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Abstract

The paper is devoted to the numerical solutions of fractional PDEs
based on its probabilistic interpretation, that is, we construct approximate
solutions via certain Monte Carlo simulations. The main results represent
the upper bound of errors between the exact solution and the Monte Carlo
approximation, the estimate of the fluctuation via the appropriate central
limit theorem (CLT) and the construction of confidence intervals. More-
over, we provide rates of convergence in the CLT via Berry-Esseen type
bounds. Concrete numerical computations and illustrations are included.
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1. Introduction

The study of fractional partial differential equations (FPDEs) is a very
popular topic of modern research due to their ubiquitous application in
natural sciences. In particular, there is an immense amount of literature
devoted to numerical solution of FPDEs. However most of them exploit
the various kinds of deterministic algorithms (lattice approximation, finite
element methods, etc), see e.g. [I}, 2, B, [17] and numerous references therein.
However, there are only few papers based on probabilistic methods. For
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instance, [16] exploits the CTRW (continuous time random walk) approxi-
mation for solutions to FPDEs, and [12] is based on the exact probabilistic
representation.

CTRW approximation to the solutions of FPDEs was developed by
physicists more than half a century ago and it became one of the basic
stimulus to the modern development of fractional calculus. Exact proba-
bilistic representation appeared a bit later first for fractional equations and
then for generalized fractional (e.g. mixed fractional), see e.g. [10] 111 8, [13]
for various versions of this representation. There are now many books with
detailed presentation of the basics of fractional calculus, see e.g. [9} 13, [7].

The paper is devoted to the numerical solutions of fractional PDEs
based on its probabilistic representation with the main new point being
the detailed discussion of the convergence rates. Namely, the main results
represent the upper bound of errors between the exact solution and the
Monte Carlo approximation, the estimate of the fluctuation via the appro-
priate central limit theorem and the construction of confidence intervals.
Concrete numerical computations and illustrations are included.

We denote Coo (Rd) = {f : R - R is continuous and vanishes at

infinity}. Let g € C (Rd), consider the problem
(_tDa+Ar)u(t7$) =g (33)7 (t,i‘) € (CL, b] XRd7

u(a,z) =¢(x), xcRY,
where A, is a generator of a Feller semigroup on Cy (Rd) acting on z,
¢ € Dom (A;), the operator —;D,, is a genetalised differential operator of
Caputo type of order less than 1 acting on the time variable t € [a, ].
The solution u € Coo ((—00,b] x R?) of the problem (L)) exsits and is
given by [4]. u has the stochasitc representation (see [4] Equation (4) and
Theorem 4.20),

(1.1)

w(t,z) =E [¢ (X5,) + /OTtg(XLf)ds} , (1.2)

where {XZ?},5 is the stochastic process started at x € R? generated by
Ag. Let {Y&'} 40 be the decreasing [a, b]-valued stochastic process started
at t € [a,b] generated by —¢D,, T; = inf{s > 0, Y4 < a}. In this paper,
we assume {Y;“t} is a decreasing a-stable Levy process started at ¢, i.e.
Yyt Ly sl “*n, where 7 is a random variable with a-stable distribution

whose Laplace transform is E[e=*7] = e~2"/5(72/2) (\and we denote this by
n~ S4(1,1,0)).

REMARK 1.1. Given a Levy measure v on R, satisfying

/000 min{1,r}v(dr) < oo,
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the operator —; D, is defined by

e}

Daf(s) = /O s — ) = fe)wldr) — (Fla) — f(s) / v(dr),

—a

t € (a,b].

When {X7}>0 is Brownian motion, then A, would be %A, where A =
2
Y (%) . If {Y®"} is the deterministic drift, ie. — D, = —4 and
g =0, then (1.1) becomes

1 d
§Au (t,z) = Eu(t,x), (1.3)

the heat equation that we are more familiar with.

We assume {XT}s>o is isotropic [S-stable.(What ‘isotropic’ means is
explained in Section 2], after Lemma 2.T]) In this paper we shall investigate
some properties of the representation (2] and its Monte-Carlo estimator,
ie.

1 N LTtk/hJ
e (o) = > ¢(X;;f)+ S hg (X;';;k> , (1.4)
k=1 i=1

where h > 0 is the step length, T} are iid samples of T}, and tf =(i—1)h.
Note that we can sample the stopping time T; (see Lemma 2] below),
then sample the isotropic S-stable process {XZ} and finally simulate the

estimator (4.

