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Abstract

This paper is devoted to the general theory of linear systems of frac-
tional order pseudo-differential equations. Single fractional order differen-
tial and pseudo-differential equations are studied by many authors and sev-
eral monographs and handbooks have been published devoted to its theory
and applications. However, the state of systems of fractional order ordinary
and partial or pseudo-differential equations is still far from completeness,
even in the linear case. In this paper we develop a new method of solution
of general systems of fractional order linear pseudo-differential equations
and prove existence and uniqueness theorems in the special classes of dis-
tributions, as well as in the Sobolev spaces.
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1. Introduction

In the last few decades, fractional order differential equations have
proved to be an essential tool in the modeling of dynamics of various com-
plex stochastic processes arising in anomalous diffusion in physics [17, 33,
35, 52], finance [31, 45], hydrology [6], cell biology [32], and other fields of
modern science and engineering. The complexity of stochastic processes
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includes phenomena such as the presence of weak or strong correlations,
different sub- or super-diffusive modes and jump effects.

Various versions of fractional order differential and pseudo-differential
equations are studied by many authors and several books have been pub-
lished (see e.g. [21, 25, 40, 44, 47, 48]). However, the state of systems
of fractional order ordinary and partial differential equations is still far
from completeness, even in the linear case. At the same time systems of
fractional order ordinary and partial differential equations have rich appli-
cations. For example, they are used in modeling of processes in biosystems
[8, 15, 43], ecology [20, 42], epidemiology [19, 53], etc.

For some nonlinear systems of fractional order ordinary differential
equations numerical and analytic approximate solution methods are devel-
oped; see e.g. [1, 2, 11, 36, 49, 51]. Many applied processes can be modeled
by by-linear systems of fractional differential equations, including COVID-
19 pandemic [3, 14, 28, 38, 41]. The advance of fractional order modeling is
it adds parameters controlling effects like memory and correlations, leading
to a better analysis and prediction.

In the linear case obtaining a representation for the solution is also
possible. For example, in the paper [7], the authors prove existence and
uniqueness of the system

Dα[x(t)− x(0)] = Ax(t), x(0) = x0,

of time-fractional ordinary differential equations, where x(t) is a vector-
function, A is a nonsingular matrix, and α ∈ (0, 1) is scalar, with the so-
lution representation x(t) = Eα(t

αA)x0. Here Eα(Z) is the matrix-valued
Mittag-Leffler function of a matrix Z. The paper [37] studies stability condi-
tions for the system Dαu(t) = Au(t) of fractional order ordinary differential
equations with a vector-order α, with components αj ∈ (0, 1), j = 1, . . . ,m.

More general cases of linear systems of the form DαLu(t) = Mu(t),
where L andM are linear operators from a Banach space to another Banach
space, were also considered. Gordievskikh and Fedorov [13] studied the
Cauchy problem for degenerate operator L, that is KerL �= 0. Regular case
of the invertible operator L was studied in [4, 29]. Mamchuev [34] studied
the boundary value problem for the fractional order system of the form

m∑
i=1

AiD
αi
xi
u(x) = Bu(x) + f(x),

with boundary conditions

Dαi−1
xi

u(x)|xi=0 = φ(x1, . . . xi−1, xi+1, . . . xn), i = 1, . . . ,m.
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Here Ai, i = 1, . . . m, and B are n × n-matrices and Dα is the Riemann-
Liouville derivative. The existence and uniqueness theorem is obtained as
well as a representation formula for the solution through the Green function.

An important aspect of systems with integer order derivatives is that
one can reduce such a system to a first order system increasing the number
of equations/unknowns. In general, this approach loses its meaning in the
case of fractional order systems, though as shown in [10] in some cases the
systems with distinct fractional orders can be reduced to a system with the
same fractional order in each equation. However, in this case, on the one
hand the orders of the original system assumed to be rational, and on the
other hand the number of equations in the reduced system may increase
significantly. For example, if the orders in the original system of 4 equations
are 1

2 ,
1
3 ,

1
5 , and

1
7 , then the reduced system will contain 247 equations of

order 1
210 . Therefore, developing the direct general techniques for solution

and qualitative analysis of systems of fractional order differential equations
with any positive real orders is important.

In what concerns systems of fractional order partial differential equa-
tions, many of them can be treated within the theory of fractional or-
der operator-differential equations in Banach or topological-vector spaces
[5, 27, 46, 47]. However, such systems are of single scalar order or dis-
tributed scalar order equations. They can not be of vector-order. More-
over, some important specific features of fractional order systems of partial
differential equations , such as parabolicity or hyperbolicity properties, can
not be captured by operator-differential equations. Kochubei [22, 23, 24]
studied fractional (scalar) order generalizations of parabolic and hyperbolic
systems and found the corresponding fundamental solutions. Vazquez and
Mendes [50] and Pierantozzi [39] studied fractional (scalar) order systems
of Dirac-like equations. Some other issues related to fractional order sys-
tems, such as stability problems, numerical solution, along with others, are
considered in works [9, 12, 16, 30]. The orders of systems in these works
are also scalar.

In this paper we will deal with the following general system of linear
fractional vector-order pseudo-differential equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dβ1u1(t, x) = A1,1(D)u1(t, x) + . . . A1,m(D)um(t, x) + h1(t, x),

Dβ2u2(t, x) = A2,1(D)u1(t, x) + . . . A2,m(D)um(t, x) + h2(t, x),

· · ·
Dβmum(t, x) = Am,1(D)u1(t, x) + . . . Am,m(D)um(t, x) + hm(t, x),

(1.1)
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whereDβj , j = 1, . . . ,m, is the fractional order derivative of order 0 < βj ≤
1 in the sense of Riemann-Liouville or Caputo, and Aj,k(D) are pseudo-
differential operators with (possibly singular) symbols depending only on
dual variables (for simplicity) and described later. The obtained results can
be extended for wider classes of pseudo-differential operators with symbols
depending on time and spatial variables and non-symmetric as well, but this
level of extension is not a goal of this paper. The initial conditions depend
on the form of fractional derivatives. The results also can be extended to
the case when the orders (some or all) βj ∈ (1, 2] adjusting properly the
initial conditions.

The paper is organized as follows. Section 2 provides some prelimi-
nary facts on pseudo-differential operators with constant singular symbols,
on the functional spaces where these pseudo-differential operators act con-
tinuously, and on fractional calculus used in this paper. In Section 3 we
present main results. Here we prove the existence and uniqueness theorems
in the general form for systems of time-fractional pseudo-differential equa-
tions. The representation formulas for solutions are also obtained in this
section.

