
RESEARCH PAPER

SHOULD I STAY OR SHOULD I GO?

ZERO-SIZE JUMPS IN RANDOM WALKS
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Abstract

We study Markovian continuos-time random walk models for Lévy
flights and we show an example in which the convergence to stable densi-
ties is not guaranteed when jumps follow a bi-modal power-law distribution
that is equal to zero in zero. The significance of this result is two-fold: i)
with regard to the probabilistic derivation of the fractional diffusion equa-
tion and also ii) with regard to the concept of site fidelity in the framework
of Lévy-like motion for wild animals.
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1. Introduction

This research is motivated by the fact that, in the literature dedicated to
random walks for anomalous diffusion, the specific value of the frequency of
the jumps with zero-size is disregarded as if it does not affect the motion of
the walker, e.g., [50, 65, 6, 70, 62, 46, 2, 47, 63, 44, 16, 18, 23, 33, 45, 71, 36].
Actually, in the literature it is disregarded if the walker does not move in
the majority of the iterations because the most frequent jump-size is zero
(i.e., the jump-size distribution is unimodal with mode located in zero) or,
in opposition, if the walker always moves because the jumps with zero-size
never occur (i.e., the jump-size distribution is bi-modal and equal to zero in
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zero). As a matter of fact, in the large-time limit, this irrelevance holds true
for random-walk models of the Brownian motion when the corresponding
jump-processes follow a Gaussian law or a coin-flipping rule. On the other
side, anomalous diffusion is explained by Lévy flights, rather than by the
Brownian motion, and Lévy flights are defined as Markovian random walks
that converge to stable densities because of power-law distributed jumps
[65, 6].

Before starting, we declare that we are more confident in using termi-
nology, notions and notation adopted in physics. Hence, we do not refer to
the considered diffusion processes as random-walk models with Lebesgue
measure when they satisfy the Central Limit Theorem or as long-jump pro-
cesses with Hausdorff measure when they satisfy the generalised Central
Limit Theorem in the sense of Lévy, but we term the processes according
to the resulting probability density function (pdf), namely we call Brownian
motion the processes whose walker’s distribution converges to a Gaussian
law and we term Lévy flights the processes whose walker’s distribution
converges to a stable law.

The evolution in time of Lévy flights emerges to be governed by a
fractional diffusion equation [66, 46, 47, 71]. A number of properties of
Lévy flights has been studied, e.g., [10, 11, 13, 57, 55, 54]. However, in the
probabilistic derivation of the fractional diffusion equation, the distinctive
singularity of the fractional Laplacian is obtained, with a constant time-
step, when the distribution of jumps is bi-modal and equal to zero in zero
[68], see also Appendix B. Hence, the frequency of jumps with zero-size is
expected to play a key role in modelling fractional anomalous diffusion.

Here we analyse this literature inconsistency between the apparent ir-
relevance of the frequency of zero-size jumps, as promoted by random-walk
models for Lévy flights, and the link between the jump distribution and
the distinctive singularity of the fractional Laplacian, as established by
probability arguments for deriving the fractional diffusion equation [68].
In particular, in this paper we provide an example to show that it is
not guaranteed that a Markovian continuous-time random walk (CTRW),
with jump-sizes uncoupled from the waiting-times and displaying power-
law tails, converges to a stable density when the jumps follow a bi-modal
distribution equal to zero in zero, that is the one in agreement with the
probabilistic derivation [68], and, moreover, the resulting diffusive process
can be non self-similar.

The consequence of this loss of self-similarity is the emergence of a
time-scale for realizing the large-time limit. Such time-scale results to be
dependent on the stability parameter by spanning from zero to infinity.
Hence, the large-time limit could not be reached in real systems.
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Even if this can be considered a second order effect, in diffusion pro-
cesses the maximum of the walker’s distribution stays located in the starting
site at all elapsed times and, in the large-time limit, the scaling-law in time
of the distribution around its maximum is important for determining the
properties of recurrence and transience of the random walk [1]. There-
fore, attaining the large-time limit together with the scaling-law in time
of the walker’s distribution maximum have a fundamental role on deter-
mining the suitability of the CTRW approach for modelling Lévy flights,
because of a failing performance or a compatible performance by a CTRW
model for reproducing recurrence and transience of the many observed sig-
natures of Lévy flights. Since Lévy flights can be modelled, for example, also
through stochastic differential equations driven by Lévy-noise [14, 46, 11],
through parametric subordination [26, 24, 25] or through other methods
[21, 20, 22, 69], this result establishes a criterion for the selection of proper
modelling approaches for Lévy flights.

In particular, in the spirit of Pólya’s theorem [60, 52], recurrence and
transience are of paramount importance on the way home. The motion of
wild animals has been associated many times to power-law distributions
both in the view of the celebrated, and criticised, Lévy flights foraging hy-
pothesis [15, 32, 58, 72, 4, 61, 34], and also in the view of the concept of site
fidelity [19, 17]: the recurrent visit of an animal to a previously occupied
location [28, 3, 7, 5]. The fact that the large-time limit for determining the
recurrence or transience of the process could not be realistically reached
clashes against the concept of site fidelity, which is straightforwardly re-
lated to recurrence, and this provides a further weakness of the power-law
hypothesis for animal behaviour.

To conclude, our result highlights the need to investigate more deeply
the role of zero-size jumps in random walks with power-law distributed
jumps.