In Section 2] we mainly focus on the situation when g = 0, i.e. the
estimator now is

un (ta) = =6 (x2F). (1.5)

To make central limit theorem and Berry-Esseen bound hold, we only
need to estimate the tail of the stable process at some stopping time, i.e.
P [|X§€t| > 3] for large s. And we begin with showing that the order of
the tail of multidimentional stable distribution has the same order of the
tail of each component of itself. In Section Bl we study the property of
the Monte-Carlo estimator when the forcing term g # 0. We estimate the
upper bound of the second moment of the estimator and then, the L? error
between the estimator and the solution. Besides, we use there properties
to show that the central limit theorem holds using the triangular arrays.
In Section Ml we give numerical examples, demonstrating the performance
of our simulation algorithm.
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2. Properties of the estimator when the forcing term g=0

In this paper, for function f,g: RY — R, we use the notation f (z) =

O (g (x)), meaning that |%\ is bounded as |z| — oo. Also we use the

f(x)

notation f(z) ~ g(x), meaning that both \g(z)

| and |M\ are bounded as
f(z)
|x| — oc.
In this section, we study the situation when g (z) = 0 for all x € RY,
then the stochastic representation (L2]) becomes

u(t,z) =E ¢ (XF,)] (2.1)
and the estimator now is defined in (L3]).
Our main results tell us how close uy (¢,z) and u (¢, z) are, namely:

THEOREM 2.1. (i) For all continuous function ¢ : R — R,
uy (t,x) 23 u(t,z), as N — oo. (2.2)
(ii) Let Sy (t,z) = V'N (un (t,x) — u (t,x)) /o (t,z) and W be the stan-
dard normal distribution. If ¢ (x) satisfies ¢ (x) = O <|ZE|T‘€5),

where § > 0, then the central limit theorem holds, i.e. for all
bounded uniformly continuous funtion 1,

E[¢ (Sy (t,x))] = E[¢ (W)] as N — oo.
(i) LetY (t,z) := ¢ (X§,)—E [¢ (X7,)], denote E [Y (t, 33)2} = o (t,z)%

E[|Y (¢t,2) [*] = p(t,x). If () satisfies ¢ (x) = O (\m|37i5), where
§ > 0, then for all C? functions 1) : R — R,

B [ (S (£.))] — E [ (W)] | < 0.438][3" o202

VNo (t,z)*
Here C3 means the space of functions with bounded third deriva-
tives.

In other words, the central limit theorem can be written using conver-
gence in distribution:

VN (un (t,z) — u (t, z)) 4 N <O,a(t,m)2> as N — oo.

Since the estimator is unbiased, Theorem [2.Ii) holds because of the
strong law of large numbers. For (ii), it is the standard central limit theorem
and we only need to show that E [gb (Xi”it)Q] < oo. For (iii), it is a version
of the Berry-Esseen bound and we need to show that E [|¢ (Xgﬁt) 3] < oo.
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These facts are evident if ¢ (z) is bounded. To deal with unbounded ¢ (z),
let us recall the following fact: for any random variable U,

E[U?] = /OOO]P (U2 > t] dt. (2.3)

It is finite if P[|U| > ¢] = O (t~(2%9)), where § is a positive constant. Now
let us look back at our problems. Once we know the tail of X7, and the

growth rate of ¢ (z), the tail of qS(X:gﬁt) would be clear as well as the
finiteness of the moments of ¢ (X%t).

Luckily, we have the following result:

PROPOSITION 2.1. Assume that {Xs}s>0 is a 5 stable process, then
P[|X7]>u] =0 (u=9).

To prove Proposition 2.1l we need a little lemma telling us that the
distribution of T; is analytically accessible:

_\ @
LEMMA 2.1. Denote a :=t—a, then T} 4 <%> where n ~ S, (1,1,0).

Proof Note that V! £ ¢ — st/on. {T, > s} = {Y" > a}, since 7
has monotone paths. Hence
P[T; > s =P |t — s/ > a} =P [sén < c‘z} =P[s < (a/n)"]
Od
Together with the facts that X7 is 8 stable and Lemma 2.1, we have

1 a\?
Xz —r LT X, 2L <9> X;. (2.4)
7

Also we need Lemma and Lemma [Z.3] given below. Before that let
us explain what ‘isotropic’ means in our assumption of {X}¢>0.

For d-dim pB-stable random variable U = (U(l), ...,U(d)) on R?, there

are a finte measure A on sphere S and v in R? such that the characteristic
function of U satisfies

0 (=Bl =exp |- [ 162,00 (1-itan Tsenz.©) ) A (@6) i, 2]

for 6 # 1 and vice versa. Hence each component of U is 1-dim stable
random variable and the stability index is still 3. Besides, for 1-dim S-
stable random variable V' whose characteristic function has form

V(z) = E[e"V?] = exp(—c®|2|(1 — ip(signz) tan(78/2) + ipz),
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we use the notation V' ~ Sg(o, p, ). We say a d-dim stable random variable
U is isotropic if its coordinates have the same distribution, i.e. Ugy) ~
Sa(o,p, ) i =1,...,d. We say a process {X;}s>0 is isotropic stable if X is
an isotropic stable random variable.

LeEMMA 2.2.  Let U = (Ugyy,...,Ug)) be an isotropic d-dim (-stable
random variable, and U(;y ~ Sg (0, p, j1), then P[|[U| > s] ~ s7F as s — oc.

P roof. Since {|U|:\/U(21)—|—. U(Qd

> s} D {|U| > s}, we have
PlIU] > s] 2 P[[Uq)| > s].

Since {|U| > s} C {maxici<a|Uy)| > s/Vd}y c ud 1 {1U| > s/\/d}, we

have
d
‘U|>8 Z U(i)>8/\/a].

Now recall the well known result of the tail of 1-dim stable random variable:
if V.~ Sg(o,p, 1), then

li_)m sPP[|V| > s] = Cgo”, (2.5)
where Cg = (f;° 277 sin mdaz)_l = Wog(w/z)(see [15], Property 1.2.15).

