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Abstract

This paper is devoted to the general theory of linear systems of frac-
tional order pseudo-differential equations. Single fractional order differen-
tial and pseudo-differential equations are studied by many authors and sev-
eral monographs and handbooks have been published devoted to its theory
and applications. However, the state of systems of fractional order ordinary
and partial or pseudo-differential equations is still far from completeness,
even in the linear case. In this paper we develop a new method of solution
of general systems of fractional order linear pseudo-differential equations
and prove existence and uniqueness theorems in the special classes of dis-
tributions, as well as in the Sobolev spaces.
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1. Introduction

In the last few decades, fractional order differential equations have
proved to be an essential tool in the modeling of dynamics of various com-
plex stochastic processes arising in anomalous diffusion in physics [17] [33]
35 [52], finance [31], 45], hydrology [6], cell biology [32], and other fields of
modern science and engineering. The complexity of stochastic processes
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includes phenomena such as the presence of weak or strong correlations,
different sub- or super-diffusive modes and jump effects.

Various versions of fractional order differential and pseudo-differential
equations are studied by many authors and several books have been pub-
lished (see e.g. [211 25|, [40L (44, 47, [48]). However, the state of systems
of fractional order ordinary and partial differential equations is still far
from completeness, even in the linear case. At the same time systems of
fractional order ordinary and partial differential equations have rich appli-
cations. For example, they are used in modeling of processes in biosystems
[8, [15] [43], ecology [20], [42], epidemiology [19] 53], etc.

For some nonlinear systems of fractional order ordinary differential
equations numerical and analytic approximate solution methods are devel-
oped; see e.g. [11 2, 11 [36], [49], [5T]. Many applied processes can be modeled
by by-linear systems of fractional differential equations, including COVID-
19 pandemic [3], [14], 28], [38], [41]. The advance of fractional order modeling is
it adds parameters controlling effects like memory and correlations, leading
to a better analysis and prediction.

In the linear case obtaining a representation for the solution is also
possible. For example, in the paper [7], the authors prove existence and
uniqueness of the system

D%[z(t) — z(0)] = Az(t), x(0) = xo,

of time-fractional ordinary differential equations, where x(t) is a vector-
function, A is a nonsingular matrix, and « € (0,1) is scalar, with the so-
lution representation z(t) = E,(t*A)xo. Here E,(Z2) is the matrix-valued
Mittag-Leffler function of a matrix Z. The paper [37] studies stability condi-
tions for the system D“u(t) = Au(t) of fractional order ordinary differential
equations with a vector-order a, with components o; € (0,1), j =1,...,m.

More general cases of linear systems of the form D*Lu(t) = Mu(t),
where L and M are linear operators from a Banach space to another Banach
space, were also considered. Gordievskikh and Fedorov [13] studied the
Cauchy problem for degenerate operator L, that is KerL # 0. Regular case
of the invertible operator L was studied in [4 29]. Mamchuev [34] studied
the boundary value problem for the fractional order system of the form

> AiDSiu(x) = Bu(x) + f(x),
=1

with boundary conditions

Dg;_lu($)|zi:0 = qb(:pl, e Lj—15 L1y - - - :L‘n), 1= 1, ey M.
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Here A;,i = 1,...m, and B are n X n-matrices and D% is the Riemann-
Liouville derivative. The existence and uniqueness theorem is obtained as
well as a representation formula for the solution through the Green function.

An important aspect of systems with integer order derivatives is that
one can reduce such a system to a first order system increasing the number
of equations/unknowns. In general, this approach loses its meaning in the
case of fractional order systems, though as shown in [I0] in some cases the
systems with distinct fractional orders can be reduced to a system with the
same fractional order in each equation. However, in this case, on the one
hand the orders of the original system assumed to be rational, and on the
other hand the number of equations in the reduced system may increase
significantly. For example, if the orders in the original system of 4 equations
are %, %, %, and %, then the reduced system will contain 247 equations of
order 2—%0. Therefore, developing the direct general techniques for solution
and qualitative analysis of systems of fractional order differential equations
with any positive real orders is important.

In what concerns systems of fractional order partial differential equa-
tions, many of them can be treated within the theory of fractional or-
der operator-differential equations in Banach or topological-vector spaces
[0, 27, 146l [47]. However, such systems are of single scalar order or dis-
tributed scalar order equations. They can not be of vector-order. More-
over, some important specific features of fractional order systems of partial
differential equations , such as parabolicity or hyperbolicity properties, can
not be captured by operator-differential equations. Kochubei [22] 23] 24]
studied fractional (scalar) order generalizations of parabolic and hyperbolic
systems and found the corresponding fundamental solutions. Vazquez and
Mendes [50] and Pierantozzi [39] studied fractional (scalar) order systems
of Dirac-like equations. Some other issues related to fractional order sys-
tems, such as stability problems, numerical solution, along with others, are
considered in works [9] 12, 16, B0]. The orders of systems in these works
are also scalar.