In Section 2, we call the attention to the small wavelength expansion
of the characteristic function of jumps that are power-law distributed and
we derive the conditions for the loss of self-similarity in the resulting pro-
cess. In Section 3, we discuss the significance of the derived result both i)
in the framework of the probabilistic derivation of the fractional diffusion
equation, as far as the relation between zero-size jumps and the distinctive
singularity of the fractional Laplacian is concerned, and ii) in the frame-
work of animal behaviour, as far as the concept of site fidelity and the Lévy
flights foraging hypothesis are concerned, and we furtherly highlight the ef-
fect due to zero-size jumps for reaching the large-time limit. In Section 4,
we provide summary and conclusions in the perspective of future research.
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2. Power-law tails, zero-size jumps and self-similarity

We denote by ρ(xxx; t) the distribution of the walker’s displacement xxx at
time t, with xxx = (x1, ..., xN ) ∈ R

N and t > 0, such that∫
RN

ρ(xxx; t) dxxx = 1 and ρ(xxx; t) > 0 for all (xxx, t) ∈ R
N × (0,+∞) . (2.1)

Moreover, we assume as initial datum ρ(xxx; 0) = δ(xxx). In a CTRW model,
the distribution ρ(xxx; t) is governed by the Montroll–Weiss equation [50, 64]
that, in the Markovian case with jump-sizes uncoupled from waiting-times,
reads

ρ̂(κκκ; t) = e−(1−ϕ̂(κκκ))t/τ , κκκ ∈ R
N , (2.2)

where ρ̂(κκκ; t) and ϕ̂(κκκ) = ϕ̂(�κκκ) are the characteristic functions of ρ(xxx; t)
and of the jump pdf ϕ(xxx) = ϕ(xxx/�)/�N , respectively, with � as the length-
unit of the jumps and τ as the time-unit - and also the mean value - of the
waiting-times that are exponentially distributed.

Here, we are interested in establishing an observable that allows for
discriminating between the case “Should I stay?”: when the walker does
not move in the majority of the iterations because the most frequent jump-
size is zero, i.e., ϕ(xxx) is an unimodal jump pdf such that ϕ(0) = sup{ϕ(xxx) :
xxx ∈ R

N}; and the opposite case “Should I go?”: when the walker always
moves because the jumps with zero-size never occur, i.e., ϕ(xxx) is a bi-modal
jump pdf such that ϕ(0) = inf{ϕ(xxx) : xxx ∈ R

N} = 0. We say that jump-sizes
in the “Should I go?” condition follow a rule à la coin-flipping.

By applying in one single step the analog of the Kramers–Moyal expan-
sion and of the Pawula theorem, whatever the jump pdf ϕ(xxx) is such that
it holds [46, 47, 45, 71, 36]

ϕ̂(κκκ) � 1− �α |κκκ|α + o(|κκκ|α) , �|κκκ| � 1 , 0 < α ≤ 2 , (2.3)

then, if in the small wavelength expansion (2.3) we set α = 2, from equation
(2.2) we obtain that ρ(xxx; t) solves the evolution problem{

∂ρ

∂t
= DΔρ , in R

N × (0,+∞) ,

ρ(xxx; 0) = δ(xxx) ,
(2.4)

where D = �2/τ is the diffusion coefficient and, actually, ρ(xxx; t) is a Gauss-
ian density:

ρ(xxx; t) = G(xxx; t) = 1

(Dt)1/2
G
(

xxx

(Dt)1/2
; 1

)
=

1

(4πDt)N/2
e−

|xxx|2
4Dt , (2.5)
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so we say that this CTRW is a model for the Brownian motion, with vari-
ance

σ2 =

∫
RN

|xxx|2ρ(xxx; t) dxxx = 2NDt . (2.6)

On the contrary, if in the small wavelength expansion (2.3) we consider
the interval 0 < α < 2, from equation (2.2) we obtain that ρ(xxx; t) solves
the fractional evolution problem{

∂ρ

∂t
+Dα (−Δ)

α
2 ρ = 0 , 0 < α < 2 , in R

N × (0,+∞) ,

ρ(xxx; 0) = δ(xxx) ,
(2.7)

where Dα = �α/τ is the fractional diffusion coefficient, therefore D2 = D,

and (−Δ)α/2, α ∈ (0, 2), is the fractional Laplacian [8, 37, 38] such that,
actually, ρ(xxx; t) is a Lévy stable density [29], i.e.,

ρ(xxx; t) = Lα(xxx; t) =
1

(Dα t)N/α
Lα

(
xxx

(Dα t)1/α
; 1

)
, (2.8)

and we say that this CTRW is a model for Lévy flights [71], with fractional
absolute moments [46, 48]

σq =

∫
RN

|xxx|qρ(xxx; t) dxxx ∝ (Dαt)
q/α , 0 < q < α < 2 . (2.9)

Here we do not specify any particular definition of the fractional Laplacian,
because we consider only processes in an unbounded domain and in this
case there are at least ten equivalent definitions [37]. In bounded domains,
the spectral representation results to be favourite, with respect others, for
diffusion problems because it is based on the heat kernel, namely the Brow-
nian motion [12]. Mathematical and physical interpretations of the frac-
tional Laplacian are provided by Hilfer [30, 31] and a number of physical
systems governed by space fractional kinetics are reported, for example,
by Uchaikin & Sibatov [67]. A noteworthy case of diffusion problem (2.7)
is the special case α = 1 that leads to the Cauchy (Lorentz) distribution
[29, 1]

ρ(xxx; t) = L1(xxx; t) =
N

(D1t)N
1

[1 + (|xxx|/(D1t))2](N+1)/2
, (2.10)

where N is the normalization factor.

