2
(
ε+ Cβσ

β
)
e−

k−i
k

βr2e−2 i−1
k

βr

= 2d1+β/2
(
ε+ Cβσ

β
) k∑

i=1

e−
i−2
k

βre−βr

� 2d1+β/2
(
ε+ Cβσ

β
) eβr/k

1− e−βr/k
e−βr

� 2d1+β/2
(
ε+ Cβσ

β
) e2βS

eβS − 1
e−βr.

(2.14)
(3) When A < 0, B < 0, then

P[A−B > r,A < 0, B < 0] � P[A < 0,−B > r] � P[−B > r]

= P[
α

β
log

(
η−1

)
> r] = P[η−1 > e

β
α
r]

� E[η−α](
e

β
α
r
)α � e−βr.

(2.15)

Combining the three conditions above, we know that for large u,

P[|Xx
Tt
| > u] �

((
1 + 2

e2βS

eβS − 1

)
d1+β/2

(
ε+ Cβσ

β
)
+ 1

)
e−βr

= O

(
e
−β

(
log(u−|x|)−α

β
log ā

))
= O

(
u−β

)
.

(2.16)

�
Now let us finish the proof of our main result. First let us see this for

Theorem 2.1(ii).

P r o o f o f T h e o r em 2.1

P[φ
(
Xx

Tt

)
> u] = O

(
u−(2+δ)

)
, (2.17)
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and by (2.3) E
[(
φ
(
Xx

Tt

))2]
is finite. �

For the proof of Theorem 2.1(iii), E[|φ (Xx
Tt

) |3] is finite because of the
similar argument. For the rest of proof, see [14], page 356, Variant Berry-
Esseen Theorem.

Remark 2.1.
(1) If Cα < Cβσ

β , by Lemma 2.3, we have

P[A−B > r] � P[A−B > r,A > 0, B > 0] � Ct−β, (2.18)

whereC is a constant that can be chosen from the proof of Lemma 2.3.
This result means the order t−β is the best one.

(2) In the proof of Proposition 2.1 we need r = log(u − |x|) − α
β log ā

and r > log(
√
dM). Hence there exists some constant M0 such that

for u > M0, (2.16) holds and M0 has order d1/2.

Besides, we can roughly give the upper bound of E[φ
(
Xx

Tt

)2
].

Example 2.1. If φ (x) satisfies φ (x) � |x| β
δ+2 , where δ > 0, then from

Remark 2.1 we know that there exists some M0 such that for all t > M0,

P[|Xx
Tt
| > t] �

((
1 +

e2βS

eβS − 1

)
d1+β/2

(
ε+Cβσ

β
)
+ 1

)
e−βr =M (1)e−βr

=M (1)e−β log(t−|x|)−α
β
log ā �M (2)t−β,

(2.19)

whereM (1) =
(
1 + e2βS

eβS−1

)
d1+β/2

(
ε+ Cβσ

β
)
+1,M (2) = 2ā

−α
βM (1). Hence,

E[φ
(
Xx

Tt

)2
] =

∫ ∞

0
P[φ

(
Xx

Tt

)2
> t]dt �M0 +

∫ ∞

M0

P[|Xx
Tt
| > √

t
2+δ
β ]dt

�M0 +M (2)

∫ ∞

M0

√
t
2+δ
β

·(−β)
dt =M0 + 2M (2)M

−δ/2
0 /δ.

(2.20)

Note that M0 has order d1/2 and M (2) has order d1+β/2, This upper bound
has order d1+β/2.

3. Properties of the estimator when g is not 0

In this section we want to clarify the Monte-Carlo estimator of the
stochastic representation in Section 1. Here we assume that g satisfies the

condition |g (x) − g (y) | � L|x − y|γ , where |x|γ =
∑d

i=1 |x(i)|γ , x(i) is the
coordinate of x, 0 < γ < β/2.
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Our main results in this section are as follows.

Theorem 3.1. Assume |φ(x)| = O(|x| β
2+δ ) for |x| → ∞, where δ > 0.

(i) E[
(
uhN (t, x)− u (t, x)

)2
] → 0 as N → ∞, h→ 0.

(ii) (CLT with a bias correction) Let hN = N− 2β
γ , u (t, x) = EZ (t, x)

where

Z (t, x) = φ
(
Xx

Tt

)
+

∫ Tt

0
g (Xx

s ) ds,

and W be the standard normal distribution, then for all bounded
uniformly continuous function ψ,

E

[
ψ
(√

N
(
uhN
N (t, x)− u (t, x)

)
/
√
V arZ (t, x)

)]
→ E[ψ (W )] as N → ∞.