Hence for any € > 0, there exists some M, such that for all s > M and
1=1,...,d,

(CgoP —€)s7P < PllUg)| > s] < (C’gaﬁ + 6) 5P,

Hence for s > VdM,
d

PU| > 5] < 3 PlUg| > s/vd] < d5/ (e + cgaﬁ) sB.(2.6)
i=1

Therefore P[|X| > s] ~ s as s — 0. O

LeEMMA 2.3. Let U,V be positive random variables such that
lim t“P[U > t] > C1, lim t*P[V > t] < Cy,
t—o00 t—o00
where Cy > (o, then

PU-V >t]=0(t"%) for t— .
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P r o o f. Given a positive number M, there exsits T and € > 0, such
that for all t > T,
PU-V >t|2PU > (M+1)t] —P[V > Mt
Ci+e Cy—¢

> e

(M+1)*  — Me
> ﬁ <(Cl +€) (M]\i 1>a —(Ca — 6)> e

If we pick M big enough, we have P[U —V > t] > Ct~“ for some constant
C. On the other hand, for large t,

PU—V > 1] :/ PlU — v > PV € dv]
V>0

t—a

< /V>0]P’[U > PV € dv]

< / C1t=P[V € du]

< Ot
Therefore P[U —V > t] ~t7% as s — 00. ]

Lemma tells us the order of tail of high dimentional stable process.
Lemma 2.3] shows the order of the difference between certian random vari-
ables and we can apply it to the logarithm of [2.4)), i.e. log|X1|+ §loga —
% log T1-

Now we can come back to the proof of Proposition 211

Proof of Proposition BIl Now let us estimate the tail of X7,.

For large u > 0,
a\ 4
<P [(5) | X1 >u— |a:|]

logn > log (u — |z|) — %loga}

3
PIX%> =P[|<;) Xi+al >

(0%

B

=P[A-B>r,A>0,B>0+P[A—B>r,A>0,B<0]+
P[A-B>r,A<0,B <0,

P [1og X -

(2.7)
where A :=log|X1|, B := $log (n), r :=log (u — |z[) — Floga. (Note that
for large u we have r > 0).

Let X = (X(l),...,X(d)) and X(l) ~ Sg(a,p,,u), i =1,...,d. By the
Proof of Lemma 2.2] for any ¢ > 0, there exists some M, such that for all
s>M and i =1,...,d,
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P[|X| > 5] < (CBU v e) 8,
Hence for s > v/d dM,

d
P[|X1] > s] < ZP|X(i)|>s/\/E]<dHB/2 (64-0506) 5P,
i=1

and for t > log(v/dM),
Pllog | Xi1| > ] = P[|X1| > ¢! < a7/ (e + o) 7",
Now let us discuss (Z7)) in three conditions. For r > log(v/dM):
(1) When A > 0, B > 0, we have
P[A—B>r,A>0,B>0] <PA>r]=P|X;1] > ¢’]
< JIHB/? (E + CBJB) o (28

(2) When A > 0, B < 0, pick integer k = [r/S], and we divide the
event {A + (—B) > r} into k parts:

k—1 .
1—1 ¢
R e VN R e G |
k—1
Ui+ (B> r-B> "
k—1 . . .
C i:le{A> %r, —-B ¢ (%r, %r] il 17“
g k—i i—1
CU{A>TT,—B> ? r}.
2.9
Hence, (29)
-1
P[A+ (-B)>r,A>0,B <0] < -B > 7]
k
k— 1—1
_;]P’[A> —7|P[~B > ——]
(2.10)

Recall that
Pllog | X4

i I; Zr] < A2 <€ + C’gaﬁ> e A (2.11)
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Using the result (37) that we shall mention later, we have

E[n—Qa] = (cos (?))2 ﬁ (2.12)

By the Markov inequality,
i—1 . _1 Bi-1 E[T1_2a]
ea k

i—1
< 2e 2% A

P[B log (n7') >

(2.13)
Combining (Z.I0), (ZI1) and (Z.I3), we have

k _ -
P[A+(-B)>r,A>0,B<0] <) d*P"? (e + cﬁaﬁ) e~ "R Broe =25 Br

i=1
k .
— 2d1+6/2 (6 + CBO-6> Ze_lk /Bre—/jr
i=1
Br/k
1+8/2 B € —Br
<2 (6+C50' >71_e—6r/ke
288
1+8/2 gy _© —Br
<2092 (e Cyo? ) e,
(2.14)
(3) When A < 0, B <0, then
PA-B>rA<0,B<0]<P[A<0,-B>r|<P[-B>r]
= P[g log (77_1) >r] = P[n_l > egT]
s (2.15)
< E[U ] < e—ﬁr'

B S
(")

Combining the three conditions above, we know that for large u,

P[|X7,| > u] <<1+2 >d1+’8/2 (64—0506) +1> e Pr

O< 8 (1og(u—1z))- 10ga)> _0 (u_ﬁ)'

(2.16)

O
Now let us finish the proof of our main result. First let us see this for
Theorem [Z[(ii).