Whenever the derivation of CTRW models for the Brownian motion
and for Lévy flights is strictly based on the small wavelength expansion
of the characteristic function of jumps (2.3), the difference between the
conditions “Should I stay?” and “Should I go?” is neglected because this
limit provides the behaviour of the tails of the resulting walker’s distribu-
tion ρ(xxx; t) and then, in this respect, the distribution of small jump-sizes
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Figure 1. Left: plots of the one-dimensional (N = 1)
jump pdfs (2.11a) and (2.12a) corresponding to the Should
I stay? and Should I go? conditions, respectively, for the
generation of the Brownian motion from CTRW models.
Right: plots of the Gaussian walker’s distribution ρ(xxx; t)
(2.5) of the CTRW models for the Brownian motion as gen-
erated by using the one-dimensional (N = 1) jump pdfs
(2.11a) (filled symbols) and (2.12a) (empty symbols) at
t = 10τ , 100τ , 1000τ represented by squares, diamons and
triangles, respectively: the short-time effects of the coin-
flipping rule (2.12a) is visible.

is irrelevant. Actually, the application of this method could mislead to the
undeclared statement - on the back of the mind - that the small wavelength
expansion of the characteristic function of the jump pdf should be a series
with alternating signs, namely an alternating series, like the Taylor expan-
sion of a completely monotonic function is, but this is not always true for
stable densities. Here we investigate the effect of this non-alternation of
signs in the resulting random walk.

In the case of the CTRW model for the Brownian motion, this unde-
clared statement is true both in the “Should I stay?” and “Should I go?”
conditions, see Figure 1, in fact, in the isotropic case, it holds

ϕ(xxx) =
1

(4π�2)N/2
e−

|xxx|2
4�2 , (2.11a)

ϕ̂(κκκ) = e−�2|κκκ|2 � 1− �2|κκκ|2 + �4

2
|κκκ|4 + o(|κκκ|4) , �|κκκ| � 1 , (2.11b)

and also

ϕ(xxx) =
1

2
[δ(xxx −

√
2� êee) + δ(xxx+

√
2� êee)] , (2.12a)
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where êee is the basis vector (êee ·êee = 1) with isotropic symmetry so xxx = |xxx| êee =√
2� êee and κκκ = |κκκ| êee such that

ϕ̂(κκκ) = cos(
√
2�κκκ · êee) = cos(

√
2�|κκκ| êee · êee)

� 1− �2 |κκκ|2 + �4

6
|κκκ|4 + o(|κκκ|4) , �|κκκ| � 1 . (2.12b)

Conversely, in the case of CTRW models for Lévy flights, although this
undeclared statement is true in the “Should I stay?” condition and in fact,
with 0 < α < 2, it holds

ϕ(xxx) =
1

�N
Lα

(xxx
�

)
∼ 1

|xxx|α+N
, |xxx| → +∞ , (2.13a)

ϕ̂(κκκ) = e−�α |κκκ|α � 1− �α |κκκ|α +
�2α

2
|κκκ|2α + o(|κκκ|2α) , �|κκκ| � 1 , (2.13b)

and ρ(xxx; t) solves (2.7), unfortunately, the alternating sign expansion (2.13b)
is not always true in the “Should I go?” condition.

For mathematical convenience, we provide an example, in the one-
dimensional (N = 1) case, of a jump pdf whose small wavelength expansion
of the characteristic function is not an alternating series.

In order to arrange the “Should I go?” condition within the framework
of power-law distributed jumps, we consider the one-sided (extremal) Lévy
densities L−α

α (x) [59], with x ∈ R, i.e., L−α
α (x) > 0 when x > 0 and

L−α
α (x) = 0 when x ≤ 0, with 0 < α < 1. Thus one-sided Lévy densities

can be used for defining a jump rule à la coin-flipping by taking into account
also the remarkable limit L−1

1 (x) = δ(x − 1). The power-law of the tails
of the jump pdf ϕ(x) is spanned inside the range of the stable parameter
(0, 1) ∪ (1, 2) as follows:

ϕ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

2

1√
2 �

L−α
α

( |x|√
2�

)
∼ 1

|x|α+1
, |x| → +∞ , (2.14a)

1

2

α

Γ(1/α)|x| L
−α
α

( |x|√
2�

)
∼ 1

|x|(α+1)+1
, |x| → +∞ . (2.14b)

We observe that the Brownian coin-flipping rule (2.12a) is recovered from
both the Lévy coin-flipping rules (2.14a) and (2.14b) when α = 1, while the
special case of the Cauchy distribution (2.10) is not achievable. A study of
the considered Lévy coin-flipping rules (2.14a, 2.14b) is moved in Appendix
A where formulae useful for the following analysis are derived.

See plots of the one-dimensional (N = 1) jump pdfs (2.13a) and (2.14a,
2.14b) in Figure 2.
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Figure 2. Plots of the one-dimensional (N = 1) jump pdfs
(2.13a) - left column - and (2.14a, 2.14b) - right column
- corresponding to the Should I stay? and Should I go?
conditions, respectively. Left column: solid lines decrease
as |x|−(α+1) and dashed lines as |x|−(2α+1) with 0 < α < 1.

Right column: solid lines decrease as |x|−(α+1) and dashed
lines as |x|−[(α+1)+1] with 0 < α < 1.

From the Lévy coin-flipping rule (2.14a), we have that for κ ∈ R the
characteristic function is
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ϕ̂(κ) =
∞∑
n=0

(−1)n

n!
sin

[π
2
(1 + nα)

]
(
√
2� |κ|)nα

� 1− sin
[π
2
(1 + α)

]
(
√
2� |κ|)α

+
1

2
sin

[π
2
(1 + 2α)

]
(
√
2� |κ|)2α + o(|κ|2α) , �|κ| � 1 , (2.15)

hence expansion (2.15) is an alternating series if 0 < α ≤ 1/2 such that
ρ(x; t) solves (2.7), but if 1/2 < α < 1 then we have

sin
[π
2
(1 + α)

]
> 0 and sin

[π
2
(1 + 2α)

]
< 0 , (2.16)

and expansion (2.15) is not a series with alternating signs. In this case,
from equation (2.2) it follows that

ρ̂(κ; t) = e−(�α|κ|α+ 1
2
�2α|κ|2α) t/τ , (2.17)

with

�α = (
√
2�)α

∣∣∣sin [π
2
(1 + α)

]∣∣∣ , �2α = (
√
2�)2α

∣∣∣sin [π
2
(1 + 2α)