Let

Yh (t, x) = φ
(
Xx

Tt

)
+

�Tt/h�∑
i=1

hg
(
Xx

ti

)
be the approximation of Z(t, x). And let

uhN (t, x) =
1

N

N∑
k=1

Y k
h (t, x),

where Y k
h (t, x) = φ

(
Xx,k

T k
t

)
+
∑�T k

t /h�
i=1 hg

(
Xx,k

tki

)
, k = 1, ..., N . Y k

h (t, x) are

the iid copies of Yh(t, x). Note that for random variable U , let V be its
approximation and V k, k = 1, ..., N be the iid copies of V . The L2 error
satisfies

E

⎡
⎣(EU − 1

N

N∑
k=1

V k

)2
⎤
⎦ =

1

N
varV + (EU − EV )2 . (3.1)

Therefore, to estimate the L2 error E[(u (t, x)− uN (t, x))2], we only need
to study varYh(t, x) and EZ(t, x)−EYh(t, x), and the following propositions
answer these questions.

Proposition 3.1. There exists a constant M1
t,x (depending on t, x)

such that V arYh (t, x) �M1
t,x.

Proposition 3.2. There exists a constant M2
t,x (depending on t, x)

such that E[|Z (t, x)− Yh (t, x) |] �M2
t,xh

γ
β .
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Proposition 3.3. There exists a constant M3
t,x (depending on t, x)

such that E[|Z (t, x)− Yh (t, x) |2] �M3
t,xh

2γ
β .

Sections 3.1 and 3.2 give proofs of these propositions. Section 3.3 is the
proof of our CLT.

Remark 3.1.
• Non-asymptotic confidence interval: Combining (3.1), Proposition 3.1
and Proposition 3.2 we have

E[
(
u (t, x)− uhN (t, x)

)2
] � 1

N
M1

t,x +
(
M2

t,x

)2
h

2γ
β , (3.2)

where u (t, x) is the solution of problem (1.1). Now we can construct
the confidence interval using the Markov inequality:

P[|u (t, x)− uhN (t, x) | > r] � E[
(
u (t, x)− uhN (t, x)

)2
]/r2

� 1

r2

(
1

N
M1

t,x +
(
M2

t,x

)2
h

2γ
β

)
.

(3.3)

Hence we can pick suitableN and h such that P[|u (t, x)−uhN (t, x) | >
r] < 1− ε for some small ε.

• Asymptotic confidence interval: We can use CLT in Theorem 3.1 to
get the asymptotic confidence interval. In other words, the central
limit theorem can be written using convergence in distribution:

√
N
(
uhN
N (t, x)− u (t, x)

)
d→ N (0, V arZ (t, x)) as n→ ∞. (3.4)

Once we have the upper bound M (t, x) of
√
V arZ (t, x) (e.g. see

Example 2.1), it is easy to see that it yields a 100 (1− α)% asymp-

tomic confidence interval uhN
N ±M(t,x)√

N
z (α/2) for u (t, x), where z (t)

satisfies Φ (z (t)) = 1 − t and Φ is the distribution function of the
standard normal distribution. See Section 4.3 for a simple example.

Before the calculation, we need the following results (see [6], page 162):

(1) For constants c > 0, η ∈ (−1, β) and a symmetric β-stable 1-dim

process Ut with E[eizUt] = e−tc|z|β , we have

E[|Ut|η] = (tc)η/β
2ηΓ

(
1+η
2

)
Γ
(
1− η

β

)
√
πΓ

(
1− η

2

) . (3.5)

Recall that each component of X1−X0, denoted by X(j), is symmetric with

E[eizX(j) ] = e−c|z|β and c > 0.
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(2) If 0 < α < 1 and {Xt} is a stable subordinator with E[e−uXt ] =

e−tc′uα
, where c′ is some constant, then for −∞ < η < α,

E[Xη
t ] =

(
tc′
)η/α Γ

(
1− η

α

)
Γ (1− η)

. (3.6)

Since η ∼ Sα (1, 1, 0), we have E[e
−uη] = exp{− 1

cos(πα
2 )
uα} (see [15], Propo-

sition 1.2.12). Hence,

E[ηη] =

(
1

cos
(
πα
2

)
)η/α

Γ
(
1− η

α

)
Γ (1− η)

. (3.7)

3.1. Estimation of variance of the approximation. In this section we
estimate V ar(Yh).

Denote �Tt/h� by n. Note that the variance does not change when
added some constant, and denote g (Xti)− g (X0) = gi. We have

V arYh(t, x) = V ar

(
φ
(
Xx

Tt

)
+ h

n∑
i=1

g
(
Xx

ti

))

= V ar

(
φ
(
Xx

Tt

)
+ h

n∑
i=1

(
g
(
Xx

ti

)− g (X0)
))

� E

(
φ
(
Xx

Tt

)
+ h

n∑
i=1

gi

)2

� E[φ
(
Xx

Tt

)2
] + h2E[

(
n∑

i=1

gi

)2

] + 2hE[φ
(
Xx

Tt

) n∑
i=1

gi].