2. Preliminaries and auxiliaries

In this section we introduce some auxiliary notations and facts. We
briefly recall definitions and related basic facts on general pseudo-differential
operators without smoothness and growth restrictions to symbols as well as
elliptic pseudo-differential operators and the spaces of distributions where
these operators act. For details we refer the reader to the book [47].

2.1. Generalized function spaces ΨG,p(R
n), Ψ−G,q(R

n). Let p > 1,
q > 1, p−1+ q−1 = 1 be two conjugate numbers. The generalized functions
space Ψ−G,q(R

n), which we are going to introduce is distinct from the
classical spaces of generalized functions.

Let G ⊂ R
n be an open domain and a system G ≡ {gk}∞k=0 of open

sets be a locally finite covering of G, i.e., G =
⋃∞

k=0 gk, gk ⊂⊂ G. This
means that any compact set K ⊂ G has a nonempty intersection with a
finite number of sets gk. Denote by {φk}∞k=0 a smooth partition of unity

for G. We set GN = ∪N
k=1gk and κN (ξ) =

∑N
k=1 φk(ξ). It is clear that

GN ⊂ GN+1, N = 1, 2, . . . , and GN → G for N → ∞. The support of

a given f we denote by suppf . Further, by F [f ](ξ) (or f̂(ξ) for a given
function f(x) we denote its Fourier transform, and by F−1f the inverse
Fourier transform:

F [f ](ξ) = f̂(ξ) =

∫
Rn

f(x)eixξdx, ξ ∈ R
n,
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and

F−1[f̂ ](ξ) = f(x) =
1

(2π)n

∫
Rn

f̂(ξ)e−ixξdξ, x ∈ R
n.

Let N ∈ N. Denote by ΨN,p the set of functions f ∈ Lp(R
n) satisfying

the conditions:

(1) supp F [f ] ⊂ GN ;
(2) supp F [f ] ∩ supp φj = ∅ for j > N ;
(3) pN (f) = ‖F−1κNFf‖p <∞.

Lemma 2.1. For N = 1, 2, . . . , the relations

(1) ΨN,p ↪→ ΨN+1,p,
(2) ΨN,p ↪→ Lp(R

n)

are valid, where ↪→ denote the operation of continuous embedding.

It follows from Lemma 2.1 that ΨN,p form an increasing sequence of
Banach spaces. Its limit with the inductive topology we denote by ΨG,p.
Thus,

ΨG,p(R
n) = ind lim

N→∞
ΨN,p. (2.1)

The inductive limit topology of ΨG,p(R
n) is equivalent to the following

convergence. A sequence of functions fm ∈ ΨG,p(R
n) is said to converge to

an element f0 ∈ ΨG,p(R
n) iff:

(1) there exists a compact set K ⊂ G such that supp f̂m ⊂ K for all
m ∈ N;

(2) ‖fm − f0‖p = (
∫
Rn |fm − f0|pdx)

1
p → 0 for m → ∞.

Remark 2.1. According to the Paley-Wiener-Schwartz theorem, ele-
ments of ΨG,p(R

n) are entire functions of exponential type which, restricted
to R

n, are in the space Lp(R
n).

The space topologically dual to ΨG,p(R
n), which is the projective limit

of the sequence of spaces conjugate to ΨN,p, is denoted by Ψ
′
−G,q(R

n), that
is

Ψ
′
−G,q(R

n) = pr lim
N→∞

Ψ∗
N,p. (2.2)

In other words, Ψ
′
−G,q(R

n) is the space of all linear bounded functionals

defined on the space ΨG,p(R
n) endowed with the weak topology. Namely, a

sequence of generalized functions fN ∈ Ψ
′
−G,q(R

n) converges to an element

f0 ∈ Ψ
′
−G,q(R

n) in the weak sense, if for all ϕ ∈ ΨG,p(R
n) the sequence
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of numbers 〈fN , ϕ〉 converges to 〈f0, ϕ〉 as N → ∞. We recall that the

notation 〈f, ϕ〉 means the value of f ∈ Ψ
′
−G,q(R

n) on an element ϕ ∈
ΨG,p(R

n). For relations of the spaces ΨG,p(R
n) and its dual Ψ

′
−G,q(R

n) to

other spaces including Sobolev and Schwartz distributions see [47].

Further, we denote by ΨG,p(R
n) them-times topological direct product

ΨG,p(R
n) = ΨG,p(R

n)⊗ · · · ⊗ΨG,p(R
n),

of spaces ΨG,p(R
n). Elements of ΨG,p(R

n) are vector-functions Φ(x) =(
ϕ1(x), . . . , ϕm(x)

)
, where ϕj(x) ∈ ΨG,p(R

n), j = 1, . . . ,m. The space,

topologically dual toΨG,p(R
n), is the direct sumΨ

′
−G,p(R

n)⊕· · ·⊕Ψ
′
−G,p(R

n),

which we denote by Ψ
′
−G,p(R

n). Elements of Ψ
′
−G,p(R

n) are m-tuples of

generalized functions F (x) =
(
f1(x), . . . , fm(x)

)
, and the value of F ∈

Ψ
′
−G,p(R

n) on Φ ∈ ΨG,p(R
n) is defined by

F (Φ) = 〈F (x),Φ(x)〉 =
(
〈f1(x), ϕ1(x)〉, . . . , 〈fm(x), ϕm(x)〉

)
.

Finally for a topological vector space X we denote by C(k)[[a, b];X]
the space of vector-functions g(t), t ∈ [a, b], with values in X and k times
differentiable in the sense of the topology of X. Similarly, one can define
the space C∞[[a, b];X].

2.2. Pseudo-differential operators with constant symbols. Now we
introduce and consider some properties of pseudo-differential operators with
constant (that is not depending on the variable x) symbols defined and
continuous in a domain G ⊂ R

n. Outside of G or on its boundary the
symbol a(ξ) may have singularities of arbitrary type. It is clear that the
corresponding class of pseudo-differential operators are not in the frame of
classic pseudo-differential operators with infinitely differentiable symbols,
studied first in works by Kon-Nirenberg [26] and Hörmander [18]. For the
systematic presentation of the theory of pseudo-differential operators being
considered in this paper we refer the reader to [47].