In this paper we will deal with the following general system of linear
fractional vector-order pseudo-differential equations

D’82u2(t, :L‘) = Ay 1(D)U1(t, ZL‘) + ... Ay m(D)um(t, 1‘) + hg(t, 1‘),

) )

Dy, (t,2) = A1 (D)ur(t,2) + ... Apyn (D) (t, @) + b (¢, ),
(1.1)
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where DPi| j =1,...,m, is the fractional order derivative of order 0 < Bj <
1 in the sense of Riemann-Liouville or Caputo, and A; (D) are pseudo-
differential operators with (possibly singular) symbols depending only on
dual variables (for simplicity) and described later. The obtained results can
be extended for wider classes of pseudo-differential operators with symbols
depending on time and spatial variables and non-symmetric as well, but this
level of extension is not a goal of this paper. The initial conditions depend
on the form of fractional derivatives. The results also can be extended to
the case when the orders (some or all) ; € (1,2] adjusting properly the
initial conditions.

The paper is organized as follows. Section 2l provides some prelimi-
nary facts on pseudo-differential operators with constant singular symbols,
on the functional spaces where these pseudo-differential operators act con-
tinuously, and on fractional calculus used in this paper. In Section Bl we
present main results. Here we prove the existence and uniqueness theorems
in the general form for systems of time-fractional pseudo-differential equa-
tions. The representation formulas for solutions are also obtained in this
section.

2. Preliminaries and auxiliaries

In this section we introduce some auxiliary notations and facts. We
briefly recall definitions and related basic facts on general pseudo-differential
operators without smoothness and growth restrictions to symbols as well as
elliptic pseudo-differential operators and the spaces of distributions where
these operators act. For details we refer the reader to the book [47].

2.1. Generalized function spaces Vg ,(R"), ¥_g,(R"). Let p > 1,
g>1,p ' +¢ ! =1 be two conjugate numbers. The generalized functions
space ¥U_g 4(R™), which we are going to introduce is distinct from the
classical spaces of generalized functions.

Let G C R" be an open domain and a system G = {g;}72, of open
sets be a locally finite covering of G, i.e., G = Upe gk, 9x CC G. This
means that any compact set K C G has a nonempty intersection with a
finite number of sets gi. Denote by {¢}};2, a smooth partition of unity
for G. We set Gy = U]kvzlgk and Ky (§) = fozl or(§). It is clear that
Gy C Gyy1, N =1,2,..., and Gy — G for N — oco. The support of
a given f we denote by suppf. Further, by F[f](€) (or f(¢) for a given
function f(x) we denote its Fourier transform, and by F~!f the inverse
Fourier transform:

FIAIE) = f(€) = / f(z)e™dz, € e R™,
Rn
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and

. 1 . ,
F—l — — —iz€ R™.
A€ = @) = o [ FlOe e, ae
Rn

Let N € N. Denote by ¥y, the set of functions f € L,(R") satisfying
the conditions:

(1) supp F[f] C Gn;

(2) supp F[f]Nsupp ¢; =0 for j > N;

(3) pn(f) = IF ' enEfllp < 0.

LEMMA 2.1. For N =1,2,..., the relations
(1) ‘IlNJ? — ‘IJN+17p7
(2) Unp = Lp(R")
are valid, where — denote the operation of continuous embedding.

It follows from Lemma 2] that ¥y, form an increasing sequence of
Banach spaces. Its limit with the inductive topology we denote by ¥¢ .
Thus,

Ve p(R") =ind A}gnoo VN p. (2.1)

The inductive limit topology of ¥¢ ,(R™) is equivalent to the following
convergence. A sequence of functions f,, € Vg ,(R") is said to converge to
an element fo € ¥ ,(R") iff:

(1) there exists a compact set K C G such that supp fm C K for all

m € N;

(2) ”fm - fOHP = (fRn |fm - f0|pd$)% — 0 for m — oo.

REMARK 2.1. According to the Paley-Wiener-Schwartz theorem, ele-
ments of U ,(R™) are entire functions of exponential type which, restricted
to R", are in the space L,(R").

The space topologically dual to W¢ ,(R™), which is the projective limit
of the sequence of spaces conjugate to ¥y ,, is denoted by \I//_G7 q(R”), that
is

U (R™) =pr lim % . 2.2
—GqR") =pr Jim Py, (2.2)

In other words, \I/,_G7 ,(R") is the space of all linear bounded functionals
defined on the space V¢ ,(R™) endowed with the weak topology. Namely, a
sequence of generalized functions fy € \I/,_G7 q(R”) converges to an element

fo € ‘I/,_Gg(R") in the weak sense, if for all ¢ € Vg ,(R™) the sequence
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of numbers (fn,¢) converges to (fo,¢) as N — oo. We recall that the
notation (f,p) means the value of f € \I//_Gg(R") on an element ¢ €

Ve p(R™). For relations of the spaces V¢ ,(R™) and its dual \Ill_qu(]R”) to
other spaces including Sobolev and Schwartz distributions see [47].