(3.8)

Denote the upper bound of E
[
φ (XTt)

2
]
by M1. Next,

E
[
g2i |Tt

]
� L2

E[|Xti −X0|2γ |Tt]

= L2
E[

⎛
⎝ d∑

j=1

|Xti,(j) −X0,(j)|γ
⎞
⎠

2

|Tt]

� dL2
E[

d∑
j=1

|Xti,(j) −X0,(j)|2γ |Tt]

= dL2t
2γ
β

i E[

d∑
j=1

|X1,(j) −X0,(j)|2γ ].

(3.9)
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Using the result of (3.5), for j = 1, ..., d, we have

E[|X1,(j) −X0,(j)|2γ ] = c2γ/β
22γΓ

(
1+2γ
2

)
Γ
(
1− 2γ

β

)
√
πΓ (1− γ)

. (3.10)

Let us denote

M2 :=

d∑
j=1

E[|X1,(j) −X0,(j)|2γ ] = dc2γ/β
22γΓ

(
1+2γ
2

)
Γ
(
1− 2γ

β

)
√
πΓ (1− γ)

. (3.11)

Then (3.9) becomes

E[g2i |Tt] � dL2t
2γ
β

i M2, (3.12)

and for i �= j,

E [gigj|Tt] �
(
E[g2i |Tt]E[g2j ]|Tt

) 1
2 � dL2t

γ
β

i t
γ
β

j M2. (3.13)

Therefore,

E[

(
n∑

i=1

gi

)2

|Tt] �
n∑

i=1

dL2t
2γ
β

i M2 +
∑
i 
=j

2dL2t
γ
β

i t
γ
β

j M2 = dL2M2

(
n∑

i=1

t
γ
β

i

)2

.

(3.14)
Recall that ti = ih and n = �Tt/h�, hence

n∑
i=1

t
γ
β

i = h
γ
β

n∑
i=1

i
γ
β � h

γ
β

∫ n+1

0
x

γ
β dx =

1

1 + γ
β

h
γ
β (n+ 1)

1+ γ
β

� 1

1 + γ
β

h
γ
β (Tt/h+ 1)1+

γ
β .

(3.15)

Hence

h2E[

(
n∑

i=1

gi

)2

] = h2E[E[

(
n∑

i=1

g2i

)
|Tt]] � dL2M2(

1 + α
β

)2E[(Tt + 1)
2
(
1+ γ

β

)
].

(3.16)
Note that

E[(Tt + 1)
2
(
1+ γ

β

)
] � E[(Tt + 1)3] = E[T 3

t ] + 3E[T 2
t ] + 3E[Tt] + 1. (3.17)

And by (3.7), we know that for k = 1, 2, 3,

E[T k
t ] = ākαE[η−kα] = ākα

(
cos

(πα
2

))k Γ (1 + k)

Γ (1 + kα)
, (3.18)

implying the upper bound of h2E[(
∑n

i=1 gi)
2]. By the Cauchy-Schwarz

inequality,



292 V. Kolokoltsov, F. Lin, A. Mijatović

hE[φ (XTt)

n∑
i=1

gi] �

⎛
⎝h2E[

(
n∑

i=1

gi

)2

]E[(φ (XTt))
2]

⎞
⎠

1
2

(3.19)

and hence we get the upper bound of V arYh(t, x) using (3.8):

V arYh(t, x) �E[φ (XTt)
2] +

dL2M2(
1 + α

β

)2E[(Tt + 1)
2
(
1+ γ

β

)
] + ...

+

⎛
⎜⎝E[φ (XTt)

2]
dL2M2(
1 + α

β

)2E[(Tt + 1)
2
(
1+ γ

β

)
]

⎞
⎟⎠

1
2

.

(3.20)

Remark 3.2. By Example 2.1, we know the upper bound of E[φ (XTt)
2]

has order d1+
β
2 . By (3.11), M2 has order d. By (3.16), the upper bound of

h2E[(
∑n

i=1 gi)
2] has order d2. Hence the upper bound of V arYh has order

d2.