For a function ϕ ∈ ΨG,p(R
n) the operator A(D) corresponding to the

symbol A(ξ) is defined by the formula

A(D)ϕ(x) =
1

(2π)n

∫
G
A(ξ)F [ϕ](ξ)eixξdξ x ∈ R

n. (2.3)

We note that the assumption ϕ ∈ ΨG,p(R
n) is crucial in the definition of

A(D) in (2.3). Generally speaking, A(D) has no sense even for functions
in the space C∞

0 (Rn). In fact, let ξ0 be a non-integrable singular point
of A(ξ) and denote by O(ξ0) some neighborhood of ξ0. Let us take a
function ϕ ∈ C∞

0 (Rn) with F [ϕ](ξ) > 0 for ξ ∈ O(ξ0) and F [ϕ](ξ0) = 1.
Then it is easy to verify that A(D)ϕ(x) = ∞. On the other hand, for
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ϕ ∈ ΨG,p(R
n) the integral in Eq. (2.3) is convergent due to the compactness

of supp F [ϕ] ⊂ G. We define the operator A(−D) acting in the space

Ψ
′
−G,q(R

n) by the duality formula

〈A(−D)f, ϕ〉 = 〈f,A(D)ϕ〉, f ∈ Ψ
′
−G,q(R

n), ϕ ∈ ΨG,p(R
n). (2.4)

Theorem 2.1. The space ΨG,p(R
n) (Ψ

′
−G,q(R

n)) is invariant with

respect to the action of an arbitrary pseudo-differential operator A(D)
(A(-D)), whose symbol is continuous in G. Moreover, if A(ξ)kN (ξ) is a
multiplier in Lp for every N ∈ N, then the operators

A(D) : ΨG,p(R
n) → ΨG,p(R

n),

and

A(−D) : Ψ
′
−G,q(R

n) → Ψ
′
−G,q(R

n),

act continuously.

Remark 2.2. In the case p = 2 an arbitrary pseudo-differential oper-
ator whose symbol is continuous in G acts continuously without the addi-
tional condition for A(ξ)kN (ξ) to be a multiplier in L2 for every N ∈ N.

Finally, the following theorem establishes conditions for continuous
closability of the pseudo-differential operator A(D) acting in the space
ΨG,p(R

n) to Sobolev spaces W s
p (R

n) for s ∈ R and p > 1.

Theorem 2.2. ([47]) Let 1 < p < ∞, −∞ < s, 
 < +∞ and μ(Rn \
G)= 0. For a pseudo-differential operator

A(D) : ΨG,p(R
n) → ΨG,p(R

n),

there exists a closed extension

Â(D) :W s
p (R

n) →W �
p(R

n),

if and only if the symbol A(ξ) satisfies the estimate

|A(ξ)| ≤ C(1 + |ξ|)s−�, C > 0, ξ ∈ Rn. (2.5)

Theorems 2.1 and 2.2 can be extended to matrix pseudo-differential
operators, elements of which satisfy theses theorems. Let

A(D) =

⎡
⎣a1,1(D) . . . a1,m(D)

. . . . . . . . .
am,1(D) . . . am,m(D)

⎤
⎦
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be the matrix pseudo-differential operator with the matrix-symbol

A(ξ) =

⎡
⎣ a1,1(ξ) . . . a1,m(ξ)

. . . . . . . . .
am,1(ξ) . . . am,m(ξ)

⎤
⎦ , ξ ∈ G ⊂ R

n. (2.6)

Namely, the following theorems are valid.

Theorem 2.3. The space ΨG,p(R
n) (Ψ

′
−G,q(R

n)) is invariant with

respect to the action of an arbitrary pseudo-differential operator A(D)
(A(−D)), whose symbol A(ξ) is continuous in G. Moreover, if aj,k(ξ)kN (ξ),
j, k = 1, . . . ,m, are multipliers in Lp for every N ∈ N, then the operators

A(D) : ΨG,p(R
n) → ΨG,p(R

n),

and

A(−D) : Ψ
′
−G,q(R

n) → Ψ
′
−G,q(R

n),

act continuously.

Theorem 2.4. Let 1 < p < ∞, −∞ < s, 
 < +∞ and μ(Rn \G) = 0.
For a pseudo-differential operator

A(D) : ΨG,p(R
n) → ΨG,p(R

n),

there exists a closed extension

Â(D) : Ws
p(R

n) → W�
p(R

n),

if and only if each entry ajk(ξ) of the symbol A(ξ) satisfies the estimate

|ajk(ξ)| ≤ C(1 + |ξ|)s−�, C > 0, j, k = 1, . . . ,m, ξ ∈ Rn. (2.7)

Proofs of these statements directly follow from Theorems 2.1 and 2.2.

2.3. Fractional integrals and derivatives. Let a function f(t) be de-
fined and measurable on an interval (a, b), a < b ≤ ∞. The fractional
integral of order β > 0 of the function f is defined by

aJ
β
t f(t) =

1

Γ(β)

∫ t

a
(t− τ)β−1f(τ)dτ, t ∈ (a, b),

where Γ(β) is Euler’s gamma function, that is

Γ(β) =

∫ ∞

0
tβ−1e−tdt.

If β = 0, then we agree that aJ
0
t = I, the identity operator. For arbitrary

β ≥ 0 and α ≥ 0 the following semigroup property holds:

aJ
β
t aJ

α
t =a J

α
t aJ

β
t =a J

β+α
t . (2.8)
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Let m be a natural number and m − 1 ≤ β < m. Then the fractional
derivative of order β of a function f in the sense of Riemann–Liouville is
defined as

aD
β
+f(t) =

1

Γ(m− β)

dm

dtm

∫ t

a

f(τ)dτ

(t− τ)β+1−m
, (2.9)

provided the expression on the right exists. One can write aD
β
+ in the

operator form

aD
β
+ =

dm

dtm
aJ

m−β
t . (2.10)

This operator is the left-inverse to the fractional integration operator aJ
β
t .

Indeed, due to relation (2.8), one has

aD
β
+ aJ

β
t =

dm

dtm
aJ

m−β
t aJ

β
t =

dm

dtm
aJ

m
t = I.

To explore a domain of aD
β
+ for any order β, consider first the case

0 < β < 1. It follows from definition (2.9) that if 0 < β < 1, then

aD
β
+f(t) =

1

Γ(1− β)

d

dt

∫ t

a

f(τ)dτ

(t− τ)β
. (2.11)

The operator form of aD
β
+ in this case is aD

β
+ = d

dt aJ
1−β
t . Let Cλ[a, b]

denote the class of Hölder continuous functions of order λ > 0 on an interval
[a, b]. The following statement says that if f is Hölder continuous of order
λ ∈ (0, 1), then its fractional derivative of order β < λ exists.

Proposition 2.1. ([44]) Let f ∈ Cλ[a, b], 0 < λ ≤ 1. Then for any

β < λ the fractional derivative aD
β
+f(t) exists and can be represented in

the form

aD
β
+f(t) =

f(a)

Γ(1− β)(t− a)β
+ ψ(t), (2.12)

where ψ ∈ Cλ−β[a, b].

Let m be a natural number and m − 1 ≤ β < m. Then the fractional
derivative of order β of a function f in the sense of Caputo is defined as

aD
β
∗ f(t) =

1

Γ(m− β)

∫ t

a

f (m)(τ)dτ

(t− τ)β+1−m
, t > a, (2.13)

provided the integral on the right exists.