]∣∣∣ , (2.18)

and therefore ρ(x; t) solves the fractional evolution problem⎧⎪⎪⎨⎪⎪⎩
∂ρ

∂t
+Kα (−Δ)

α
2 ρ+

1

2
K2α (−Δ)αρ = 0 , in R× (0,+∞) ,

ρ(x; 0) = δ(x) ,
1

2
< α < 1 ,

(2.19)

where

Kα =
�α
τ

= Dα 2
α/2

∣∣∣sin [π
2
(1 + α)

]∣∣∣ , K1 = 0 , (2.20)

and

K2α =
�2α
τ

= D2α 22α/2
∣∣∣sin [π

2
(1 + 2α)

]∣∣∣ , 1

2
K2 = D2 = D , (2.21)

such that ρ(x; t) is a convolution of Lévy stable densities:

ρ(x; t) =

∫
Rn

Lα(x− ξ; t)L2α(ξ; t) dξ

=
1

(Kα

√K2α/2 t3/2)N/α

∫
Rn

Lα

(
x− ξ

(Kαt)1/α
; 1

)
×L2α

(
ξ

(K2αt/2)1/(2α)
; 1

)
dξ , (2.22)
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with fractional absolute moments [9, 56]

σq ∝
⎧⎨⎩ (K2αt)

q/(2α) , t → 0 ,

(Kαt)
q/α , t → +∞ ,

0 < q < α . (2.23)

From the characteristic function (2.17), we have that the tails of the dis-
tribution ρ(x; t) (2.22) follow the same power-law of the tails of a stable
density of stability parameter α, see Figures 3 and 4, namely

ρ(x; t) � Lα(x; t) , 0 < α < 1 , |x| 
 � . (2.24)

Convolution integral (2.22) has been studied in a number of papers as
fundamental solution of double-order space-fractional diffusion equation [9],
as generalised Voigt function [40, 56], or as a sum of two independent stable
random variables [53, 51].

From the Lévy coin-flipping rule (2.14b), we have that

ϕ̂(κ) =
1

Γ(1/α)

∞∑
n=0

(−1)n

n!

Γ
(
1
α − n

α

)
Γ(1− n)

sin
[π
2
(1 + n)

]
(
√
2� |κ|)n

+
α
√
2�κ

Γ(1/α)

∞∑
n=0

(−1)n

n!

Γ(−1− αn)

Γ(−αn)
sin

[π
2
(2 + αn)

]
(
√
2� |κ|)αn

� 1− α

Γ(1/α)

sin(πα/2)

1 + α
(
√
2� |κ|)α+1

+
α

Γ(1/α)

sin(πα)

1 + 2α
(
√
2� |κ|)2α+1+ o(|κ|2α+1) , �|κ| � 1 , (2.25)

since 0 < α < 1, expansion (2.25) is an alternating series and ρ(x; t) solves

(2.7) by replacing α → (α+1) andDα → Dα =
2(α+1)/2

Γ(1/α)

α

1 + α
sin

[π
2
α
] �α+1

τ
,

see Figure 5.

Before ending this section, we want to highlight that both jump pdfs
(2.14a) and (2.14b) tend to the coin-flipping rule (2.12a) when α → 1 and
so both the resulting processes tend to the Brownian motion. However,
from series expansions (2.15) and (2.25) it emerges that they tend to the
Brownian motion in a very different way. In fact, we observe that series
expansion (2.15) reduces to (2.12b) through the third term ∝ |κ|2α because
the coefficient of the second term goes to 0, while series expansion (2.25)
reduces to (2.12b) through the second term ∝ |κ|α+1 because the coefficient
of the third term goes to 0.
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Figure 3. Plots of the tails of the walker’s distribu-
tion ρ(x; t) obtained with jump pdf (2.14a) at times t =
10τ, 100τ, 1000τ marked by squares, triangles and diamonds,
respectively. The dashed lines represent the power-law de-
caying |x|−(α+1).
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Figure 4. Plots of the central part of the walker’s dis-
tribution ρ(x; t) obtained with jump pdf (2.14a) at times
t = 10τ, 100τ, 1000τ marked by squares, triangles and dia-
monds, respectively. The dotted lines represent Lévy stable
densities of index α and the dashed lines the power-law de-
caying |x|−(α+1). The loss of self-similarity in the interval
1/2 < α < 1 is evident.
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Figure 5. Plots of the walker’s distribution ρ(x; t) obtained
with jump pdf (2.14b) at times t = 10τ, 100τ, 1000τ marked
by squares, triangles and diamonds, respectively. The dot-
ted lines represent Lévy stable densities of index (α+1) and

the dashed lines the power-law decaying |x|−[(α+1)+1].
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Figure 6. Plot of the time-scale T as defined in formula (3.7).

3. Discussion and significance

3.1. Jump pdf and fractional Laplacian singularity. Our first remark
on the above results concerns the comparison with the probabilistic deriva-
tion of the fractional diffusion equation (2.7) provided by Valdinoci [68],
see Appendix B for a short reminder. In fact, from a generic probabilistic
framework where the walker’s distribution function ρ(xxx; t) is updated at
each fixed time-step Δt through a symmetric jump pdf ϕ(Δx), i.e.,

ρ(xxx; t+Δt) =

∫
RN

ϕ(Δxxx)ρ(xxx−Δxxx; t) dΔxxx , (3.1)

fractional diffusion equation (2.7) is obtained only if ϕ(Δxxx) ∝ |Δxxx|−N−α

with ϕ(0) = 0, namely only if the distribution of the jumps follows a rule
à la coin-flipping. As a matter of fact, condition ϕ(0) = 0 turns out to
be straightforwardly related to the singularity of the fractional Laplacian
at 0 and for this reason the “Should I go?” condition emerges to be of
paramount importance for fractional diffusion modelling, see Appendix B.
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Fractional diffusion equation (2.7) can be derived on the basis of (3.1)
also by considering formula (3.1) in the domain of the characteristic func-
tions and by applying the small wavelength expansion [33]. However, the
previous discussion about the small wavelength expansion of the charac-
teristic function of jumps and the consequence due to alternating and non-
alternating series holds also for this derivation method. This procedure
does not catch the peculiar role of the “Should I go?” condition that is
mapped through the jump rule à la coin-flipping - namely ϕ(0) = 0 - into
the distinctive singularity of the fractional Laplacian, see Appendix B.