Proof of Theorem B
Pl (X7,) > u] = O (u= @), (2.17)
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and by 23) E [ (6 (X3,))*] is finite. O
For the proof of Theorem 2IN(iii), E[|¢ (X7,) |*] is finite because of the

similar argument. For the rest of proof, see [14], page 356, Variant Berry-
Esseen Theorem.

REMARK 2.1.
a < g”, by Lemma we nave
1) If C, < Co”®, by L 23 we h
P[A-B>r]>P[A-B>rA>0,B>0>Ct ", (2.18)

where C' is a constant that can be chosen from the proof of Lemmal[2.3]
This result means the order ¢t is the best one.

(2) In the proof of Proposition 1] we need r = log(u — [z[) — Floga

and r > log(v/dM). Hence there exists some constant My such that
for u > My, (2I6) holds and My has order d'/2.

Besides, we can roughly give the upper bound of E[¢ (Xgﬁt)z].

8
EXAMPLE 2.1. If ¢ (z) satisfies ¢ (z) < |z|7+2, where ¢ > 0, then from
Remark 2.1l we know that there exists some My such that for all ¢ > My,

x 8263 —pr —pr
P[X3,| > 1] < <<1 + e637—1> L/ <e + Cﬁaﬁ) + 1) e P = MVeB

— MV Blog(t=|zl)—F loga < M@y¢6

Y

(2.19)
where M) = (1 + egf_sl) dith8/2 (e + CgoP)+1, M® =275 MO, Hence,

Elo (X)) = /OOO Pl (X7,)" > tldt < My + /OO P[|X%,| > \/Zz_ga]dt

Mo
Dt = My + 2@ M2 6,
(2.20)

Note that M has order d*/2 and M has order d'*#/2, This upper bound
has order d*15/2.

249

< My + M@ \/ZT'(
My

3. Properties of the estimator when g is not 0

In this section we want to clarify the Monte-Carlo estimator of the
stochastic representation in Section [Il Here we assume that g satisfies the
condition |g () — g (y) | < Lz — yl,, where |z], = 2% | 237, o is the
coordinate of z, 0 < v < 3/2.
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Our main results in this section are as follows.

THEOREM 3.1. Assume |¢p(x)| = O(|a:|27f5) for |z| — oo, where § > 0.
(i) B[(ul; (t, ) —u(t,2))*] = 0 as N — o0, h — 0.
8
(ii) (CLT with a bias correction) Let hy = N_%, u(t,z) =EZ (t, x)
where

T
Z@@=¢CWJ+A g (X?)ds,

and W be the standard normal distribution, then for all bounded
uniformly continuous function 1,

E[v (VN (ub (t.2) —u(t2)) /V/VarZ (o)) | - Blp (W) as N = oc.

Let
[T%/h]

Y, (t,2) = ¢ (XF,) + Zhg&

be the approximation of Z(t,z). And let

1 N
= N thk(t7$)7

where th(t,x):qb< > )—I—ZTk/th ( ) k=1,..,N. Yr(t,z) are
the iid copies of Yj(t, a:) Note that for random variable U, let V' be its

approximation and V¥, k = 1,...,N be the iid copies of V. The L? error
satisfies

N 2
1 1
E|lE ——§ k — EU — EV)?. 1
(U N_V> NvarV—l—(U V) (3.1)

Therefore, to estimate the L? error E[(u (t,2) — uy (t,2))?], we only need
to study varYy (¢, z) and EZ(t, x) —EY}(t, x), and the following propositions
answer these questions.

PROPOSITION 3.1. There exists a constant Mt{x (depending on t,x)
such that VarYy, (t,z) < M},.

PROPOSITION 3.2.  There exists a constant M?, (depending on t,x)
such that E[|Z (t,2) — Yy, (t,2)[] < MZ,h?.
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PROPOSITION 3.3.  There exists a constant M, (depending on t,x)
2
such that E[|Z (t,2) — Yy (t,2)[?] < MZ,h 7 .

Sections [3.1] and give proofs of these propositions. Section [3.3]is the
proof of our CLT.

REMARK 3.1.
e Non-asymptotic confidence interval: Combining (B.]), Proposition B.1]
and Proposition we have
2 1 2. 2y
E[(u (t,2) — ul, (t,m)) | < ML+ (M) R F (3.2)
where u (t, x) is the solution of problem (LL1]). Now we can construct
the confidence interval using the Markov inequality:

Pllu (t,2) —uy (1,2) | > 1] < E{(u (t,2) — oy (t.2)) 1/

, (3.3)

< Tiz (%Mgz + (Mt%x)2h/3> .
Hence we can pick suitable N and h such that P[|u (t,z)—u% (t,2) | >
r] < 1 — € for some small e.

e Asymptotic confidence interval: We can use CLT in Theorem B.1] to
get the asymptotic confidence interval. In other words, the central
limit theorem can be written using convergence in distribution:

VN (u}](,N (t,x) —u (t,m)) 4N (0,VarZ (t,z)) as n — oo. (3.4)

Once we have the upper bound M (t,z) of \/VarZ (t,z) (e.g. see
Example 2.7]), it is easy to see that it yields a 100 (1 — ) % asymp-

tomic confidence interval u}](,N + %z (a/2) for u (t, z), where z (t)
satisfies ® (2 (t)) = 1 — ¢ and & is the distribution function of the
standard normal distribution. See Section [4.3]for a simple example.