The operator form of the fractional derivative aD
β
∗ of order β, m− 1 ≤

β < m, in the Caputo sense is

aD
β
∗ = aJ

m−β
t

dm

dtm
, (2.14)
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which is well defined, for instance, in the class of m-times differentiable
functions defined on an interval [a, b), b > a. It follows from definition
(2.13) that if 0 < β < 1, then

aD
β
∗ f(t) =

1

Γ(1− β)

∫ t

a

f ′(τ)dτ
(t− τ)β

. (2.15)

The operator form of aD
β
+ in this case is aD

β
+ = aJ

1−β
t

d
dt .

Let a = 0. In this case we write simply Jβ, Dβ
+ and Dβ

∗ respectively

instead of 0J
β
t , 0D

β
+ and 0D

β
∗ . Suppose f is a function defined on the semi-

axis [0,∞) and for which Dβ
+f(t) and D

β
∗ (t) exist.

Proposition 2.2. Let β > 0. Then the Laplace transform of Jβf(t)
is

L[Jβf ](s) = s−βL[f ](s), s > 0. (2.16)

Proposition 2.3. Letm−1 ≤ β < m, m = 1, 2, . . . . Then the Laplace

transform of Dβ
+f(x) is

L[Dβ
+f ](s) = sβL[f ](s)−

m−1∑
k=0

(DkJm−βf)(0)sm−1−k. (2.17)

Proposition 2.4. Let m− 1 < β ≤ m. The Laplace transform of the
Caputo derivative of a function f ∈ Cm−1[0,∞) is

L[Dβ
∗ f ](s) = sβL[f ](s)−

m−1∑
k=0

f (k)(0)sβ−1−k, s > 0. (2.18)

For β ∈ (0, 1] formulas (2.17) and (2.18) respectively take the forms:

L[Dβ
+f ](s) = sβL[f ](s)− (J1−βf)(0), (2.19)

L[Dβ
∗ f ](s) = sβL[f ](s)− f(0)sβ−1. (2.20)

We will use these formulas in the vector form:

L[DB
+ < f1, . . . , fm >](s) =< sβ1L[f1](s)− (J1−β1f1)(0), . . . , s

βmL[fm](s)

− (J1−βmfm)(0) > (2.21)

L[DB
∗ < f1, . . . , fm >](s) =< sβ1L[f1](s)− f1(0)s

β1−1, . . . , sβmL[fm](s)

− fm(0)sβm−1 > . (2.22)
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In these formulas B = 〈β1, . . . , βm〉 is a vector-order with 0 < βj ≤ 1, j =
1, . . . ,m, and

L[DB < f1, . . . , fm >](s) =< L[Dβ1f1](s), . . . , L[Dβmfm](s)

for both operators D = D+ and D = D∗.

3. Main results

Consider the following system of fractional order differential equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dβ1u1(t, x) = A1,1(D)u1(t, x) + . . . A1,m(D)um(t, x) + h1(t, x),

Dβ2u2(t, x) = A2,1(D)u1(t, x) + . . . A2,m(D)um(t, x) + h2(t, x),

· · ·
Dβmum(t, x) = Am,1(D)u1(t, x) + . . . Am,m(D)um(t, x) + hm(t, x),

(3.1)
where 0 < βj ≤ 1, j = 1, . . . ,m, and the operator D on the left expresses
either the Riemann-Liouville derivative D+ or the Caputo derivative D∗.
We will specify the initial conditions later depending on whether D is the
Riemann-Liouville or the Caputo derivative.

With the vector-order B = 〈β1, . . . , βm〉, introducing vector-functions
U(t, x) = 〈u1(t, x), . . . , um(t, x)〉, H(t, x) = 〈h1(t, x), . . . , hm(t, x)〉, we can
represent system (3.1) in the vector form:

DBU(t, x) = A(D)U(t, x) +H(t, x), (3.2)

where A(D) is the matrix pseudo-differential operator with the matrix-
symbol A(ξ), ξ ∈ G, defined in (2.6), and

DBU(t, x) = 〈Dβ1u1(t, x), . . . ,D
βmum(t, x)〉.

For simplicity we assume that the matrix-symbol is symmetric, ak,j(ξ) =
aj,k(ξ) for all k, j = 1, . . . ,m, and ξ ∈ G, and diagonalizable. Namely, there
exists an invertible (m×m)-matrix-function M(ξ), such that

A(ξ) =M−1(ξ)Λ(ξ)M(ξ), ξ ∈ G, (3.3)

with a diagonal matrix

Λ(ξ) =

⎡
⎣λ1(ξ) . . . 0
. . . . . . . . .
0 . . . λm(ξ)

⎤
⎦ . (3.4)

We denote entries of matricesM(ξ) andM−1(ξ) by μj,k(ξ), j, k = 1, . . . ,m,
and νj,k(ξ), j, k = 1, . . . ,m, respectively.

First we derive a representation formula for the solution of the initial
value problem for system (3.2) in the homogeneous case. Since initial con-
ditions depend on the form of the fractional derivative on the left hand side
of equation (3.2), the corresponding representations of solutions differ. We
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demonstrate the derivation in the case of Caputo fractional derivative. The
case of Rieman-Liouville fractional derivative can be treated similarly.

Consider the following Cauchy problem:

DB
∗ U(t, x) = A(D)U(t, x), t > 0, x ∈ R

n, (3.5)

U(0, x) = Φ(x), x ∈ R
n, (3.6)

where the fractional derivatives on the left are in the sense of Caputo.
Applying Fourier transform we obtain a system of fractional order ordinary
differential equations with a parameter ξ :

DB
∗ F [U ](t, ξ) = AF [U ](t, ξ), t > 0, ξ ∈ G,

with the initial conditions

F [U ](0, ξ) = F [Φ](ξ), ξ ∈ G.

Now applying the Laplace transform in the vector form (2.22), one has

〈sβ1LF [u1](s, ξ), . . . , s
βmLF [um](s, ξ)〉 = 〈sβ1−1ϕ1(ξ), . . . , s

βm−1ϕm(ξ)〉
+A(ξ)LF [U ](s, ξ), s > 0, ξ ∈ G.

Taking into account (3.3) the letter can be rewritten in the form

M−1(IsB − Λ(ξ))M(ξ)LF [U ](s, ξ) = IsB−1F [Φ](ξ),

where IsB, IsB−1 are diagonal matrices with diagonal entries sβj , sβj−1 j =
1, . . . ,m, respectively. The solution to the obtained system is

LF [U ](s, ξ) =M(ξ)N (s, ξ)M−1(ξ)F [Φ](ξ), (3.7)

where

N (s, ξ) =

⎡
⎢⎣

sβ1−1

sβ−λ1(ξ)
. . . 0

. . . . . . . . .