Further, we denote by ¥ ,(R™) the m-times topological direct product
VG ,p(R") = Vg,p(R") @ © Vg p(R"),

of spaces Vg p(R™). Elements of g ,(R") are vector-functions ®(z) =
(p1(2), ..., om(x)), where pj(z) € Vgp(R™),j = 1,...,m. The space,
topologically dual to ¥ ,(R"™), is the direct sum \I/,_GW(R”)EB- : @‘I’/_G,p(R”),
which we denote by \Ill_G’p(R”). Elements of \Ill_Gyp(R”) are m-tuples of
generalized functions F(z) = (fi(z),..., fm(z)), and the value of F €
¥, (R") on & € ¥g,(R) is defined by

F((I)) = <F($)vq>($)> = ((f1($)7901(90)>,- SR <fm($)790m($)>)

Finally for a topological vector space X we denote by C®*)[[a,b]; X]
the space of vector-functions g(t), ¢ € [a, ], with values in X and k times

differentiable in the sense of the topology of X. Similarly, one can define
the space C*[[a, b]; X].

2.2. Pseudo-differential operators with constant symbols. Now we
introduce and consider some properties of pseudo-differential operators with
constant (that is not depending on the variable x) symbols defined and
continuous in a domain G C R"™. Outside of G or on its boundary the
symbol a(§) may have singularities of arbitrary type. It is clear that the
corresponding class of pseudo-differential operators are not in the frame of
classic pseudo-differential operators with infinitely differentiable symbols,
studied first in works by Kon-Nirenberg [26] and Hérmander [18]. For the
systematic presentation of the theory of pseudo-differential operators being
considered in this paper we refer the reader to [47].

For a function ¢ € Vg ,(R™) the operator A(D) corresponding to the
symbol A(§) is defined by the formula

ADla) = o [ AOFIA© e veRn (23)

We note that the assumption ¢ € ¥ ,(R") is crucial in the definition of
A(D) in (2.3). Generally speaking, A(D) has no sense even for functions
in the space C3°(R"). In fact, let £ be a non-integrable singular point
of A(¢) and denote by O(&p) some neighborhood of &. Let us take a
function ¢ € C§°(R") with F[p](§) > 0 for £ € O(&y) and Flp](&) = 1.
Then it is easy to verify that A(D)¢(x) = oco. On the other hand, for
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¢ € ¥gp(R™) the integral in Eq. (Z3)) is convergent due to the compactness
of supp Fp] C G. We define the operator A(—D) acting in the space
\Il/_G7 o(R™) by the duality formula

(A(=D)f,0) = (f,A(D)g), [ €T g, (R"), ¢ € Ugp(R").  (24)

THEOREM 2.1.  The space Vg ,(R™) (\I/_GJ(R”)) is invariant with
respect to the action of an arbitrary pseudo-differential operator A(D)
(A(-D)), whose symbol is continuous in G. Moreover, if A(§)ky(€) is a
multiplier in L, for every N € N, then the operators

A(D) : ¥g,(R") = Vg p,(R™),
and
A(=D) : ¥_g  (R") = U_g (R"),

act continuously.

REMARK 2.2. In the case p = 2 an arbitrary pseudo-differential oper-
ator whose symbol is continuous in G acts continuously without the addi-
tional condition for A(§)kn(€) to be a multiplier in Lo for every N € N.

Finally, the following theorem establishes conditions for continuous
closability of the pseudo-differential operator A(D) acting in the space
Ve »(R™) to Sobolev spaces W (R") for s € R and p > 1.

THEOREM 2.2. (J47]) Let 1 < p < 00, —00 < s§,¢ < 400 and p(R™\
G)= 0. For a pseudo-differential operator
A(D) : Vg p(R") = g p(R"),
there exists a closed extension
A(D) : W (R") = W (R"),
if and only if the symbol A(§) satisfies the estimate
A <CO+IE)™, C>0, g€ R (2:5)

Theorems 211 and can be extended to matrix pseudo-differential
operators, elements of which satisfy theses theorems. Let

aLl(D) e al,m(D)
AD)=| ... ... ..
am1(D) ... amm(D)
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be the matrix pseudo-differential operator with the matrix-symbol

a,1(§) ... arm(§)
Ae =] .0 . T ceacrn (2.6)

am1(&) - amm(§)

Namely, the following theorems are valid.

THEOREM 2.3. The space ¥q,(R") (\Ill_aq(]R”)) is invariant with

respect to the action of an arbitrary pseudo-differential operator A(D)
(A(=D)), whose symbol A(§) is continuous in G. Moreover, if a; (§)kn (£),
J.k=1,...,m, are multipliers in L,, for every N € N, then the operators

A(D) : ¥g,,(R") = ¥ ,(R"),
and
A(_D) : ‘I’—G,q(Rn) — ‘I’—G,q(Rn)v
act continuously.