Before the calculation, we need the following results (see [6], page 162):

(1) For constants ¢ > 0, n € (—1,0) and a symmetric S-stable 1-dim

izUt] —tc|z|P

process Uy with Ele =e , we have

il (HTn> . (1 _ %)

E[|UI7] = ()" . (3.5)
vl (1-3)

Recall that each component of X; — X, denoted by X|;), is symmetric with

E[e?*X0)] = e=<*” and ¢ > 0.
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(2) If 0 < o < 1 and {X;} is a stable subordinator with E[e~%Xt] =

e where ¢ is some constant, then for —oo < n < a,
r(- )
E[X7] = ()" —~—2l. 3.6
X0 = ()" T (36)
Since n ~ Sy (1,1,0), we have Ele™""] = exp{—wua} (see [15], Propo-
2
sition 1.2.12). Hence,
n/a
1 r(-1)
E[n"] = - N af 3.7
"] (cos(’%—o‘)) r'a-mn (37)

3.1. Estimation of variance of the approximation. In this section we
estimate Var(Yy,).

Denote |T;/h| by n. Note that the variance does not change when
added some constant, and denote g (X,) — g (Xo) = ¢;- We have

VarYy(t,z) = Var <¢ (X3) + th (X;f’i))

i=1

:Var( ¢ (XF,) —i—hz ) —g( Xo))>

9 (3.8)

<E <¢ (XF,) + th)
i=1
< Elg (X,)"] + hE] <Z gz) +20E[) (XF,) Y gil-
i=1
Denote the upper bound of E [qﬁ (XTt)ﬂ by M;. Next,
E [g|T;] < L*E[| Xy, — Xol3|T3]
J 2
= L’E] Z X4, .6) — Xo,onh || 1TH]
(3.9)

d
<SALPE[Y | 1Xy, 5) — Xo,) 7| Ti]
=1

2y d
= dL’7 B[y |1X0) — Xop 7).
j=1
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Using the result of (B3], for j = 1,...,d, we have

92T (1+2~,) r ( B 2_«,)
2 2 2 B
E[|X1,(j) B XO,(j)| ’Y] =c K ﬁI‘ (1 — '7) : (310)
Let us denote
d o (52) 1 (1-%)
B
My == E[ Xy ) — Xo,;|?] = dc>/? (3.11)
j=1 ﬁr (1 - ’7)
Then ([B.9) becomes
27;}/
E[g?|Ty] < dL*t” Mo, (3.12)
and for ¢ # j,
1 J
E[9:9;Ty) < (Elg}|T)E[g3]|T3)* < dL*t]t] M. (3.13)
Therefore,
n 2 n 2y - noo 2
B[N g | 1T <D dLt My+ > 2dL2/t) My = dLMs [ Y 87 ]
i=1 1=1 1#£] i=1
(3.14)
Recall that t; = ih and n = |T;/h], hence
nooy n n+1
i=1 i=1 0 —; B (3.15)
7 1+
< he (Ty/h+1)7F
Hence
2
. & dL2 M. 2(142
h2E[<Z 9¢> ] = h2E[E[<Z 9?) 1)) < ——25E[(T; +1) (+3)).
i=1 i=1 (1 + %)
(3.16)
Note that

E[(T; + 1)2(”%)] < E[(T; +1)°] = E[T?] + 3E[T?] + 3E[T}] + 1.  (3.17)

And by [B.1), we know that for k = 1,2, 3,
kT(1+k)
I'(1+ka)’

implying the upper bound of RZE[(} 1, ¢:)*]. By the Cauchy-Schwarz
inequality,

iye’

E[T}] = a*“E[p~*] = ak~ (cos (—))

5 (3.18)
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i=1 i=1

n n 2 %
hE[¢ (X1,) > gi] < (hQE[<Z gz) JE[(qb(XTt)FJ) (3.19)

and hence we get the upper bound of VarYy,(t, z) using (3.8):

VarY,(t, =) <Elo (X1,)4 + 7dL2M22E[(Tt + 1)2(“%)] + ...
(1+3
L (3.20)
+ | Bl (xa)2) Mgy, 4 1y2(43),
(1+3

REMARK 3.2. By Example[ZT], we know the upper bound of E[¢ (X7, )]

has order d'*5. By 311, M has order d. By (816), the upper bound of
RPE[(>1, 9:)%] has order d2. Hence the upper bound of VarY;, has order
d?.