0 . . . sβm−1

sβm−λm(ξ)

⎤
⎥⎦ . (3.8)

It follows from (3.7) and (3.8) that

F [U ](t, ξ) =M(ξ)EB(Λ(ξ)tB)M−1(ξ)F [Φ](ξ), t > 0, ξ ∈ G. (3.9)

Here EB(Λ(ξ)tB) is the diagonal matrix of the form

EB(Λ(ξ)tB) =
⎡
⎣Eβ1(λ1(ξ)t

β1) . . . 0
. . . . . . . . .
0 . . . Eβm(λm(ξ)tβm)

⎤
⎦ , (3.10)

where Eβj
(z), j = 1, . . . ,m, are the Mittag-Leffler functions of indices

β1, . . . , βm. Thus, the solution of problem (3.5)-(3.6) has the representa-
tion

U(t, x) = S(t,D)Φ(x), t > 0, x ∈ R
n, (3.11)
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where S(t,D) is the solution matrix pseudo-differential operator with the
matrix-symbol

S(t, ξ) =M(ξ) EB
(
Λ(ξ)tB

)
M−1(ξ), t > 0, ξ ∈ G, (3.12)

whose entries are

sj,k(t, ξ) =

m∑
�=1

μj,�(ξ)ν�,k(ξ)Eβ�
(λ�(ξ)t

β�), j, k = 1, . . . ,m,

The explicit component-wise form of the solution is

uj(t, x) =

m∑
k=1

sj,k(t,D)ϕk(x)

=
1

(2π)n

m∑
k=1

m∑
�=1

∫
Rn

eiξxμj,�(ξ)Eβ�

(
λ�(ξ)t

β�

)
ν�,k(ξ)F [ϕk](ξ)dξ.

Theorem 3.1. Let A be a pseudo-differential operator with the sym-
bol A(ξ) continuous on G and satisfying the condition (3.3). Assume

that Φ(x) ∈ ΨG,p(R
n), H(t, x) ∈ AC[R+;ΨG,p(R

n)], and D1−B
+ H(τ, x) ∈

C[R+;ΨG,p(R
n)]. Then for any T > 0 Cauchy problem

DB
∗ U(t, x) = A(D)U(t, x) +H(t, x), t > 0, x ∈ R

n, (3.13)

U(0, x) = Φ(x), x ∈ R
n, (3.14)

has a unique solution U(t, x) ∈ C∞[(0, T ];ΨG,p(R
n)] ∩ C[[0, T ];ΨG,p(R

n)],
having the representation

U(t, x) = S(t,D)Φ(x) +

t∫
0

S(t− τ,D)D1−B
+ H(τ, x)dτ, t > 0, x ∈ R

n,

(3.15)
where S(t,D) is the pseudo-differential operator with the matrix-symbol
S(t, ξ) defined in (3.12).

P r o o f. The representation (3.15) follows directly from (3.11) and
from fractional Duhamel’s principle [46, 47]. Denote the first and second
terms on the right of (3.15) by V (t, x) and W (t, x), respectively:

V (t, x) = S(t,D)Φ(x), x ∈ R
n, (3.16)

W (t, x) =

t∫
0

S(t− τ,D)D1−B
+ H(τ, x)dτ, t ≥ 0, x ∈ R

n. (3.17)
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Then, in accordance with Theorem (2.3) V (t, x) ∈ ΨG,p(R
n) for every

fixed t ≥ 0, continuous on [0, T ], and infinitely differentiable on (0, T ) in
the topology of ΨG,p(R

n) due to the construction of the solution operator
S(t,D). Further, there exists a sequence (see (2.1))

HN (t, x) ∈ ΨN,p(R
n) ≡ ΨG,p(R

n)⊗ · · · ⊗ΨG,p(R
n),

such that HN (t, x) → H(t, x) as N → ∞ in the topology of ΨG,p(R
n).

Moreover, pN (HN ) = ‖HN‖p. Let

WN (t, x) =

t∫
0

S(t− τ,D)D1−B
+ HN (τ, x)dτ, N = 1, 2, . . . .

Then we have pN (WN ) = ‖F−1κNF [WN ]‖p ≤ T‖WN‖p <∞ for all N ≥ 1.
It follows thatWN ∈ ΨN,p(R

n) andWN (t, x) →W (t, x), as N → ∞, in the
topology of ΨN,p(R

n) for each fixed t ∈ [0, T ]. The continuity of W (t, x)
on [0, T ] in the variable t and its infinite differentiability on (0, T ) follows
from the construction of the solution operator S(t,D) in standard way. �

Theorem 3.2. Let p and q, 1 < p, q < ∞, be a conjugate pair and A

be a pseudo-differential operator with the symbolA(ξ) continuous on G and
satisfying the condition (3.3). Assume that Φ(x) ∈ Ψ′

−G,q(R
n), H(t, x) ∈

AC[R+;Ψ
′
−G,q(R

n)], and D1−B
+ H(τ, x) ∈ C[R+;Ψ

′
−G,q(R

n)]. Then for any
T > 0 Cauchy problem

DB
∗ V (t, x) = A(−D)V (t, x) +H(t, x), t > 0, x ∈ R

n, (3.18)

V (0, x) = Φ(x), x ∈ R
n, (3.19)

has a unique solution V (t, x) ∈ C∞[(0, T ];Ψ′
−G,q(R

n)]∩C[[0, T ];Ψ′
−G,q(R

n)],
having the representation

V (t, x) = S(t,−D)Φ(x) +

t∫
0

S(t− τ,−D)D1−B
+ H(τ, x)dτ, t > 0, x ∈ R

n,

(3.20)
where S(t,−D) is the pseudo-differential operator with the matrix-symbol
S(t,−ξ) defined in (3.12) ∗ .

P r o o f. We note that elements DB∗ V (t, x) and A(−D)V (t, x) belong
to the space Ψ′

−G,q(R
n) if V (t, x) ∈ Ψ′

−G,q(R
n) for each fixed t ≥ 0. This

fact follows from the definition of the fractional derivative DB∗ and Theorem
2.3.

∗ with −ξ instead of ξ
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The solution V (t, x) of the Cauchy problem (3.18) – (3.19), by defini-
tion, must satisfy the following conditions:

〈DB
∗ V (t, x), F (x)〉 = 〈V (t, x),A(D)F (x)〉 + 〈H(t, x), F (x)〉, t > 0,

(3.21)

〈V (0, x), F (x)〉 = 〈Φ(x), F (x)〉, (3.22)

for an arbitrary element F (x) in the space ΨG,p(R
n). We show that U(t, x)

defined in (3.20) satisfies both conditions in (3.21) and (3.22). Indeed, to
show this fact let us first assume that H(t, x) = 0 ∗∗ for all t ≥ 0. Then
(3.21) takes the form〈[
DB

∗ S(t,−D)− A(−D)
]
Φ(x), F (x)

〉
=

〈
Φ(x),

[
DB

∗ S(t,D)− A(D)
]
F (x)

〉
= 0, t > 0.