3.2. Estimation of EZ-EY. Similarly, we begin with the estimation the
conditional expectation.

Conditioning on Tt, we write

E[Z(t, x)]− E[Yh(t, x)|Tt]

=E

⎡
⎣
⎛
⎝φ (XTt) +

∫ Tt

0
g (Xs) ds−

⎛
⎝φ (XTt) +

�Tt/h�∑
i=1

hg (Xti)

⎞
⎠
⎞
⎠ |Tt

⎤
⎦

=E

⎡
⎣∫ Tt

0
g (Xs) ds−

�Tt/h�∑
i=1

hg (Xti) |Tt
⎤
⎦

=E

⎡
⎣
⎛
⎝�Tt/h�∑

i=1

∫ ti+h

ti

(g (Xs)− g (Xti)) ds+

∫ Tt

�Tt/h�h
g (Xs) ds

⎞
⎠ |Tt

⎤
⎦ .
(3.21)

We have



MONTE CARLO ESTIMATION OF THE SOLUTION OF . . . 293

E[|
�Tt/h�∑
i=1

∫ ti+h

ti

(g (Xs)− g (Xti)) ds|
∣∣Tt]

�E[

�Tt/h�∑
i=1

∫ ti+h

ti

L|Xs −Xti |γds
∣∣Tt]

(stationarity of increments) =E[

�Tt/h�∑
i=1

∫ h

0
L|Xs −X0|γds

∣∣Tt]
=E[

�Tt/h�∑
i=1

∫ h

0
L

d∑
j=1

|Xs,(j) −X0,(j)|γds
∣∣Tt]

(Xt is β-stable) =E[�Tt/h�L
∫ h

0
s

γ
β

d∑
j=1

|X1,(j) −X0,(j)|γds|Tt]

=C0�Tt/h�h1+
γ
β � C0Tth

γ
β ,

(3.22)
where C0 =

1
1+ γ

β
L
∑d

j=1E|X1,(j) −X0,(j)|γ .
From (3.5), we know that

E[|X1,(j) −X0,(j)|γ ] = c
γ
β

2γΓ
(
1+γ
2

)
Γ
(
1− γ

β

)
√
πΓ

(
1− γ

2

) . (3.23)

Next, it is clear that

g (Xs) � g (XTt) + |g (XTt)− g (Xs) |, (3.24)
Thus

Eg (Xs) � E (g (XTt) + |g (XTt)− g (Xs) |)
� E[g (XTt) + L|XTt −Xs|γ ]
= E[g (XTt) + L (Tt − s)

γ
β |X1 −X0|],

(3.25)

and

E[

∫ Tt

�Tt/h�h
g (Xs) ds|Tt]

�E[

∫ Tt

�Tt/h�h
E[g (XTt) + EL (Tt − s)

γ
β |X1 −X0|γ ]ds|Tt]

�E[hE[g (XTt) +
1

1 + γ
β

Lh1+
γ
βE|X1 −X0|γ ]|Tt].

(3.26)

We have showed that if g (x) = O
(
x

β
1+δ

)
, where δ > 0, then
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E[g (XTt)] < M3 <∞,

with some M3.

Therefore, by (3.26),

E[E[

∫ Tt

�Tt/h�h
g (Xs) ds|Tt]] �M2h+

1

1 + γ
β

LE|X1 −X0|γh1+
γ
β . (3.27)

Combining (3.21), (3.22) and (3.27) we have

|E[Z − Y ]| = E[E[Z − Y |Tt]]

�M3h+ Ldc
γ
β

2γΓ
(
1+γ
2

)
Γ
(
1− γ

β

)
(
1 + γ

β

)√
πΓ

(
1− γ

2

)h1+ γ
β

+ Ldc
γ
β

2γΓ
(
1+γ
2

)
Γ
(
1− γ

β

)
(
1 + γ

β

)√
πΓ

(
1− γ

2

)h γ
β āα

Γ (2)

Γ (1 + α)

=O
(
h

γ
β

)
.

(3.28)

Remark 3.3. (1) With similar argument, we can see E[Z2] <∞:

Since E[φ
(
Xx

Tt

)2
] <∞, we only need E

[(∫ Tt

0 g (Xs) ds
)2]

<∞.