3.2. Estimation of EZ-EY. Similarly, we begin with the estimation the
conditional expectation.

Conditioning on T3, we write

E[Z(t, z)] = E[Ya(t, 2)|T}]

I 7, | T4/h]
=E (¢<Xﬂ>+ /0 g(X,)ds — <¢<Xn>+ > hg(&))) Tt}
=1

|T¢/h)

T:
=E /0 9(X)ds— > hg(Xy,)|Ty

i=1

[ (1Te/h] pin T
=E ( : /; (Q (Xs) - Q(Xti)) ds +/ .g(Xs) ds) Tt:| .

i [T¢/hh

(3.21)
We have
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|T¢/h)

ti+h
Bl Y / (9(Xs) — g (X)) ds||T)
=1 i
[Te/h] g
<E[ LIX, — X, |yds|T)
i=1 Jti

[T/h) p
(stationarity of increments) =E[ Z / L|X, — Xol,ds|T}]
=1 70

Ti/h]

L n o d
=E[ ) /0 LY X ) — Xop)|"ds|Ti]
i=1 j=1

h d
(X, is f-stable) —E[|T)/h|L / 5331 X0 ) — Xo)["ds|Ti]
0 -
7j=1

—Co|Ty/h W T < CoTyh7,

1 ) (3.22)
where Co = 1+% LZj:l E‘XL(]-) - XO,(j)"Y’
From (B.5), we know that
14y 2
SRS ARl o L G ) S
17(]) 07(.7) ﬁr (1 _ %)
Next, it is clear that
g (XS) < g (XTt) + ‘g (XTt) -9 (XS) |7 (324)
Thus
Eg (Xs) <E(9(Xn) + |9 (Xn) — g (Xs) )
< Elg (X73) + LIX7, — Xsl,] (3.25)
= Elg (X,) + L (T; — )7 | X1 = Xol),
and
T
B[ gt stz
|T¢/h]h
T N
<Bl[ ' Blg(tn) +EL@ -5 - XohldsiT] (320
|T¢/h]h

<E[hElg (X1,) + —— Lh' " PE| X1 — Xol,)|Ty).

ol
1+ 3

We have showed that if g (x) = O <ZL‘%), where 0 > 0, then
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E[g (XTt)] < M3 < o0,
with some Ms.
Therefore, by (3.26)),

Ty 1 5
E[E[/ 9(Xs)ds|Th]] < - — Xol,hME. (3.27)
| T4 /h|h I+3

Combining (3.21)), (3.22) and (B3.27)) we have
[E[Z - Y]| = E[E[Z - Y|T3]]

rr () (),

<Msh + Ldc?
(1+3) var (-3
(3.28)
L2 () ( —%) :
+ Ldc? hBa
( l) . r (1 + a)
B 3)
0 (n%).
REMARK 3.3. (1) With similar argument, we can see E[Z?] < oc:
2
Since E[¢ (Xi”it)Q] < 00, we only need E [( OTt g9 (Xs) ds) ] < 00

Like [B.21)), we have

([ ox ds>2] <al( [o0x |ds)2]

2

<E[< /0 0 (X0) | 419 (Xo) — g (X,) \ds) 1

2

T
- [E[( / |9(X0)|+|9(X0)—9(Xs)|d3> T)

<ofel( [l () \ds)2 i+l [ 1o () - 9 (%) \ds)2 ).
(3.29)

Note that
T, 2
E[E[( [ et |ds> T3] = E[T2lg (Xo) P < oc, (3.30)

and
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2

([ loxo g0 a5 ) 70

2

T
<El( [ L%~ Xas) 17
0

2 1 T 2
=L*E[ i | Xo — Xs[2ds|T)

2
1
e (ZXou ) 5[,

1 [T
<L2dﬁE[/0 Z | X0, — Xs,(5|Pds|T}]
=1

1 Tl g
<L2diE[/0 Z 571 X0,y — X, ds| 7]

11

=L%d— X — X, (.
Hence

T 2
E[E[( /O 19.(X0) — 9/(X.) \ds) )
o d (3.31)
<LPd—4E[T,” B[ 1 Xo,5) — X1,[*"] < 0.
1+ % —

Combining ([3.30) and (B3.31)), we hazve
T
E[(/ g (X5s) d8> | < o0, (3.32)
0
and therefore E[Z?] < oo.

(2) With the same condition, we can also show that E[|Y — Z|?] has

order h # using similar argument:

E[lY — Z|’]
\72/1) T 2

3.33
And, ( )
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(3.34)

T
<PE([|Xn - X.RdsiTy

T d
<L2dE] / (Z X1, (j) — Xs,mzy) ds| T3] (3.35)
j=1

T 2y d
:L2dE/ T O FSOIX o — X |27ds|T
| LTt/th( t=9) Z' L) 0,()| 7 ds|Ti]

d
1 2y
<SLAE(Y |X,5) — Xo,[* Wt

2y
= B +1

T/b] i 2
E[ Z /( 1)hg(XS) — g9 (X)) ds | T3]
i=1 L

|T¢/h) ih 2
<E[|T:/h] Z </( 1)h9(Xs) -9 (X(i—l)h) ds) |T%]
i=1 =
|T:/h] ih 2
éLTt/hJLQ Z E[(\/( o ‘Xs — X(i—l)h|’yds) |Tt]
i=1 =

|T¢/h) ih

<|Ty/h|L? Z E[h/(' o | X5 — X(;_1)nl2ds|T}]
i=1 =
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Ty /h) i 2
:LTt/hJLQ Z Elh /( 1)h Z|X ,(9) z 1)h,(j)|ﬂ/ ds|Ty]
i=1 L
T2 /R i
<|Ti/h)L* Y E dZ|X — X(i—1yn, ()| ds|Ti]

i=1 (i=1h

2v
| Ty/h 2 L7E[h /0 F 3 X1 — Xogp Pds|Ty
j=1

d
27;}/
STPLZE[Y X,y — Xo[7]h 7
j=1
2
Hence E[|Y — Z|?] < Mt?:gchfW where Mt?’x is a constant that only
depends on t and x.