The operator S(t,D) is constructed so that DB∗ S(t,D)−A(D) = 0. Indeed,
if U(t, x) is a solution to equation (3.5), then it follows from representation
(3.11) that DB∗ U(t, x) = DB∗ S(t,D)Φ(x) = A(D)Φ(x) for any fixed Φ ∈
ΨG,p(R

n). This implies the equality DB∗ S(t,D) = A(D). Thus, condition
(3.21) is verified.

Further, it follows from (3.12) that the symbol S(t, ξ) at t = 0 reduces
to the identity matrix, since the matrix EB(0) is the identity matrix. There-
fore, the operator corresponding to the matrix-symbol S(0, ξ) is the iden-
tity pseudo-differential operator. Hence, V (0, x) = S(0,−D)Φ(x) = Φ(x).
Thus, condition (3.22) is also verified.

In the general case, for non-zero H(t, x), the representation (3.20) is an
implication of the fractional Duhamel principle [46, 47]. �

Now consider the following initial-value problem

DB
+U(t, x) = A(D)U(t, x), t > 0, x ∈ R

n, (3.23)

J1−BU(0, x) = Φ(x), x ∈ R
n, (3.24)

where the fractional derivatives on the left hand side of equation (3.23) are
in the sense of Riemann-Liouville. Performing similar calculations, in this
case for the solution we obtain the representation

U(t, x) = S+(t,D)Φ(x), t > 0, x ∈ R
n, (3.25)

where S+(t,D) is the solution matrix pseudo-differential operator with the
matrix-symbol

S+(t, ξ) =M(ξ) J1−BEB
(
Λ(ξ)tB

)
M−1(ξ), t > 0, ξ ∈ G, (3.26)

∗∗ as an element of Ψ′
−G,q(R

n)
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whose the entries are

s+j,k(t, ξ) =
m∑
�=1

μj,�(ξ)ν�,kJ
1−β�Eβ�

(λ�(ξ)t
β�), j, k = 1, . . . ,m,

The explicit component-wise form of the solution is

uj(t, x) =

m∑
k=1

s+j,k(t,D)ϕk(x)

=
1

(2π)n

m∑
k=1

m∑
�=1

∫
Rn

eiξxμj,�(ξ)J
1−β�Eβ�

(
λ�(ξ)t

β�

)
ν�,k(ξ)F [ϕk](ξ)dξ.

Theorem 3.3. Let A be a pseudo-differential operator with the symbol
A(ξ) continuous on G and satisfying the condition (3.3) and Φ ∈ ΨG,p(R

n).
Then for any T > 0 Cauchy problem

DB
+U(t, x) = A(D)U(t, x) +H(t, x), t > 0, x ∈ R

n, (3.27)

J1−BU(0, x) = Φ(x), x ∈ R
n, (3.28)

has a unique solution U(t, x) ∈ C∞[(0, T ];ΨG(R
n)], having the representa-

tion

U(t, x) = S+(t,D)Φ(x)+

t∫
0

S+(t−τ,D)H(τ, x)dτ, t > 0, x ∈ R
n, (3.29)

where S+(t,D) is the pseudo-differential operator with the matrix-symbol
S+(t, ξ) defined in (3.26).

Theorem 3.4. Let A be a pseudo-differential operator with the symbol
A(ξ) continuous on G and satisfying the condition (3.3) and Φ ∈ ΨG,p(R

n).
Then for any T > 0 Cauchy problem

DB
+U(t, x) = A(−D)U(t, x) +H(t, x), t > 0, x ∈ R

n, (3.30)

J1−BU(0, x) = Φ(x), x ∈ R
n, (3.31)

has a unique solution U(t, x) ∈ C∞[(0, T ];ΨG(R
n)], having the representa-

tion

U(t, x) = S+(t,−D)Φ(x) +

t∫
0

S+(t− τ,−D)H(τ, x)dτ, t > 0, x ∈ R
n,

(3.32)
where S+(t,−D) is the pseudo-differential operator with the matrix-symbol
S+(t,−ξ) defined in (3.26).
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The proofs of Theorems 3.3 and 3.4 are omitted, since they are similar
to the proofs of Theorems 3.1 and 3.2, respectively.

The properties of the solutions of problems (3.13)-(3.14) and (3.27)-
(3.28) essentially depend on the asymptotic behavior of the functions

Eβ�

(
λ�(ξ)t

β�

)
, 
 = 1, . . . ,m,

which form the symbols of solution operators; see (3.12) and (3.26). It is
known that for 0 < β < 2 the Mittag-Leffler function Eβ(z) has asymp-

totic behavior ∼ exp(z1/β), |z| → ∞, if | arg(z)| ≤ βπ/2; and Eβ(z) ∼
1/|z|, |z| → ∞, if βπ/2 ≤ | arg(z) ≤ π. Therefore, if a symbol A(ξ)
is complex-valued, then Eβ(A(ξ)t

β) may have an exponential growth as
|ξ| → ∞, even though A(ξ) has a polynomial growth at infinity.

Now suppose that the pseudo-differential operator A(D) satisfies the
following ellipticity condition: the symbol A(ξ), ξ ∈ R

n, is symmetric,
satisfies the condition (3.3) with a diagonal matrix Λ(ξ), and there exists
a number R0 > 0 such that for the entries λ�(ξ), 
 = 1, . . . ,m, of Λ(ξ) the
inequalities

−�(λ�(ξ)) ≤ η|ξ|r� , 
 = 1, . . . ,m, (3.33)

where �(z) is the real part of z, hold for all ξ : |ξ| ≥ R0; η > 0, r� ∈
R, 
 = 1, . . . ,m, are constants. In this case we have∣∣∣Eβ�

(λ�(ξ)t
β�)

∣∣∣ ≤ C1(1 + |λ�(ξ)|)−1 ≤ C2(1 + |ξ|)−r� , ξ ∈ R
n, (3.34)

with some C1, C2 positive constants. In the theorem below we use the
notation r = (r1, . . . , rm).

Theorem 3.5. Let the following conditions be verified:

(1) the operator A is an elliptic pseudo-differential operator satisfying
the condition (3.34);

(2) the symbol A(ξ) of the operator A is symmetric, continuous on R
n,

and satisfies the condition (3.3);
(3) Φ ∈ Ws

p(R
n), where 1 < p < ∞ and s = (s1, . . . , sm), sj ∈ R, j =

1, . . . ,m;
(4) H(t, x) ∈ AC[R+;W

s
p(R

n)] and D1−B
+ H(τ, x) ∈ C[R+;W

s
p(R

n)].