Like (3.21), we have

E[

(∫ Tt

0
g (Xs) ds

)2

] � E[

(∫ Tt

0
|g (Xs) |ds

)2

]

�E[

(∫ Tt

0
|g (X0) |+ |g (X0)− g (Xs) |ds

)2

]

=E[E[

(∫ Tt

0
|g (X0) |+ |g (X0)− g (Xs) |ds

)2

|Tt]]

�2E[E[

(∫ Tt

0
|g (X0) |ds

)2

|Tt] + E[

(∫ Tt

0
|g (X0)− g (Xs) |ds

)2

|Tt]].
(3.29)

Note that

E[E[

(∫ Tt

0
|g (X0) |ds

)2

|Tt]] = E[T 2
t ]|g (X0) |2 <∞, (3.30)

and
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E[

(∫ Tt

0
|g (X0)− g (Xs) |ds

)2

|Tt]

�E[

(∫ Tt

0
L|X0 −Xs|γds

)2

|Tt]

=L2
E[

1

Tt

∫ Tt

0
|X0 −Xs|2γds|Tt]

=L2 1

Tt
E[

∫ Tt

0

⎛
⎝ d∑

j=1

|X0,(j) −Xs,(j)|γ
⎞
⎠

2

ds|Tt]

�L2d
1

Tt
E[

∫ Tt

0

d∑
j=1

|X0,(j) −Xs,(j)|2γds|Tt]

�L2d
1

Tt
E[

∫ Tt

0

d∑
j=1

s
2γ
β |X0,(j) −X1,(j)|2γds|Tt]

=L2d
1

Tt

1

1 + 2γ
β

T
1+ 2γ

β

t E[

d∑
j=1

|X0,(j) −X1,(j)|2γ ].

Hence

E[E[

(∫ Tt

0
|g (X0)− g (Xs) |ds

)2

|Tt]]

�L2d
1

1 + 2γ
β

E[T
2γ
β

t ]E[
d∑

i=1

|X0,(j) −X1,(j)|2γ ] <∞.

(3.31)

Combining (3.30) and (3.31), we have

E[

(∫ Tt

0
g (Xs) ds

)2

] <∞, (3.32)

and therefore E[Z2] <∞.

(2) With the same condition, we can also show that E[|Y − Z|2] has
order h

2γ
β using similar argument:

E[|Y − Z|2]

=E

⎡
⎣
⎛
⎝�Tt/h�∑

i=1

∫ ih

(i−1)h
(g (Xs)− g

(
X(i−1)h

)
)ds+

∫ Tt

�Tt/h�h
g (Xs) ds

⎞
⎠

2⎤
⎦ .
(3.33)

And,
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E[|
∫ Tt

�Tt/h�
g (Xs) ds|2|Tt]

�E[(Tt − �Tt/h�h)
∫ Tt

�Tt/h�h
g (Xs)

2 ds]

�E[h

∫ Tt

�Tt/h�h
(g (XTt) + |g (XTt)− g (Xs) |)2 ds]

�E[2h

∫ Tt

�Tt/h�
g (XTt)

2] + 2hE[

∫ Tt

�Tt/h�h
(g (XTt)− g (Xs))

2 ds],

(3.34)

E[

∫ Tt

�Tt/h�h
(g (XTt)− g (Xs))

2 ds|Tt]

�L2
E[

∫ Tt

�Tt/h�h
|XTt −Xs|2γds|Tt]

�L2dE[

∫ Tt

�Tt/h�h

⎛
⎝ d∑

j=1

|XTt,(j) −Xs,(j)|2γ
⎞
⎠ ds|Tt]

=L2dE[

∫ Tt

�Tt/h�h
(Tt − s)

2γ
β

d∑
j=1

|X1,(j) −X0,(j)|2γds|Tt]

�L2dE[

d∑
j=1

|X1,(j) −X0,(j)|2γ
1

2γ
β + 1

h
1+ 2γ

β ,

(3.35)

E[

⎛
⎝�Tt/h�∑

i=1

∫ ih

(i−1)h
g (Xs)− g

(
X(i−1)h

)
ds

⎞
⎠

2

|Tt]

�E[�Tt/h�
�Tt/h�∑
i=1

(∫ ih

(i−1)h
g (Xs)− g

(
X(i−1)h

)
ds

)2

|Tt]

��Tt/h�L2

�Tt/h�∑
i=1

E[

(∫ ih

(i−1)h
|Xs −X(i−1)h|γds

)2

|Tt]

��Tt/h�L2

�Tt/h�∑
i=1

E[h

∫ ih

(i−1)h
|Xs −X(i−1)h|2γds|Tt]
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=�Tt/h�L2

�Tt/h�∑
i=1

E[h

∫ ih

(i−1)h

⎛
⎝ d∑

j=1

|Xs,(j) −X(i−1)h,(j)|γ
⎞
⎠

2

ds|Tt]

��Tt/h�L2

�Tt/h�∑
i=1

E[h

∫ ih

(i−1)h
d

d∑
j=1

|Xs,(j) −X(i−1)h,(j)|2γds|Tt]

=�Tt/h�2L2
E[h

∫ h

0
s

2γ
β

d∑
j=1

|X1,(j) −X0,(j)|2γds|Tt]

�T 2
t L

2
E[

d∑
j=1

|X1,(j) −X0,(j)|2γ ]h
2γ
β .