THEOREM 2.4. Let 1 < p < 00, —o0 < s,{ < +00 and pu(R™\ G) = 0.
For a pseudo-differential operator

AD) : ¥, (R") = ¥q ,(R"),
there exists a closed extension
A(D) : W5(R™) — WE(R™),
if and only if each entry a;i(§) of the symbol A(§) satisfies the estimate
la()] < CA+ €)™ C>0,4,k=1,....m, £€R" (2.7)

Proofs of these statements directly follow from Theorems 2.1] and

2.3. Fractional integrals and derivatives. Let a function f(¢) be de-
fined and measurable on an interval (a,b), a < b < oo. The fractional
integral of order § > 0 of the function f is defined by

p —L t — )P (D)dr a
IO =555 [ =7V e @),

where I'() is Euler’s gamma function, that is
o0
r(3) = / P letat.
0

If B3 =0, then we agree that ,.J? = I, the identity operator. For arbitrary
B > 0 and a > 0 the following semigroup property holds:

aJtBaJta ~a Jta aJtB ~a Jf+a- (28)
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Let m be a natural number and m — 1 < 8 < m. Then the fractional
derivative of order 8 of a function f in the sense of Riemann—Liouville is
defined as

1 ™ [t f(r)dr
Dlfty=—~ " —_ 2.9
DO = oy |, = 29
provided the expression on the right exists. One can write GDE in the
operator form

WD = —— P (2.10)

This operator is the left-inverse to the fractional integration operator aJtB .
Indeed, due to relation (28], one has
g os_d" mp s d" o,
aD+aJt :dt—maJt aJt :dt—majt :I
To explore a domain of aDJ’Br for any order [, consider first the case
0 < B < 1. It follows from definition (2.9]) that if 0 < 5 < 1, then

DL =5 |, oo 1

The operator form of aDJ’Br in this case is aDJ’Br = %ajtl_’g. Let C*[a, b]
denote the class of Holder continuous functions of order A > 0 on an interval
[a,b]. The following statement says that if f is Holder continuous of order
A € (0,1), then its fractional derivative of order 8 < A exists.

PROPOSITION 2.1. ([44]) Let f € C*a,b], 0 < A\ < 1. Then for any

B < A the fractional derivative aDJ’Br f(t) exists and can be represented in
the form

DI f(t) = +(t), (2.12)

where 1) € C*P|a, b].

Let m be a natural number and m — 1 < 8 < m. Then the fractional
derivative of order § of a function f in the sense of Caputo is defined as

tpm) () dr
anf(t) = F(ml_ ,8) L (tf_ T)(,B—i)-l—m’ t> a, (213)

provided the integral on the right exists.

The operator form of the fractional derivative oD? of order B, m—1<
B < m, in the Caputo sense is

WDP = aJ?—Bi—m, (2.14)
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which is well defined, for instance, in the class of m-times differentiable
functions defined on an interval [a,b), b > a. It follows from definition
(213) that if 0 < 8 < 1, then

1 Ef'(r)dr
anf(t) = F(l_ﬁ)/a (t—T)B (215)
Jl—ﬁ d

The operator form of aDJBr in this case is aDJBr =ady g

Let @ = 0. In this case we write simply J?, DJBr and D? respectively
instead of OJtB , ODJBr and on . Suppose f is a function defined on the semi-
axis [0,00) and for which Dﬁf(t) and Df(t) exist.

PROPOSITION 2.2. Let 8 > 0. Then the Laplace transform of J° f(t)
is

L[JPf)(s) = s PL[f](s), s> 0. (2.16)
PROPOSITION 2.3. Letm—1< 3 <m, m=1,2,.... Then the Laplace
transform of DJ’Br f(x) is
m—1
LID? f](s) = = > (DRI ) (0)sm R (2.17)
k=0

PROPOSITION 2.4. Let m — 1 < 8 < m. The Laplace transform of the
Caputo derivative of a function f € C™ 1[0, 00) is
m—1
LIDIf1(s) = s"Lf1(s) = > fP(0)s°17F, s> 0. (2.18)
=0

o

For 8 € (0,1] formulas (ZI7) and (2I8) respectively take the forms:

LD f)(s) = s°Lf](s) — (J* 2 £)(0), (2.19)
LID]f)(s) = s"L[f](s) — f(0)s"". (2.20)
We will use these formulas in the vector form:
LIDS < f1,. s fm >)(s) =< S LIfi](5) = (TP f1)(0), ., 8™ L[ ] ()
— (JYP £,)(0) > (2.21)
LIDY < f1,. s fn >)(s) =< s LIfi)(s) = f1(0)s™ 7, P L fin](s)
— fm(0)sPm 7 > (2.22)
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In these formulas B = (f1,...,m) is a vector-order with 0 < 5; <1, j =
1,...,m, and

LD < fi,..., fm >](s) =< LD f1](s), ..., L[D™ f,,](s)
for both operators D = Dy and D = D,.

3. Main results

Consider the following system of fractional order differential equations

Dﬁlul(t, {L’) = A171(D)'LL1 (t, IL’) + ... ALm(D)um(t, %) + hl (t, IL’),
DP2uy(t, x) = Ag1(D)ur(t, ) + ... Ao (D)um (t, ) + ha(t, x),

DBty (t,2) = A1 (D)ur(t, z) + . .. Apyn (D)t (t, ) + hon(t, @),
(3.1)

where 0 < 8; <1, j =1,...,m, and the operator D on the left expresses
either the Riemann-Liouville derivative Dy or the Caputo derivative D,.
We will specify the initial conditions later depending on whether D is the
Riemann-Liouville or the Caputo derivative.