As it follows from the previous analysis, a Markovian CTRW converges
always to a density function that solves the fractional diffusion equation
(2.7) only if the jump pdf has its maximum in 0, i.e., in the “Should I
stay?” condition, and indeed when the jumps follow a rule à la coin-flipping,
i.e., the “Should I go?” condition, that is the one compatible with the
probabilistic derivation [68], it is not guaranteed that the resulting density
function solves (2.7).

Hence, concerning the significance of the previous analysis, we state
that when the small wavelength expansion of the characteristic function of
the jump pdf is not an alternating series then the process is not self-similar
and it is not governed by the fractional diffusion equation (2.7). More
concretely, in the studied example, the jump rule à la coin-flipping (2.14a),
when 1/2 < α < 1, generates a process that converges to a Voigt-like
distribution [40, 56], it is not self-similar and is governed by the double-
order fractional diffusion equation (2.19). Besides the many fields where the
Voigt profile emerges, we report here that recently it has been highlighted
that the Voigt profile is a good descriptor of the processes occurring in
protein folding and in the native state [41].

3.2. Indetermined homecoming: the effect of the Lévy coin-flipping
rule on transience (and recurrence) of anomalous diffusion pro-
cesses. Our second remark on the above results concerns the problem of
transience (and recurrence) for power-law processes and its relation with
the concept of site fidelity in animal behaviour [28, 3, 7, 5, 19, 17] and
with the Lévy flights foraging hypothesis [15, 32, 58, 72, 4, 61, 34]. Affili,
Dipierro & Valdinoci [1] developed an approach for deriving the conditions
for transience and recurrence of Markovian random processes that is based
on the decaying in time of the walker’s distribution in the starting site, i.e.,
ρ(0; t). We briefly report that approach [1] in Appendix C, where we have
re-arranged it accordingly to the present aims.

Actually, diffusive processes, whose walker’s distribution converges to a
stable density with stable parameter 0 < α < 2, are always transient except
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in the one-dimensional (N = 1) case when 1 ≤ α < 2 [1, 49], see Appendix
C.

We observe that distribution ρ(x; t) (2.22) in the Should I go? condition
(2.14a) with 1/2 < α < 1 is not self-similar, on the contrary ρ(x; t) is self-
similar in the same Should I go? condition (2.14a) but with 0 < α ≤ 1/2
or in the Should I go? condition (2.14b) with 0 < α < 1, and in the
Should I stay? condition (2.13a) with 0 < α < 2. As a consequence, in the
considered case study, the loss of self-similarity introduces a time-scale T
necessary for defining the large-time limit and so for attaining the scaling
law in time of ρ(0; t) and determining transience and recurrence. This time-
scale T emerges to be dependent on α and tending to infinity when α → 1
and this makes the large-time limit unattainable in real systems. In fact,
by starting from the formula

ρ(0; t) =
1

π

∫ ∞

0
ρ̂(κ; t) dκ =

1

π

∫ ∞

0
e−(1−ϕ̂(κ))t/τ dκ , (3.2)

we have that when �|κ| � 1 the expansion (2.17) holds and then (3.2) can
be approximated by

ρ(0; t) � 1

π

{∫ 1/�

0
e−(�ακα+ 1

2
�2ακ2α)t/τ dκ+ e−t/τ

∫ ∞

1/�
eϕ̂(κ)t/τ dκ

}
, (3.3)

and, after the change of variable �αk
αt/τ = ξ, it becomes

ρ(0; t) � t−1/α

απKα

{∫ �αt
�ατ

0
e
−ξ− 1

2
�2α
�2α

τ
t
ξ2α

ξ1/α−1dξ

+e−t/τ

∫ ∞

�αt
�ατ

exp

{
ϕ̂
(
ξ1/α

) t

τ

}
ξ1/α−1dξ

}
, (3.4)

that in the limit t/τ → ∞ reduces to

ρ(0; t) � t−1/α

απK1/α
α

∫ ∞

0
e
−ξ− 1

2
�2α
�2α

τ
t
ξ2α

ξ1/α−1dξ

=
Γ(1/α) t−1/α

απK1/α
α

(
�2α
�α

τ

t

)− 1
2α

e
�2αt

4�2ατ D− 1
α

⎛⎝√
�2αt

�2ατ

⎞⎠ , (3.5)

where Dp(z), with Re p < 0, is the parabolic cylinder function, see [27,
3.462(1) p. 365 and 9.24-9.25 (9.246) p. 1028] with asymptotic behaviour

Dp(z) ∼ ez
2/4 zp , |z| 
 1 and |z| 
 |p| . (3.6)
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To conclude, we obtain that, when the following large-time limit is reached

t 
 T =
τ

α2

∣∣sin [π2 (1 + 2α)
]∣∣[

sin
[
π
2 (1 + α)

]]2 , (3.7)

it holds

ρ(0; t) ∼ Γ(1/α)

απK1/α
α

t−1/α . (3.8)

However T → ∞ when α → 1, see Figure 6, that poses an issue on the
attainability of such large-time limit in real systems.