3.3. Proof of Central Limit Theorem with a bias correction. Recall
the definition of null array. By this we mean a triangular array of random
variables (&,;),1 < j < my,n,m, € N, such that the &,; are independent
for each n and satisfy
sup E[|&n5] A 1] — 0. (3.36)
J

The following result is well-known (see [5], Theorem 5.15).

THEOREM 3.2. Let (&,;) be a null array of random variables, then
> i &nj % N (b, c) iff these conditions hold:

(1) 225 Pl|njl > €] — 0 for all € > 0 as n — o0;

(ii) Zj " Elénjs [€nj| < 1] = b as n — oo, where E[X; A] = E[X14],

(iii) 377 Var(€nji1nj|l < 1] — ¢ as n — oo, where Var (X;A4) =
Var (XHA)

Again denote .
Zi=o(X5) + [ g(x2)ds
L TF /h]

Vim0 (X5 ) + > ho

where T} are independent samples of the stopping time. Now we will apply
Theorem B.2] to prove Theorem [B.IJ(ii).
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Proof of Theorem Bl (ii). Let {nvy = T%(YFZN_EZ)’ j =
1,..., N, then for any ¢ > 0,

, E[Y! —EZ|
IW@H>d=MM&—EM>vW4<__%ﬁ:__
_ El, —EDF 0+ EIYy, - 2]
b VNe
1 o
] 2 y s
_ var (Y;fN) +E[|Y,fN - Z|] _ Mt{x + Mtz,thf I
h \/Ne = \/Ne ’
(3.37)

where Mt{x, Mt%x are the same as above. This implies that {y; converges
to 0 in probability uniformly in NNV, and therefore ({x;) is a null array.
Denote Ay; = {|YJN —EZ| < VN} = {|¢nj| < 1}. To apply Theo-
rem [3.2] we only need to check that those three conditions hold:
(i) We need to prove that for any € > 0,

N N
> Plién;| > € =Y PIY] —EZ| > VNe 0. (3.38)
=1 i=1
Note that
ﬂﬁ&—ﬁ2k>¢ﬁéc{m&—jﬂ>§¢NQUHZ—EM>§¢NQ.
Hence
Mm&—Em>¢ngmm&—m>§¢ﬁd+mw—Em>§¢N¢
(3.39)
N .
> P(Y] —EZ| > VN
o . (3.40)
: 1 1
J
<§?MQN—M>§¢N4+Z?MZ—Em>§¢N¢
J= J=

N 1 N 1
}:MM—Em>§¢N4:§:th—Em>§¢N4

j=1

<.
Il
-

N
417 —EZ|? 1
<Y E[——="|Z-EZ|> VN
j}_lj 7] > 5V Ne)
41Z —EZ|? 1
:E}L—7—LJZ—EH>§VNQN3MQ
€

(3.41)
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P(Y) —Z|> %\/Ne]

WE

.
Il
-

(3.42)

Mz

1 : -
E[lY} — 7))/ (5VNe) S 2VNM{ by /e =)

7j=1
Together with (3.41) and (B.42) we know that (3.38) holds.
(ii) We need to prove that

N N
1 .
ZE[ﬁNjQ vyl < 1] = TN 4 Z Vi), —EZ; Anj] — 0 as N — oo. (3.43)
j=1 j=1
Since
N N 1
j
\/—_ Z —EZ] = Z — T Z 1Y/ — 2]
N
— hﬁ —0as N — o0,
<TE M
3.44
we only need to prove ( )
AR
N Y E[Y] -EZ;A§;] =0 as N - . (3.45)

For a random variable X, we denote X; = max{X,0}. Then

VN 8
LE (¥4, —E2) 4] = VNEI(Y), ~E2) 545,

J=
2
(note A%, = {|Yy, —EZ| > VN}) <E[(Y}, —EZ)’ ; A]

<ER(Y), —2)°+2(Z -E2)*; AS).

(3.46)
By Proposition B.3]
B[V, —2)% < ijwhz? —~0as N — . (3.47)
Since P[An1] — 0 as N — oo, we have
E[(Z —EZ)?; A, = 0 as N — oo. (3.48)

Together with ([8.47]) and (3.48]) we have
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N
\/L_ S E ( - EZ)+ LAS ] = 0. (3.49)
=

Similarly, denote X_ := max{—X,0}. Then,

Mz

(YJ EZ)_ LAS ] = 0. (3.50)

Combining (BZQI) and B50) we get (345 holds.