With the vector-order B = ({1, ..., 5n), introducing vector-functions
Ut,z) = (ui(t,x),...,un(t,z)), Ht,x) = (hi(t,z),..., hy(t,x)), we can
represent system (B.I]) in the vector form:

DBU(t,z) = A(D)U(t,z) + H(t,z), (3.2)

where A(D) is the matrix pseudo-differential operator with the matrix-
symbol A(§), & € G, defined in (2.6]), and

DBU(t, ) = (DP'uy(t, x), ..., DPmupy,(t, ).

For simplicity we assume that the matrix-symbol is symmetric, ay ;(§) =
a;r(§) forallk,j =1,...,m, and { € G, and diagonalizable. Namely, there
exists an invertible (m x m)-matrix-function M (&), such that

A&) = MTHEOAEM(E), €€, (3.3)
with a diagonal matrix
A€ ... 0
A= ... ... e (3.4)
0 e Am(8)

We denote entries of matrices M (§) and M (&) by u;x(€), 4,k =1,...,m,
and v;;(£), j,k=1,...,m, respectively.

First we derive a representation formula for the solution of the initial
value problem for system (3.2]) in the homogeneous case. Since initial con-
ditions depend on the form of the fractional derivative on the left hand side
of equation (B.2)), the corresponding representations of solutions differ. We
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demonstrate the derivation in the case of Caputo fractional derivative. The
case of Rieman-Liouville fractional derivative can be treated similarly.
Consider the following Cauchy problem:

DBU(t,z) = A(D)U(t,z), t>0, z€R", (3.5)
U,z) =d(x), z=eR", (3.6)

where the fractional derivatives on the left are in the sense of Caputo.
Applying Fourier transform we obtain a system of fractional order ordinary
differential equations with a parameter & :

DEF[U)(t.€) = AFU](t.€), t>0, £€G,
with the initial conditions
F[UJ(0,8) = F[PI(E), £€G.
Now applying the Laplace transform in the vector form (2.22)), one has
(s" LF[u1](s,€),.. ., 8" LF[um](5,€)) = (s '01(8),.., 8" om (€))
+AQLF[U](s,§), s>0, €.
Taking into account (B.3]) the letter can be rewritten in the form
M™H(Is® = A€M (§LF[U](s,€) = Is°~ F[@)(¢€),

where IsB, Is8~1 are diagonal matrices with diagonal entries s%7, s%i~1 j =

1,...,m, respectively. The solution to the obtained system is
LFU)(s,€) = M(E)N (s, )M~ () F[2](€), (3.7)
where
P
sP—X1() 0
N(s,&) = (3.8)
§Bm—1
0 P =X ()

It follows from (3.7)) and ([B.8) that
F[U)(t,€) = MEEsAEP)MHEFPE), t>0,6€G. (3.9
Here E5(A(€)tP) is the diagonal matrix of the form
G 0
Er(A(H°) = , (3.10)
0 oo Eg, (A (6)tPm)
where Epg (2),j = 1,...,m, are the Mittag-Leffler functions of indices
Bi, ..., Bm. Thus, the solution of problem (B.5])-(B.6]) has the representa-
tion
U(t,x) = S(t,D)®(z), t>0, zeR", (3.11)
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where S(t, D) is the solution matrix pseudo-differential operator with the
matrix-symbol

S(t,€) = M(€) &5 (A(g)t3> ML), t>0, eq, (3.12)

whose entries are

sjk t g ZH]Z Ve k(g)Eﬁz()‘Z(g)tﬁe) JLk=1,...,m,
=1

The explicit component-wise form of the solution is

THEOREM 3.1. Let A be a pseudo-differential operator with the sym-
bol A(€) continuous on G and satisfying the condition (3.3)). Assume
that ®(z) € Wg,(R"), H(t,z) € AC[Ry; g, (R™)], and DY "PH(r,x) €
CR4; ¥ »(R™)]. Then for any T > 0 Cauchy problem

DBU(t,z) = AD)U(t,2) + H(t,x), t>0, x €R", (3.13)

U0,z) =&(x), =R, (3.14)

has a unique solution U(t,z) € C*[(0,T]; ¢ ,(R™)] N C[[0,T]; ¥ ,(R™)],
having the representation

t
U(t,x) = —I—/S D)DI~ BH(r,z)dr, t>0, z€R",
0

(3.15)
where S(t, D) is the pseudo-differential operator with the matrix-symbol

S(t,€) defined in (3.12]).