Then for any T > 0 Cauchy problem (3.13)-(3.14) has a unique solution
U(t, x) ∈ C∞[(0, T ];Ws+r

p (Rn)]∩C[[0, T ];Ws+r
p (Rn)], having the represen-

tation

U(t, x) = Ŝ(t,D)Φ(x) +

t∫
0

Ŝ(t− τ,D)D1−B
+ H(τ, x)dτ, t > 0, x ∈ R

n,

(3.35)
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where Ŝ(t,D) is the closure of the pseudo-differential operator with the
matrix-symbol S(t, ξ) defined in (3.12) in the space Ws

p(R
n).

P r o o f. Let components of Φ(x) are ϕk ∈ W sk
p (Rn), k = 1, ...,m,

and components hk(t, x), k = 1, . . . ,m of H(t, x) for each fixed t, belong
to W sk

p , respectively. We can choose any domain G whose complement
R
n \ G has zero measure. In particular, one can take G = R

n. Then the

denseness ΨG,p(Rn) = W sk
p (Rn) (see [47]) holds for each k = 0, . . . ,m− 1.

Hence, for each ϕk and hk(t, ·) we have an approximating sequences of func-
tions ΦN = (ϕ1,N , . . . , ϕm,N ) HN (t, ·) =

(
h1,N (t, ·), . . . , hm,N (t, ·)) with

ϕk,N , hk,N (t, ·) ∈ ΨG,p(R
n), N = 0, 1, 2, . . . , such that ϕk,N → ϕk and

hk,N (t, ·) → hk(t, ·) in the topology of ΨG,p(R
n). For fixed N , due to Theo-

rem 3.1, there exists a unique solution of the Cauchy problem (3.13)-(3.14),
where the initial data Φ(x) and H(t, x) are replaced by ΦN (x) and HN (t, x)
respectively, and this solution is represented by the formula

UN (t, x) = S(t,D)ΦN (x)+

t∫
0

S(t−τ,D)D1−B
+ HN (τ, x)dτ, t > 0, x ∈ R

n.

(3.36)
Since the components of the symbol S(t, ξ) of the solution operator S(t,D)
satisfy the estimate (3.34), it follows from Theorem 2.4 that there exists a

unique continuous closure Ŝ(t,D) of the operator S(tD), such that

Ŝ(t,D) : Ws
p(R

n) → Ws+r
p (Rn)

is continuous. Thus for the solution U(t, x) we have representation (3.6).
The fact that U(t, x) ∈ C∞[(0, T ];Ws+r

p (Rn)]∩C[[0, T ];Ws+r
p (Rn)] follows

from the construction of the solution through the sequence (3.36), due to
the density of ΨG,p(R

n) in W sk+rk
p (Rn), k = 1, . . . ,m. �

Similarly one can prove the existence of a unique solution in the Sobolev
spaces of the Cauchy problem (3.27)-(3.28). Below is the formulation of the
corresponding theorem.

Theorem 3.6. Let the following conditions be verified:

(1) the operator A is an elliptic pseudo-differential operator satisfying
the condition (3.34);

(2) the symbol A(ξ) of the operator A is symmetric, continuous on R
n,

and satisfies the condition (3.3);
(3) Φ ∈ Ws

p(R
n), where 1 < p < ∞ and s = (s1, . . . , sm), sj ∈ R, j =

1, . . . ,m;
(4) H(t, x) ∈ AC[R+;W

s
p(R

n)] and D1−B
+ H(τ, x) ∈ C[R+;W

s
p(R

n)].
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Then for any T > 0 Cauchy problem (3.27)-(3.28) has a unique solution
U(t, x) ∈ C∞[(0, T ];Ws+r

p (Rn)]∩C[[0, T ];Ws+r
p (Rn)], having the represen-

tation

U(t, x) = Ŝ+(t,D)Φ(x) +

t∫
0

Ŝ+(t− τ,D)D1−B
+ H(τ, x)dτ, t > 0, x ∈ R

n,

where Ŝ+(t,D) is the closure of the pseudo-differential operator with the
matrix-symbol S+(t, ξ) defined in (3.26) in the space Ws

p(R
n).

Remark 3.1. (1) The results of Theorems 3.1 - 3.6 coincide with
the known results in 1-D case, see, e.g. [47].

(2) The results obtained in Theorems 3.1 - 3.6 can be extended to the
case, when 0 < βj ≤ 1, j = 1, . . . ,m0 and 1 < βj ≤ 2, j =
m0 + 1, . . . ,m, where 0 ≤ m0 ≤ m, with properly adjusted initial
conditions.

(3) The results also can be extended to the case of fractional distributed
order differential operators (DODE) on the left hand side of the
considered systems.

Example. To illustrate the theorems proved above consider the fol-
lowing Cauchy problem

Dβ1∗ u1(t, x) = −D2u1(t, x)−Du2(t, x), t > 0, −∞ < x <∞, (3.37)

Dβ2∗ u2(t, x) = −Du1(t, x)−D2u2(t, x), t > 0, −∞ < x <∞, (3.38)

u1(0, x) = ϕ1(x), u2(0, x) = ϕ2(x), −∞ < x <∞. (3.39)

It is not hard to see that the symbol of the operator on the right hand side
of (3.37)-(3.38) is symmetric and has the representation

A(ξ) =

[−ξ2 −ξ
−ξ −ξ2

]
=

[
1/2 1/2
−1/2 1/2

] [−ξ2 + ξ 0
0 −ξ2 − ξ

] [
1 −1
1 1

]
.

(3.40)
As is seen from (3.40) that λ1(ξ) = −ξ2+ξ and λ2(ξ) = −ξ2−ξ. The symbol
of the solution operator S(t,D) is the matrx S(t, ξ) = {sj,k(t, ξ)}, j, k =
1, 2, with entries

s1,1(t, ξ) = s2,2(t, ξ) =
1

2
Eβ1((−ξ2 + ξ)tβ1) +

1

2
Eβ2((−ξ2 − ξ)tβ2), (3.41)

s1,2(t, ξ) = s2,1(t, ξ) =
1

2
Eβ1((−ξ2 + ξ)tβ1)− 1

2
Eβ2((−ξ2 − ξ)tβ2). (3.42)
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Therefore, the solution U(t, x) = 〈u1(t, x), u2(t, x)〉 to Cauchy problem
(3.37)-(3.39) has the representation:

u1(t, x) =

[
1

2
Eβ1((−D2 +D)tβ1) +

1

2
Eβ2((−D2 −D)tβ2)

]
ϕ1(x)

+

[
1

2
Eβ1((−D2 +D)tβ1)− 1

2
Eβ2((−D2 −D)tβ2)

]
ϕ2(x);

u2(t, x) =

[
1

2
Eβ1((−D2 +D)tβ1)− 1

2
Eβ2((−D2 −D)tβ2)

]
ϕ1(x)

+

[
1

2
Eβ1((−D2 +D)tβ1) +

1

2
Eβ2((−D2 −D)tβ2)

]
ϕ2(x).