(iii) We want to prove

N
ZVW [Enj;lEnj| < Z —EZ;ANj] —var (Z) as N — oo.

j=1
(3.51)

We have the following equality

. . . 2
Var (Y}fN ~EZ; ANj) = E(Y{ -EZPL,,] - (E[(Y}fN - Ez) ]IANj])

(3.52)
Note that
1 N . 2
< Zl (BL(v7, —EZ)1ay,))
o
1 X . 2
=N ; (E[(YZN —Z+ 7~ EZ) JIANj]) (3.53)
2 & :
<5 ; (BI(Y7, = 2) Ly, ]* + EI(Z - EZ) Lay, 2)
Since
B[(Y}, —2)Lay,] SEVE, — 2] < MEhy, (3.54)
we have
1 & : )
< ;E[(Y,f]v —Z)Lay, 20 as N = oo, (3.55)

Note that 0 —E[(Z —EZ)l4,,] = E[(Z — IEZ)]IA%] and ]P’[Agl] —0
as N — oo, hence

N
Z (Z —EZ)1ay,]? = 2E[(Z —EZ)I4¢ | = 0 as N — oo (3.56)
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Together with ([B.53) and (3.56) we know the right hand side
of [3.53) converges to 0, and therefore from ([B.52]) we only need to
prove

N

1 .

v > E[|Y] —EZ|’Lay,] =E[Yy, —EZPLay,] — Var(2).  (3.57)
j=1

Note that

E[(Y), —EZ)’| ~E[(Z —EZ)?

E((Yy, +Z —2EZ) (Y, — Z)]

< (B(Yy +Z —2B2E((Y;, — 2))).

(3.58)

Since E[Z?%] < oo and E[|Y),, — Z]?] < ijxh2%, we know E[|Y,,|?]
have a uniform upper bound for all N. Hence E[(thN + 7 —2EZ)}]

have a uniform upper bound for all N. Hence the right hand side
of ([3.58) converges to 0 as N — oo.

Therefore we only need to show
E[Y,, — EZ|2}IA%] —0 as N — oo. (3.59)
In fact, this is true because
E[[Yy, —EZ| Ly ] < 2E[|Y,, — Z["Lyg | +2E[|Z —EZ|’I,¢ ]. (3.60)
O

REMARK 3.4. The choice of hy is not unique. In fact, they only need
X
to satisfy \/Nh]f, —0as N — oo.

4. Simulation and algorithm

Now we study how the starting level ¢ of the decreasing stable process
and the starting point x of the stable process X influence the Monte Carlo

estimator (4.

We set d =1, a =1/2, § = 3/2, and denote a = ¢t — a. In Sections [£.1]
and @2 we set ¢ (z) = |z[2.

1=

4.1. Unbiased FPED. Now the estimator is (L3)). Recall that X7,
1 N
TtﬁXl +x g (l) E X1+ x.

T1
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Algorithm 1 Sample uy (¢, x)

u = 0;
:for k=1:N do
sample Y7;
_ o
T: = (%) ;
samplele;
X = TtﬁXl + x;
u=u-+ ¢ (X);
end for
u=u/N;
10: return wu.

SANE N

First we set N = 10°. Let = 0 and @ increase from 1 to 10.

(a) uny when g =0,z =0 (b) uN/t’z%
Fig. 4.1

Figure 1] (a) shows that uy tends to increase as we increase a. In fact,
now we have
a2 2

E[1x3, |} = E[(;)w X0} = Bl PRI (@)

e

We can check our result by Figure 1] (b) ‘un/(a)28’ above. It is almost
a constant, which means our algorithm is correct.
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4.2. FPDE with bias. We set g (z) = |x\%

Algorithm 2 Sample u%; (¢, )

1:
2:
3:

b

10:
11:
12:
13:
14:
15:
16:
17:

u = 0;
for k=1:N do
sample Y7i;
«

ni=(4)
sample X7, j =1,..., [T} /h];
S =0;
X =ux;
sample X1;
for j=1:|T;/h] do
X = X +h5Xi;
S =5 +hg(X);
end for )
X = X + (T, — b Ty /h))P X[;
u=u+¢(X)+S;
end for
u=u/N;
return .

Figure (c) is the figure of u"% when z = 0,h = 0.01, N = 10° and

we change a from 1 to 10.
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Similarly, recall that T} 2 <i>a,
Ti Ti 0,1 Ty o1l L
B[ g(X¢)ds) =B[E[[ |XOJidsiT) =B(E[| |XS|EsFasiTy)
0 0 0
1+ 1
= E[ X9} ]E([T, 7]/ <1 i _>
a(1+28) _a(1+28)

—a 2 E[|X"2]E[r, * ]/<1+%>.

(4.2)
k
As it is shown in Figure 21 (d), + PO zi@l/hJ hg(Xf,_c)/(EL)2/3 is almost
a constant. '

Below is the figure of u?{, when we fix a =5, and £ =0:0.1: 10.

0 2 4 6 8 10

Fig. 4.3: a=5,2=0:0.1:10

4.3. Confidence interval. For simplicity, we set ¢ (z) = 1, g (x) = |:1:|%,
a=t—a=1 =0, h=10"3. Recall our discussion in Remark 3.1 we
only need the upper bound of E [Z (t, 33)2] in this example. In fact, in Re-
mark [3:3] we have already got the computable upper bound of E [Z (t, x)2]
Figure 4.4 presents the asymptotic confidence intervals at level 95%.

u(t,x)

S

2t o Wit
uperbound

+ lowerbound | |

5 10 15 20
log,N

Fig. 4.4: Confidence intervals at level 95%
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