Hence E[|Y − Z|2] � M3
t,xh

2γ
β where M3

t,x is a constant that only
depends on t and x.

3.3. Proof of Central Limit Theorem with a bias correction. Recall
the definition of null array. By this we mean a triangular array of random
variables (ξnj) , 1 � j � mn, n,mn ∈ N, such that the ξnj are independent
for each n and satisfy

sup
j

E[|ξnj| ∧ 1] → 0. (3.36)

The following result is well-known (see [5], Theorem 5.15).

Theorem 3.2. Let (ξnj) be a null array of random variables, then∑mn
j=1 ξnj

d→ N (b, c) iff these conditions hold:

(i)
∑mn

j=1 P[|ξnj | > ε] → 0 for all ε > 0 as n→ ∞;

(ii)
∑mn

j=1E[ξnj; |ξnj | � 1] → b as n→ ∞, where E[X;A] = E[XIA],

(iii)
∑mn

j=1 V ar[ξnj; |ξnj| � 1] → c as n → ∞, where V ar (X;A) :=

V ar (XIA).

Again denote

Z := φ
(
Xx

Tt

)
+

∫ Tt

0
g (Xx

s ) ds,

Y k
h := φ

(
Xx

T k
t

)
+

�T k
t /h�∑
i=1

hg (Xx
ih) ,

where T k
t are independent samples of the stopping time. Now we will apply

Theorem 3.2 to prove Theorem 3.1(ii).
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P r o o f o f Th e o r em 3.1 (ii). Let ξNj = 1√
N

(
Y j
hN

− EZ
)
, j =

1, ..., N , then for any ε > 0,

P[|ξNj | > ε] = P[|Y j
hN

− EZ| >
√
Nε] �

E[|Y j
hN

− EZ|]√
Nε

�
E[|Y j

hN
− E[Y j

hN
]|] + E[|Y j

hN
− Z|]√

Nε

�
var

(
Y j
hN

) 1
2
+ E[|Y j

hN
− Z|]

√
Nε

�

√
M1

t,x +M2
t,xh

γ
β

N√
Nε

N→∞→ 0,

(3.37)
where M1

t,x,M
2
t,x are the same as above. This implies that ξNj converges

to 0 in probability uniformly in N , and therefore (ξNj) is a null array.

Denote ANj = {|Y j
hN

− EZ| � √
N} = {|ξNj | � 1}. To apply Theo-

rem 3.2, we only need to check that those three conditions hold:

(i) We need to prove that for any ε > 0,

N∑
j=1

P[|ξNj| > ε] =

N∑
j=1

P[|Y j
hN

− EZ| >
√
Nε] → 0. (3.38)

Note that

{|Y j
hN

− EZ| >
√
Nε} ⊂ {|Y j

hN
− Z| > 1

2

√
Nε} ∪ {|Z − EZ| > 1

2

√
Nε}.

Hence

P[|Y j
hN

− EZ| >
√
Nε] � P[|Y j

hN
− Z| > 1

2

√
Nε] + P[|Z − EZ| > 1

2

√
Nε],

(3.39)
N∑
j=1

P[|Y j
hN

− EZ| >
√
Nε]

�
n∑

j=1

P[|Y j
hN

− Z| > 1

2

√
Nε] +

n∑
j=1

P[|Z − EZ| > 1

2

√
Nε],

(3.40)

N∑
j=1

P[|Z − EZ| > 1

2

√
Nε] =

N∑
j=1

E[1; |Z − EZ| > 1

2

√
Nε]

�
N∑
j=1

E[
4|Z − EZ|2

Nε2
; |Z − EZ| > 1

2

√
Nε]

= E[
4|Z − EZ|2

ε2
; |Z − EZ| > 1

2

√
Nε]

N→∞→ 0,

(3.41)
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N∑
j=1

P[|Y j
hN

− Z| > 1

2

√
Nε]

�
N∑
j=1

E[|Y j
hN

− Z|]/(1
2

√
Nε) � 2

√
NM1

t,xh
γ
β

N/ε
N→∞→ 0.

(3.42)

Together with (3.41) and (3.42) we know that (3.38) holds.