We have simulated the process that converges to ρ(x; t) (2.22) and the
decaying in time of ρ(0; t) is shown in Figures 7 and 8. By using a fitting
procedure, we have estimated the scaling-law in the transient regime τ �
t � T and we found that it is a not power-law, see Figure 9. In particular,
we have approximated it with the easy-to-read formula

ρ(0; t) ∼ t−1/[α+f(α)] , f(α) =
1

α2

Γ(2πα) − Γ(π)

Γ(2π)− Γ(π)
, τ � t � T , (3.9)

that meets the constraints f(1/2) = 0 and f(1) = 1 in order to recover the
limit scaling-laws ρ(0; t) ∼ t−2, when α = 1/2, and ρ(0; t) ∼ t−1/2, when
α = 1, as expected from (2.15).

Simulations show that, during the intermediate regime τ � t � T ,
when α → 1 it holds α+f(α) > 1 (see also Figures 7, 8 and 9). Moreover, if
α → 1 then T → ∞ and this makes unattainable the large-time limit t 
 T
whenever the studied Markovian CTRW model with jumps following a rule
à la coin-flipping corresponds to a real system. In particular, this means
that, a recurrence-like scaling, i.e., ρ(0; t) ∼ t−β with 1 ≤ β < 2, could be
observed for a very extended temporal interval because T → ∞, in spite of
the transient theoretical scaling ρ(0; t) ∼ t−1/α, with 1/2 < α < 1.

Therefore, since recurrence can be understood as homecoming probabil-
ity and power-law distributions are used for explaining animal behaviour,
the significance of this apparent recurrence - in spite of the actual transience
- lays into an indetermined homecoming. This indetermination provides
a further weakness of the hypothesis of Lévy-like motions for animal be-
haviour that can be overcome, for example, in the framework of truncated
Lévy flights [42, 35].
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Figure 7. Plots of the decreasing in time of the maximum
of the walker’s distribution ρ(0; t) generated through the
jump pdf (2.14a) with α = 0.6 , 0.7 , 0.8 , 0.9. The solid line

represent the decaying-law t−[α+f(α)] (3.9) and the dashed
line is the large-time decaying-law t−α (3.8). The plots show
the duration of the intermediate regime τ � t � T and its
enlarging as α → 1.

4. Summary and conclusions

In this paper we have analysed random walks and we have discussed
the role of a jump rule à la coin-flipping, namely jumps with a bi-modal
distribution that is equal to zero in zero. In particular, we have studied
an example of jump process that displays tails decaying with a power-law
and we found that, within the framework of Markovian CTRW models for
Lévy flights, i.e., the walkers’s distribution converges to a stable density,
the self-similarity of the diffusive process is lost for a certain interval of the
stability parameter 0 < α < 2: in the particular case of our example the
self-similarity is lost when 1/2 < α < 1.

In the derivation of Lévy flights from the CTRW, the key role is played
by the asymptotic limit for small wavelength of the characteristic function
of jumps and this leaves open the specific form of the full characteristic
function of the jump pdf . This asymptotic limit re-phrases in a single step
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Figure 8. The same as in Figure 7 but with α =
0.95 , 0.97 , 0.99 , 0.999 for highlithing the delay in attaining
the large-time limit t 
 T .

the Kramers–Moyal expansion and the Pawula theorem by reducing the
so-called Montroll–Weiss equation, that governs the walker’s distribution
in the CTRW approach, to the fractional diffusion equation in the domain
of the wavelength. Actually, this procedure is an example for showing the
Central Limit Theorem in the sense of Lévy. As a matter of fact, when the
jump-sizes follow a rule à la coin-flipping, the small wavelength expansion
of their characteristic function is not always a series with alternating signs
and this fact causes the loss of self-similarity. In the framework of the
studied example, the resulting diffusive process converges to a generalised
Voigt profile that is given by the convolution of two stable densities.

We have highlighted that this loss of self-similarity has a double signif-
icance. At the mathematical level, the use of a jump pdf corresponding to
a rule à la coin-flipping makes the model for Lévy flights consistent with
the probabilistic derivation of the fractional diffusion equation where the
distinctive singularity of the fractional Laplacian is a consequence of the
jump-rule à la coin-flipping, but the resulting evolution equation is indeed
a double fractional-order equation in the stability interval 1/2 < α < 1. At
the application level, the loss of self-similarity generates an intermediate
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Figure 9. Plot of the decaying-law of ρ(0; t) as estimated
by simulations (black squares). The dotted line corresponds
to the formula α+c2α

2+· · ·+c6α
6 as provided by the fitting

routine scipy.optimize.curve fit while the solid line cor-
responds to the formula α+ f(α) (3.9) and the dashed line
is the reference-line indicating the transient-to-recurrence
conversion at α+ f(α) = 1.

temporal regime which defines a time-scale for large-time limit. This time-
scale results to be depended on α and it tends to infinite when α tends to
1: this means that, whenever the studied process is a reliable model for
a physical system, the large-time limit could not be observed in real mea-
surements. This unattainability of the large-time limit has an effect on the
transience and recurrence of the process: actually, in spite of the expected
transience of the process, the long-extended intermediate regime could dis-
play a recurrence-like scaling that leads to an indetermined situation in
real cases. This apparent recurrence because of the unattainability of the
large-time limit is a property of the studied CTRW model that deserves
attention in the future. In fact, if animal movement is modelled through
Lévy-like motions then the searching for food, and also the searching for
home, can be affected by the adopted jump rule: the searching for food
could lead to a double-order equation and the searching for home to an
indetermined homecoming in real systems.
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To conclude, we state that the research on the derivation of random
walks models for Lévy flights and fractional diffusion is not concluded yet,
that a further deep investigation on the role of jump-rules à la coin-flipping
is necessary. This calls for a generalisation of the present results both in
terms of the choice of the jump pdf and in terms of the considered random
walk model characterised by power-law tails as, for example, Lévy walks.
Moreover, this distinguishible effect due to the jump-rule, i.e., it is à la
coin-flipping or not, turns into a distinguishible feature of the motion of
animals: namely if they stand in the majority of the iterations or if they
always move.

Definitively, the difference between the “Should I stay?” and “Should I
go?” conditions cannot be disregarded.