P r oo f The representation (3I5) follows directly from (BII) and
from fractional Duhamel’s principle [46] [47]. Denote the first and second
terms on the right of (3.15) by V (¢, z) and W (¢, z), respectively:

V(t,z) = S(t, D)d(z), x€R", (3.16)

t
/S D)DYBH(r,x)dr, t>0, z€R" (3.17)
0
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Then, in accordance with Theorem ([Z3) V(t,z) € ¥q,(R") for every
fixed t > 0, continuous on [0,7], and infinitely differentiable on (0,7") in
the topology of ¥ ,(R™) due to the construction of the solution operator
S(t, D). Further, there exists a sequence (see (2.1]))

Hy(t,z) € Uy p(R") =¥g,(R") ®@ - @ ¥g,(R"),

such that Hy(t,z) — H(t,z) as N — oo in the topology of ¥g ,(R").
Moreover, p (Hy) = | Hxlp. Let

t
Wi (t,z) = /S(t —7,D)DX PHy(r,2)dr, N=1,2,....
0

Then we have py (Wy) = |F ' snF[Wn]|l, < T||Wnll, < oo for all N > 1.
It follows that Wy € Wy ,(R"™) and W (t,x) = W(t,z), as N — oo, in the
topology of Wy ,(R™) for each fixed ¢t € [0,T]. The continuity of W (t,x)
on [0,7] in the variable ¢ and its infinite differentiability on (0,7") follows
from the construction of the solution operator S(t, D) in standard way. O

THEOREM 3.2. Let p and ¢, 1 < p,q < oo, be a conjugate pair and A
be a pseudo-differential operator with the symbol A(§) continuous on G and
satisfying the condition (3.3). Assume that ¢(z) € ¥’ (R"), H(t,z) €
AC[R ;¥ (R™)], and DY BH(r,z) € ORy; v’ . (RM)]. Then for any
T > 0 Cauchy problem

DBV (t,z) = A(-D)V (t,x) + H(t,z), t>0, z € R", (3.18)

V(0,z) =®(x), xe€R", (3.19)

has a unique solution V (t,z) € C*°[(0, T]; ¥’ . (R™)INC[0, T]; ¥’  (R")],
having the representation

V(t,x) = S(t,—D)P(x)+ [ S(t—r, —D)D}r_BH(T,:E)dT, t>0, xeR",

o .

(3.20)
where S(t,—D) is the pseudo-differential operator with the matrix-symbol

S(t,—€) defined in 312) * .

P r o o f. We note that elements DBV (t,z) and A(—D)V(t,z) belong
to the space ¥’ , (R") if V(t,z) € ¥’ , (R") for each fixed ¢ > 0. This
fact follows from the definition of the fractional derivative DB and Theorem

2.3

* with —¢ instead of £
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The solution V(¢,x) of the Cauchy problem (BI8]) — (319), by defini-
tion, must satisfy the following conditions:

(DBV (t,z), F(z)) = (V(t,x), A(D)F(z)) + (H(t,z), F(z)), t >((:)3, o

(V(0,z), F(z)) = (?(x), F(x)), (3.22

for an arbitrary element F'(z) in the space ¥ ,(R™). We show that U(t, z)
defined in ([B.20)) satisfies both conditions in (3.21]) and (3.22]). Indeed, to
show this fact let us first assume that H(t,2) = 0 ** | for all ¢ > 0. Then
(B21)) takes the form

<[Di35(t, D) - A(—D)]@(m), F(a;)> - <§l5(x), [DfS(t, D) - A(D)} F(m)>
=0, t>0.

The operator S(t, D) is constructed so that DES(t, D) — A(D) = 0. Indeed,
if U(t, ) is a solution to equation (B.5]), then it follows from representation
BID) that DBU(t,z) = DBS(t,D)®(x) = A(D)d(z) for any fixed & €
We »(R"). This implies the equality DES(¢, D) = A(D). Thus, condition
B27) is verified.

Further, it follows from (B.12]) that the symbol S(¢,&) at t = 0 reduces
to the identity matrix, since the matrix £g(0) is the identity matrix. There-
fore, the operator corresponding to the matrix-symbol S(0,¢) is the iden-
tity pseudo-differential operator. Hence, V(0,z) = S(0, —D)®(z) = &(z).
Thus, condition ([3.22)) is also verified.

In the general case, for non-zero H(t,z), the representation (3.20]) is an
implication of the fractional Duhamel principle [46] 47]. O

Now consider the following initial-value problem

)
)

DEU(t,x) = A(D)U(t,z), t>0, 2 €R", (3.23)
JIBU0, ) = B(x), = eR”, (3.24)

where the fractional derivatives on the left hand side of equation ([3.23]) are
in the sense of Riemann-Liouville. Performing similar calculations, in this
case for the solution we obtain the representation

U(t,z) = S.(t, D)d(z), t>0, z€R", (3.25)

where S, (t, D) is the solution matrix pseudo-differential operator with the
matrix-symbol

So(t,€) = M(¢) JiBeg (A(g)t’@) MY, t>0,€€G,  (3.26)

*%

as an element of ¥’ 5 (R")
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whose the entries are