(ii) We need to prove that

N∑
j=1

E[ξNj; |ξNj | � 1] =
1√
N

N∑
j=1

E[Y j
hN

−EZ;ANj] → 0 as N → ∞. (3.43)

Since

1√
N

N∑
j=1

E[Y j
hN

− EZ] =
1√
N

N∑
j=1

E[Y j
hN

− Z] � 1√
N

N∑
j=1

E[|Y j
hN

− Z|]

� 1√
N

N∑
j=1

M2
t,xh

γ
β

N → 0 as N → ∞,

(3.44)
we only need to prove

1√
N

N∑
j=1

E[Y j
hN

− EZ;AC
Nj ] → 0 as N → ∞. (3.45)

For a random variable X, we denote X+ = max{X, 0}. Then
√
N

N

N∑
j=1

E[
(
Y j
hN

− EZ
)
+
;AC

Nj ] =
√
NE[

(
Y 1
hN

− EZ
)
+
;AC

N1]

(note AC
N1 = {|Y 1

hN
− EZ| >

√
N}) � E[

(
Y 1
hN

− EZ
)2
+
;AC

N1]

� E[2
(
Y 1
hN

− Z
)2

+ 2 (Z − EZ)2 ;AC
N1].

(3.46)
By Proposition 3.3,

E[
(
Y 1
hN

− Z
)2
] �M3

t,xh
2γ
β

N → 0 as N → ∞. (3.47)

Since P[AN1] → 0 as N → ∞, we have

E[(Z − EZ)2 ;AC
N1] → 0 as N → ∞. (3.48)

Together with (3.47) and (3.48) we have
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1√
N

N∑
j=1

E[
(
Y j
hN

− EZ
)
+
;AC

Nj ] → 0. (3.49)

Similarly, denote X− := max{−X, 0}. Then,
1√
N

N∑
j=1

E[
(
Y j
hN

− EZ
)
−
;AC

Nj ] → 0. (3.50)

Combining (3.49) and (3.50) we get (3.45) holds.

(iii) We want to prove

N∑
j=1

V ar[ξNj; |ξNj | � 1] =

N∑
j=1

1

N
V ar[Y j

hN
−EZ;ANj] → var (Z) as N → ∞.

(3.51)
We have the following equality

V ar
(
Y j
hN

− EZ;ANj

)
= E[|Y j

hN
− EZ|2IANj

]−
(
E[
(
Y j
hN

− EZ
)
IANj

]
)2
.

(3.52)
Note that

1

N

N∑
j=1

(
E[
(
Y j
hN

− EZ
)
IANj

]
)2

=
1

N

N∑
j=1

(
E[
(
Y j
hN

− Z + Z − EZ
)
IANj

]
)2

� 2

N

N∑
j=1

(
E[
(
Y j
hN

− Z
)
IANj

]2 + E[(Z − EZ) IANj
]2
)
.

(3.53)

Since

E[
(
Y j
hN

− Z
)
IANj

] � E[|Y j
hN

− Z|] �M2
t,xh

γ
β

N , (3.54)

we have

1

N

N∑
j=1

E[
(
Y j
hN

− Z
)
IANj

]2 → 0 as N → ∞. (3.55)

Note that 0−E[(Z−EZ)IAN1
] = E[(Z−EZ)IAC

N1
] and P[AC

N1] → 0

as N → ∞, hence

2

N

N∑
j=1

E[(Z − EZ) IANj
]2 = 2E[(Z − EZ) IAC

N1
]2 → 0 as N → ∞. (3.56)
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Together with (3.55) and (3.56) we know the right hand side
of (3.53) converges to 0, and therefore from (3.52) we only need to
prove

1

N

N∑
j=1

E[|Y j
hN

− EZ|2IANj
] = E[|Y 1

hN
− EZ|2IAN1

] → V ar (Z) . (3.57)

Note that

E[
(
Y 1
hN

− EZ
)2
]− E[(Z − EZ)2] = E[(Y 1

hN
+ Z − 2EZ)

(
Y 1
hN

− Z
)
]

� (E[(Y 1
hN

+ Z − 2EZ)2]E[(Y 1
hN

− Z)2])
1
2 .

(3.58)

Since E[Z2] <∞ and E[|YhN
− Z|2] < M3

t,xh
2 γ
β , we know E[|YhN

|2]
have a uniform upper bound for all N . Hence E[(Y 1

hN
+Z− 2EZ)2]

have a uniform upper bound for all N . Hence the right hand side
of (3.58) converges to 0 as N → ∞.