Appendix A

We report here the main steps related to the calculations concerning
the jump pdfs (2.14a) and (2.14b) providing the Lévy coin-flipping rules
for the “Should I go?” condition.

Since the considered jump pdfs are symmetric, the corresponding char-
acteristic functions are defined by

ϕ̂(κ) = 2

∫ ∞

0
cos(κx)ϕ(x)dx , (A.1)

that are symmetric as well, i.e., ϕ̂(κ) = ϕ̂(−κ), and they can be expressed
through their Mellin transform [39, see from (2.26) to (2.31)], i.e.,

ϕ̂(κ) =
2

κ

1

2πi

∫
L
ϕ∗(s)Γ(1− s) sin

(πs
2

)
κsds , κ > 0 , (A.2)

where L is the integration path in the sense of the Mellin–Barnes integrals
and ϕ∗(s), with s ∈ C, is the Mellin transform of ϕ(x), with x > 0:

ϕ∗(s) =
∫ ∞

0
ϕ(x)xs−1dx , ϕ(x) =

1

2πi

∫
L
ϕ∗(s)x−sds , x > 0 . (A.3)

For further details on the Mellin transform and Mellin–Barnes integrals we
refer the reader to, for example, the textbook by Marichev [43].

By reminding the Mellin–Barnes integral representation of extremal
Lévy densities [39, 40]

L−α
α (x) =

1

α

1

2πi

∫
L

Γ
(
1
α − s

α

)
Γ(1− s)

x−sds , (A.4)

and then the Mellin transform∫ ∞

0
L−α
α (x)xs−1dx =

1

α

Γ
(
1
α − s

α

)
Γ(1− s)

=
Γ
(
1 + 1

α − s
α

)
Γ(2− s)

, (A.5)
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where the two formulae are related by the property Γ(1 + ξ) = ξΓ(ξ) such
that the normalization condition when s = 1 is straightforwardly checked,
for the jump pdf (2.14a) it holds

ϕ̂(κ) =
1

ακ

1

2πi

∫
L
Γ

(
1

α
− s

α

)
sin

(πs
2

)
κsds , κ > 0 , (A.6)

and by applying the residue theorem for κ → 0 formula (2.15) is obtained,
and analogously for the jump pdf (2.14b) it holds

ϕ̂(κ) =
1

Γ(1/α)κ

1

2πi

∫
L
Γ

(
2

α
− s

α

)
Γ(1− s)

Γ(2− s)
sin

(πs
2

)
κsds , κ > 0 , (A.7)

and by applying the residue theorem for κ → 0 formula (2.25) is obtained.

Appendix B

We briefly report the probabilistic derivation of the fractional diffusion
equation (2.7) due to Valdinoci [68]. If ρ(xxx; t) is the walker’s distribution
function and ϕ(Δxxx) is the symmetric jump pdf , then the generic update of
ρ(xxx; t) at any constant time-step Δt is given by

ρ(xxx; t+Δt) =

∫
RN

ϕ(Δxxx)ρ(xxx−Δxxx; t) dΔxxx . (B.1)

We discretise the jump pdf in a lattice hZN , where Z
N is a regular lattice

with unitary grid-size and h > 0, such that Δxxx = hzzz and zzz ∈ Z
N , then

(B.1) reads

ρ(xxx; t+Δt) =
∑
zzz∈ZN

ϕ(hzzz)ρ(xxx− hzzz; t)hN . (B.2)

If we assume a power-law jump pdf up to a normalizing constant, i.e.,

ϕ(Δxxx) = |Δxxx|−N−α , with ϕ(0) = 0 , (B.3)

then, by using the normalization condition∫
RN

ϕ(Δxxx) dΔxxx =
∑
zzz∈ZN

ϕ(hzzz)hN =
∑
zzz∈ZN

ϕ(zzz) = 1 , (B.4)

the evolution in time of ρ(xxx; t) results to be governed by

ρ(xxx; t+Δt)− ρ(xxx; t)

Δt
=

∑
zzz∈ZN

ϕ(zzz)

Δt
[ρ(xxx− hzzz; t)− ρ(xxx; t)]

= Dα

∑
zzz∈ZN

ρ(xxx− hzzz; t)− ρ(xxx; t)

|hzzz|N+α
hN , (B.5)
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whereDα = hα/Δt and ϕ(zzz) = |zzz|−N−α. By applying the change of variable
yyy = hzzz, the rhs of (B.5) is the sum approximation of a Riemann integral,
and in the limits h → 0 and Δt → 0, it holds

∂ρ

∂t
= Dα

∫
RN

ρ(xxx− yyy; t)− ρ(xxx; t)

|yyy|N+α
dyyy . (B.6)

To conclude, by applying in (B.6) the shift xxx−yyy → yyy, we finally obtain

∂ρ

∂t
= −Dα(−Δ)

α
2 ρ , (B.7)

where we used the following definition, up to a normalizing constant, of the
fractional Laplacian [68]

(−Δ)
α
2 g =

∫
RN

g(xxx)− g(yyy)

|xxx− yyy|N+α
dyyy , 0 < α < 2 . (B.8)

Appendix C

We briefly report here an analytical approach due to Affili, Dipierro &
Valdinoci [1] for the determination of recurrence and transience of random
processes. That approach [1] is based on the partial differential equation
that governs the evolution in time of the walker’s distribution ρ(xxx; t), and
we re-arrange it according to the present aim by remembering that we
assume as initial datum ρ(xxx; 0) = δ(xxx).

We introduce a ball of radius r > 0 that we denote by Br and we center
it in the starting point xxx = 0, then we consider the probability for a walker
to be outside of the ball Br at time t, i.e.,

Q(r, t) =

∫
RN\Br

ρ(xxx; t) dxxx , (C.1)

or equivalently

Q(r, t) = 1−
∫
Br

ρ(xxx; t) dxxx , (C.2)

and then it holds

0 ≤ Q(r, t) ≤
∫
RN

ρ(xxx; t) dxxx = 1 , (C.3)

where the normalization condition (2.1) is used.