S;Zk(t g) = Z Hj,f(g)yé,kjl_BlEﬁz ()‘E(é.)tﬁl% j7 k= 17 ceey, M,
/=1

The explicit component-wise form of the solution is

- (271)71 33 [ i1 B, (MO ) mal€) Flinl (€

THEOREM 3.3. Let A be a pseudo-differential operator with the symbol
A(§) continuous on G and satistying the condition (3.3]) and ¢ € ¥q ,(R").
Then for any T > 0 Cauchy problem

DEU(t,x) = A(D)U(t,x) + H(t,x), t>0, = € R, (3.27)
JPU0,2) = #(z), =R, (3.28)

has a unique solution U(t,x) € C*®[(0,T]; ¥ (R™)], having the representa-
tion

t
Ut z) = S, (t, D)d(x)+ / S, (t—7, D)H(r, 2)dr, t>0, zcR", (3.29)
0

where S, (t, D) is the pseudo-differential operator with the matrix-symbol

S+(t,€) defined in (3:20]).

THEOREM 3.4. Let A be a pseudo-differential operator with the symbol
A(§) continuous on G and satistying the condition (3.3) and ¢ € ¥¢ ,(R").
Then for any T > 0 Cauchy problem

DEU(t,z) = A(-D)U(t,z) + H(t,z), t>0, z€R", (3.30)
JIBU0, ) = B(x), = eR", (3.31)
has a unique solution U (t,z) € C*°[(0,T]; ¥ (R™)], having the representa-
tion
t
Ult,z) = S, (t, —D)d(x) + / S (t— 7 —D)H(r,z)dr, >0, z€R",

0
(3.32)
where S (t, —D) is the pseudo-differential operator with the matrix-symbol

S+ (t,—&) defined in (3:26]).
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The proofs of Theorems [3.3] and B4] are omitted, since they are similar
to the proofs of Theorems B.1] and [B:2], respectively.

The properties of the solutions of problems B.I3)-[B14) and B27)-
([B28)) essentially depend on the asymptotic behavior of the functions

Es, (Ag(g)tﬁf> C0=1,....m,

which form the symbols of solution operators; see (8.12]) and ([B.26]). It is
known that for 0 < 8 < 2 the Mittag-Leffler function Eg(z) has asymp-
totic behavior ~ exp(zY/8), |z| — oo, if |arg(z)| < Br/2; and Es(z) ~
1/|z|, |z2| — oo, if pr/2 < |arg(z) < w. Therefore, if a symbol A(€)
is complex-valued, then Eg(A(€)t®) may have an exponential growth as
|€] — oo, even though A(€) has a polynomial growth at infinity.

Now suppose that the pseudo-differential operator A(D) satisfies the
following ellipticity condition: the symbol A(£), & € R™, is symmetric,
satisfies the condition ([B.3]) with a diagonal matrix A(£), and there exists
a number Ry > 0 such that for the entries A\¢(§), £ =1,...,m, of A(§) the
inequalities

—R(Ae(E)) <nlgl™, £=1,...,m, (3.33)
where R(z) is the real part of z, hold for all £ : || > Ro; n > 0, rp €
R, £ =1,...,m, are constants. In this case we have

Ep, (A7) < CLL+ A€ S Co(L+[E) 7™, € R, (3.34)

with some C7, C5 positive constants. In the theorem below we use the
notation r = (71,...,7m).

THEOREM 3.5. Let the following conditions be verified:

(1) the operator A is an elliptic pseudo-differential operator satisfying
the condition (3.34));

(2) the symbol A(&) of the operator A is symmetric, continuous on R",
and satisfies the condition (3.3);

(3) @ € Wi(R"), where 1 <p < oo ands = (s1,...,8m), s; ER, j=
1,...,m;

(4) H(t,x) € AC[R,; W3(R")] and D}r_BH(T,x) € C[Ry; W3 (R™)].
Then for any T > 0 Cauchy problem [BI3)-([3.14) has a unique solution
U(t,x) € C=[(0,T]; Wt (R™)]NCI[0, T]; W*" (R")], having the represen-
tation

t
Ut z) = $(t, D)d(x) + / S(t—7,D)DYBH(r,2)dr, t>0, 2 € R",
0

(3.35)
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where S(t,D) is the closure of the pseudo-differential operator with the
matrix-symbol S(t,§) defined in (3.12) in the space W3 (R").

Proof Let components of &(x) are v € Wy*(R"), k = 1,...,m
and components hy(t,z), k = 1,...,m of H(t,x) for each fixed t, belong
to Wk, respectively. We can choose any domain G whose complement
R™\ G has zero measure. In particular, one can take G = R"™. Then the
denseness V¢ ,(R™) = Wk(R") (see [47]) holds for each k =0,...,m — 1.
Hence, for each oy and hy(t, -) we have an approximating sequences of func-
tions Py = (SOI,Na s me,N) HN(tv ) = (hl,N(tv ')7 o 7hm,N(t7 )) with
opN, hen(t) € Yap(R"), N =0,1,2,..., such that ¢, y — ¢ and
hi,n(t,-) = hi(t,-) in the topology of ¥ ,(R™). For fixed N, due to Theo-
rem [3.I] there exists a unique solution of the Cauchy problem (B.13)-(B.14]),
where the initial data @(x) and H (t,x) are replaced by @y (x) and Hy(t, )
respectively, and this solution is represented by the formula

t
Un(t,z) = S(t,D)®Pn(x +/St 7,D)D}~ BHN(r,2)dr, t>0, z € R"
0

(3.36
Since the components of the symbol S(¢, &) of the solution operator S(t, D

satisfy the estimate (3.34)), it follows from Theorem [2.4] that there exists a
unique continuous closure S(¢, D) of the operator S(tD), such that