In the explicit form this solution has the form

u1(t, x) =
1

2π

∞∫
−∞

[
1

2
Eβ1((−ξ2 + ξ)tβ1) +

1

2
Eβ2((−ξ2 − ξ)tβ2)

]
F [ϕ1](ξ)dξ

+
1

2π

∞∫
−∞

[
1

2
Eβ1((−ξ2 + ξ)tβ1)− 1

2
Eβ2((−ξ2 − ξ)tβ2)

]
F [ϕ2](ξ)dξ;

u2(t, x) =
1

2π

∞∫
−∞

[
1

2
Eβ1((−ξ2 + ξ)tβ1)− 1

2
Eβ2((−ξ2 − ξ)tβ2)

]
F [ϕ1](ξ)dξ

+
1

2π

∞∫
−∞

[
1

2
Eβ1((−ξ2 + ξ)tβ1) +

1

2
Eβ2((−ξ2 − ξ)tβ2)

]
F [ϕ2](ξ)dξ.

Moreover, obviously, λk(ξ) ≤ 0, k = 1, 2, for all ξ satisfying the inequal-
ity |ξ| ≥ 1. Applying Theorem 3.5 we have U(t, x) ∈ C∞[(0, T ];Ws

p(R
n)] ∩

C[[0, T ];Ws
p(R

n)], where s = (s1, s2), if ϕk ∈ Wsk
p (Rn), k = 1, 2.
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[18] L. Hörmander, The Analysis of Linear Partial Differential Operators.
III. Pseudo-Differential Operators. Springer-Verlag, Berlin (1985).

[19] R. Islam, A. Pease, D. Medina, T. Oraby, Integer versus fractional
order SEIR deterministic and stochastic models of measles. Intern. J.
of Environmental Res. and Public Health 17, No 6 (2020), 1–19.

[20] N.A. Khan, O.A. Razzaq, S.P. Mondal, Q. Rubbab, Fractional order
ecological system for complexities of interacting species with harvesting
threshold in imprecise environment. Adv. in Difference Equations 405
(2019), 1–34.

[21] A.A. Kilbas, H.M. Srivastava, J.J. Trijillo, Theory and Applications of
Fractional Differential Equations. Elsevier Science (2006).

[22] A.N. Kochubei, Fractional-parabolic systems. Potential Analysis 37
(2012), 1–30.

[23] A.N. Kochubei, Fractional-hyperbolic systems. Fract. Calc. Appl.
Anal. 16, No 4 (2013), 860–873; DOI:10.2478/s13540-013-0053-4;
https://www.degruyter.com/view/journals/fca/16/4/

fca.16.issue-4.xml.
[24] A.N. Kochubei, Fractional-parabolic equations and systems. Cauchy

problem. Handbook of Fractional Calculus and Applications, De-
Gruyter (2019), 145–158; Fractional-hyperbolic equations and systems.
Cauchy problem. Handbook of Fractional Calculus and Applications, De
Gruyter (2019), 197–222.

[25] A. Kochubei, Yu. Luchko (Eds), Handbook of Fractional Calculus with
Applications. Volume 2: Fractional Differential Equations. De Gruyter
(2019).

[26] A. Kohn, L. Nirenberg, An algebra of psudo-differential operators.
Commun. on Pure and Appl. Math. 18 (1965), 269–305.

[27] V.A. Kostin, The Cauchy problem for an abstract differential equation
with fractional derivatives. Russ. Dokl. Math. 46 (1993), 316–319.

[28] K. Koziol, R. Stanislawski, G. Bialic, Fractional-order SIR epidemic
model for transmission prediction of COVID-19 disease. Appl. Sci. 10
(2020), 1–9; DOI:10.3390/app10238316.

[29] F. Li, J. Liang, H.-K. Xu, Existence of mild solutions for fractional
integrodifferential equations of Sobolev type with nonlocal conditions.
J. of Math. Anal. and Appl. 391 (2012), 510–525.

[30] Y. Luchko, M. Rivero, J.J. Trijillo, M.P.Velasco, Fractional models,
non-locality, and complex systems. Computers and Math. with Appl.
59 (2010), 1048–1056.

[31] T. Machado, A. Lopes, Relative fractional dynamics of stock markets.
Nonlin. Dynamics 86, No 3 (2016), 1613–1619.

https://www.degruyter.com/view/journals/fca/16/4/fca.16.issue-4.xml


276 S. Umarov, R. Ashurov, Y. Chen

[32] R. Magin, Fractional calculus in bioengineering. Critical Reviews in
Biomedical Engineering 32, No 1 (2004), 1–104.

[33] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity:
An Introduction to Mathematical Models. Imperial College Press (2010).

[34] M.O. Mamchuev, Boundary value problem for a multidinensional sys-
tem of equations with Riemann–Liouville fractional derivatives. Sib.
Elektron. Mat. Izv. 16 (2019), 732–747; doi:10.33048/semi.2019.16.049.

[35] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffu-
sion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000),
1–77.

[36] S.K. Ntouyas, M. Obaid, A coupled system of fractional differential
equations with nonlocal integral boundary conditions. Adv. in Differ-
ence Equations 2012 (2012), Art. ID 130, 8 pp.

[37] Z. Odibat, Analytic study on linear systems of fractional differential
equations. Computers and Math. with Appl. 59 (2010), 1171–1183.

[38] I. Owusu-Mensah, L. Akinuemi, B. Oduro, O.S. Iyiola, A fractional
order approach to modeling and simulations of the novel COVID-
19. Adv. in Difference Equations 2020 (2020), Art. ID 683, 21 pp.;
doi:10.1186/s13662-020-03141-7.

[39] T. Pierantozzi, Fractional evolution Dirac-like equations: Some prop-
erties and a discrete Von Neumann-type analysis. J. Comp. Appl. Math.
224 (2009), 284–295.

[40] I. Podlubny, Fractional Differential Equations. Academic Press (1998).
[41] K. Rajagopal, N. Hasanzadeh, F. Parastesh, I.I. Hamarash, S. Jafari,

I Hussain, A fractional-order model for the novel coronavirus (COVID-
19) outbreak. Nonlin. Dynamics 101 (2020), 701–718.

[42] S. Rana, S. Bhattacharya, J. Pal, G. N’Guérékata, J. Chattopadhyay,
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