At any instant t, the probability for the walker to step from some posi-
tion Xt into the ball Br is the probability to make a jump of the necessary
size: P(XB ∈ Br|Xt) = P(ΔX = XB −Xt). If the jumps are statistically
independent, at each instant t, the probability to step into Br is the proba-
bility of an independent drawing, so the probability to step into Br during
the whole random walk is given by the product of the probabilities of the
necessary jumps at all instants, that is, at any fixed time-step in a discrete
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time framework [1]. Since we are considering a Markovian CTRW with
exponentially distributed waiting-times with mean value τ , we replace the
time-step with τ and we consider the probabilities at any integer multiples
of τ :

Q(r) =

∞∏
h=1

Q(r, t = hτ) ∈ [0, 1] , (C.4)

and the recurrence or the transience of the process in the starting point
xxx = 0 is determined by the limit

lim
r→0

Q(r) =

{
0 , recurrent , (C.5a)

1 , transient . (C.5b)

We assume that, inside the ball Br, the distribution ρ(xxx; t) follows a
self-similarity law of the form

ρ(xxx; t) =
1

tNβ
ρ
( xxx

tβ
; 1
)
, xxx ∈ Br , β > 0 , (C.6)

where the dimensional issues covered in the main text by the diffusion
coefficients are now disregarded for lighting the notation, and thus from
(C.2) and (C.6) we have

Q(r, t) = 1− 1

tNβ

∫
Br

ρ
( xxx

tβ
; 1
)
dxxx . (C.7)

Since ρ(xxx; t) is the distribution function of a diffusion process with initial
datum ρ(xxx; 0) = δ(xxx), it holds

sup
xxx∈RN

ρ(xxx; t) = ρ(0; t) , t > 0 , (C.8)

and therefore we have that

Q(r, t) ∈
[
1− μ|Br|

tNβ
, 1− ν|Br|

tNβ

]
, (C.9)

where

|Br| =
∫
Br

dx = C rN , C > 0 , (C.10)

and

ν = inf
ξ∈Br

ρ(ξ; 1) > 0 , μ = sup
ξ∈RN

ρ(ξ; 1) = sup
ξ∈Br

ρ(ξ; 1) < +∞ . (C.11)

By using properties of logarithmic function, it follows that

logQ(r) = log
+∞∏
h=1

Q(r, t = hτ) =
+∞∑
h=1

logQ(r, t = hτ) , (C.12)
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and then (C.9) becomes

logQ(r) ∈
[
+∞∑
h=1

log

(
1− μCrN

(hτ)Nβ

)
,

+∞∑
h=1

log

(
1− νCrN

(hτ)Nβ

)]
. (C.13)

Since Q(r, t) ∈ [0, 1], from (C.9) it results that also

1− C0r
N

(hτ)Nβ
∈ [0, 1] , with C0 = νC or C0 = μC , (C.14)

and then from the approximation rule log(1+z) � z when |z| < 1 we obtain

log

(
1− C0r

N

(hτ)Nβ

)
� − C0r

N

(hτ)Nβ
, (C.15)

and finally
+∞∑
h=1

log

(
1− C0r

N

(hτ)Nβ

)
� −C0

rN

τNβ

+∞∑
h=1

1

hNβ
, (C.16)

that converges if Nβ > 1. To conclude, from (C.13) and (C.16) it results
that

logQ(r) ∈
[
−μC

rN

τNβ

+∞∑
h=1

1

hNβ
,−νC

rN

τNβ

+∞∑
h=1

1

hNβ

]
, (C.17)

and then from the convergence rule of (C.16) it follows that⎧⎨⎩
logQ(r) = −∞ , Nβ ≤ 1 , (C.18a)

logQ(r) ∈
[
−μC∗

rN

τNβ
,−νC∗

rN

τNβ

]
, Nβ > 1 , (C.18b)

which turns into⎧⎨⎩
Q(r) = 0 , Nβ ≤ 1 , (C.19a)

Q(r) ∈
[
e
−μC∗ rN

τNβ , e
−νC∗ rN

τNβ

]
, Nβ > 1 . (C.19b)

In conclusion the recurrence/transience criterium is

lim
r→0

Q(r) =

{
0 , Nβ ≤ 1 (recurrent) , (C.20a)

1 , Nβ > 1 (transient) , (C.20b)

and, by applying the self-similarity law (C.6), we recover the well-known
result for the Brownian motion [60, 52] (i.e., β = 1/2){

Q(0) = 0 , N ≤ 2 (recurrent) , (C.21a)

Q(0) = 1 , N > 2 (transient) , (C.21b)
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and for Lévy-distributed processes [1, 49] (i.e., β = 1/α){
Q(0) = 0 , N = 1 with 1 ≤ α < 2 (recurrent) , (C.22a)

Q(0) = 1 , N ≥ 2 , and N = 1 with 0 < α < 1 (transient) . (C.22b)
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to the theory of Lévy flights. In: Anomalous Transport: Foundations
and Applications (R. Klages, G. Radons, I. M. Sokolov, Eds.), Wiley–
VCH Verlag GmbH & Co. KGaA, Weinheim (2008), 129–162.

[12] N. Cusimano, F. Del Teso, L. Gerardo-Giorda, G. Pagnini, Discretiza-
tions of the spectral fractional Laplacian on general domains with
Dirichlet, Neumann, and Robin boundary conditions. SIAM J. Numer.
Anal. 56, No 3 (2018), 1243–1272.

[13] B. Dybiec, E. Gudowska-Nowak, E. Barkai, A. A. Dubkov, Lévy flights
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[59] K. A. Penson, K. Górska, Exact and explicit probability densities for
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