S(t,D) : WE(R") — WS (R™)

is continuous. Thus for the solution U(t,x) we have representation (3.0)).
The fact that U(t, z) € C*°[(0,T]; W3 (R™)|NC[[0, T]; W5+ (R™)] follows
from the construction of the solution through the sequence (3.36), due to
the density of Wg ,(R™) in Wt (R"), k=1,...,m. O

Similarly one can prove the existence of a unique solution in the Sobolev
spaces of the Cauchy problem (3.27)-(3.28]). Below is the formulation of the
corresponding theorem.

THEOREM 3.6. Let the following conditions be verified:

(1) the operator A is an elliptic pseudo-differential operator satisfying
the condition (3.34);

(2) the symbol A(&) of the operator A is symmetric, continuous on R",
and satisfies the condition (3.3]);

(3) @ € Wi(R"), where 1 <p < oo and s = (s1,...,8m), s; ER, j=
1,...,m;

(4) H(t,z) € AC[Ry; W5(R™)] and Dy PH(r,z) € C[R4; W5(R™)].
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Then for any T > 0 Cauchy problem [3.27)-([B3.28]) has a unique solution
U(t,z) € C=[(0,T]; W5 (R™)]NC[0, T]; W5*" (R™)], having the represen-
tation

t
Ut,z) = Sy (t / D)DI~ BH(r,z)dr, t>0, zeR",
0

where S (t, D) is the closure of the pseudo-differential operator with the
matrix-symbol Sy (t,€) defined in (3.26)) in the space W3 (R").

REMARK 3.1. (1) The results of Theorems [B.1] - B.6] coincide with
the known results in 1-D case, see, e.g. [47].

(2) The results obtained in Theorems [B.1] - can be extended to the
case, when 0 < 3; <1, j =1,....mpand 1 < 3; < 2, j =
mo+ 1,...,m, where 0 < mg < m, with properly adjusted initial
conditions.

(3) The results also can be extended to the case of fractional distributed
order differential operators (DODE) on the left hand side of the
considered systems.

ExaMPLE. To illustrate the theorems proved above consider the fol-
lowing Cauchy problem

DPuy(t,x) = —D*uy(t,z) — Dug(t,z), t>0, —oco <z <oo, (3.37)
D2y (t, x) = —Duy(t, ©) — D*us(t,z), t>0, —oco <z <oo, (3.38)
u1(0,z) = p1(z), w2(0,z) = p2(z), —o0 <z < o00. (3.39)

It is not hard to see that the symbol of the operator on the right hand side
of (B.37)-(338) is symmetric and has the representation

A(g):[_—gg —_662} :[—11//22 % [_520+£ —520—5} B _11]
(3.40)
The symbol

As is seen from (B.40) that A1 (€) = —€24-¢ and M\p(§) = —€2—¢.
t,§) = {sjx(t, )}, J.k =

of the solution operator S(¢, D) is the matrx S(¢,
1,2, with entries

s1.1(t,8) = s2.2(t,§) = %E (=€ + Ot + %Eﬁz((_£2 —&)t7), (3.41)

$12(1€) = 92,1 (6,6) = S, (€2 + %) — 2 By (-6 — )17, (3.42)
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Therefore, the solution U(t,z) = (u1(t,z),u2(t,x)) to Cauchy problem

(B:37)-([339) has the representation:
1 1
u(t, ) = [5}351((—1)2 + D)t") + 586, ((=D D)tP2) }
1 2 pry_ L B2y
+ §Eﬁl((_D + D)t™) — §Eﬁ2(( D)t
1 2 By _ L 8
us(t.7) = | B (D% + D)%) - LBy, ((-D? - D))
1 1
+ [ 3B (D% + D))+ 1By (D% - D)) }

In the explicit form this solution has the form

o0

o) =g [ [5Ea(-€+ 0 + 3B~ tﬂ
1 lE 2 B ——E 62 £)d
o 9 51(( 3 +£)t ) 52 t 57
wlt0) = [ [5Ea(-€+ ) - 1B~ —stﬂ

+or [ [3En(e o)+ 1Bai-e - )] Flenliae.

Moreover, obviously, A\x(§) < 0, k = 1,2, for all £ satisfying the inequal-
ity |¢] > 1. Applying Theorem [3.3] we have U (t,z) € C*°[(0, T]; Wj(R™)] N
C[[0, T]; W3 (R™)], where s = (s1, s2), if ¢, € Wik(R"?), k= 1,2.
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