Therefore we only need to show

E[|Y 1
hN

− EZ|2IAC
N1

] → 0 as N → ∞. (3.59)

In fact, this is true because

E[|Y 1
hN

− EZ|2IAC
N1

] � 2E[|Y 1
hN

− Z|2IAC
N1

] + 2E[|Z − EZ|2IAC
N1

]. (3.60)

�

Remark 3.4. The choice of hk is not unique. In fact, they only need

to satisfy
√
Nh

γ
β

N → 0 as N → ∞.

4. Simulation and algorithm

Now we study how the starting level t of the decreasing stable process
and the starting point x of the stable process X influence the Monte Carlo
estimator (1.4).

We set d = 1, α = 1/2, β = 3/2, and denote ā = t− a. In Sections 4.1

and 4.2 we set φ (x) = |x| 12 .

4.1. Unbiased FPED. Now the estimator is (1.5). Recall that Xx
Tt

d
=

T
1
β

t X1 + x
d
=
(

ā
τ1

)α
β
X1 + x.
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Algorithm 1 Sample uN (t, x)

1: u = 0;
2: for k = 1 : N do
3: sample Y1;

4: Tt =
(

ā
τ1

)α
;

5: sample X1;

6: X = T
1
β

t X1 + x;
7: u = u+ φ (X);
8: end for
9: ū = u/N ;

10: return ū.

First we set N = 105. Let x = 0 and ā increase from 1 to 10.

(a) uN when g = 0, x = 0 (b) uN/ā
1
6

Fig. 4.1

Figure 4.1 (a) shows that uN tends to increase as we increase ā. In fact,
now we have

E[|Xx
Tt
| 12 ] = E[

(
ā

τ1

) α
2β

|X1| 12 ] = ā
α
2βE[τ

− α
2β

1 ]E[|X1| 12 ]. (4.1)

We can check our result by Figure 4.1 (b) ‘uN/ (ā)
α
2β ’ above. It is almost

a constant, which means our algorithm is correct.
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4.2. FPDE with bias. We set g (x) = |x| 12 .

Algorithm 2 Sample uhN (t, x)

1: u = 0;
2: for k = 1 : N do
3: sample Y1;

4: Tt =
(

ā
τ1

)α
;

5: sample Xj
1 , j = 1, ..., �Tt/h�;

6: S = 0;
7: X = x;
8: sample X ′

1;
9: for j = 1 : �Tt/h� do

10: X = X + h
1
βXj

1 ;
11: S = S + hg (X);
12: end for

13: X = X + (Tt − h�Tt/h�)
1
β X ′

1;
14: u = u+ φ (X) + S;
15: end for
16: ū = u/N ;
17: return ū.

Figure 4.2 (c) is the figure of uhN when x = 0, h = 0.01, N = 105 and
we change a from 1 to 10.

(c) uN when g(t) = |t| 12 , x = 0 (d) 1
N

∑N
k=1

∑�Tk
t /h�

i=1 hg(Xk
tki
)/(ā)2/3

Fig. 4.2
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Similarly, recall that Tt
d
=
(

ā
τ1

)α
,

E[

∫ Tt

0
g (Xx

s ) ds] = E[E[

∫ Tt

0
|X0

s |
1
2 ds|Tt]] = E[E[

∫ Tt

0
|X0

1 |
1
2 s

1
2β ds|Tt]]

= E[|X0
1 |

1
2 ]E[T

1+ 1
2β

t ]/

(
1 +

1

2β

)

= ā
α(1+2β)

2β E[|X0
1 |

1
2 ]E[τ

−α(1+2β)
2β

1 ]/

(
1 +

1

2β

)
.

(4.2)

As it is shown in Figure 4.2 (d), 1
N

∑N
k=1

∑�T k
t /h�

i=1 hg(Xk
tki
)/(ā)2/3 is almost

a constant.

Below is the figure of uhN when we fix ā = 5, and x = 0 : 0.1 : 10.

Fig. 4.3: a = 5, x = 0 : 0.1 : 10

4.3. Confidence interval. For simplicity, we set φ (x) ≡ 1, g (x) = |x| 12 ,
ā = t − a = 1, x = 0, h = 10−3. Recall our discussion in Remark 3.1, we
only need the upper bound of E

[
Z(t, x)2

]
in this example. In fact, in Re-

mark 3.3, we have already got the computable upper bound of E
[
Z(t, x)2

]
.

Figure 4.4 presents the asymptotic confidence intervals at level 95%.

5 10 15 20
log2N

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
u(t,x)
uN
h (t,x)

uperbound
lowerbound

Fig. 4.4: Confidence intervals at level 95%
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