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Abstract

This paper is devoted to a fractional generalization of the Dirichlet dis-
tribution. The form of the multivariate distribution is derived assuming
that the n partitions of the interval [0, W,,| are independent and identically
distributed random variables following the generalized Mittag-LefHer distri-
bution. The expected value and variance of the one-dimensional marginal
are derived as well as the form of its probability density function. A related
generalized Dirichlet distribution is studied that provides a reasonable ap-
proximation for some values of the parameters. The relation between this
distribution and other generalizations of the Dirichlet distribution is dis-
cussed. Monte Carlo simulations of the one-dimensional marginals for both
distributions are presented.
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1. Introduction

Let us consider a finite sequence of n positive random variables 71, ..., Z,.
For instance, these variables can represent the wealth of n economic agents
if indebtedness is not allowed. Let us denote the sumas W,, = Z1+...+2,.
In the wealth interpretation this is the total wealth. If we define the

(© 2021 Diogenes Co., Sofia
pp. 112136, DOI: 10.1515/fca-2021-0006 DE GRUYTER



A FRACTIONAL GENERALIZATION OF THE DIRICHLET... 113

wealth fraction of the i-th agent as Q; = Z;/W,, we get a partition of
the interval [0, 1] represented by the sequence Q = (@1, ..., Q) such that
Q1+ ...+ Q, =1 almost surely. We are particularly interested in multi-
variate distributions for the sequence Q whose one-dimensional marginals
have heavy tails. If we further assume that the random variables 71, ..., Z,
are independent and identically distributed, there is a nice and immediate
relationship with point processes of renewal type. In this case, the vari-
ables Z; can be interpreted as inter-event intervals and the partial sums
Wi = Zle Z;, with k < n, are the epochs of the events.

In order to clarify the relationship, we start by recalling some basic facts
on the time-fractional Poisson process as we are going to use and generalize
it in the next section. From [I],[14] we know that the time-fractional Poisson
process NV = (N"(t))t>0, v € (0,1], can be defined as a renewal process
with independent and identically distributed inter-event waiting times 7;,
jeN*={1,2,...}, with probability density function (pdf)

P(7; € dt) = X 'E,,(=\")dt, A >0,t>0, (1.1)
where
[o¢] Zr
E, =y — ,a,B€C, R 0, 1.2

is the two-parameter Mittag—Leffler function. Note that for v = 1, the
waiting times 7; are exponentially distributed and N is the homogeneous
Poisson process. Moreover, the Laplace transform of the pdf () takes a
very compact form. Indeed, we have
o A
/0 E_Zt]P)(,]; S dt) = m, z > 0. (13)

Let us now indicate with Tj, £ € N*, the random occurrence time of the
k-th event of the stream of events defining N”. From the renewal structure
of N” we readily obtain that the Laplace transform of T}, reads

/Ooo e FP(Ty, € dt) = < A >k z >0, (1.4)

A+ z¥

which in turn corresponds to the Laplace transform of a function involving

the three-parameter Mittag—Leffler function (also known as the Prabhakar

function — see [7]). In particular, the three-parameter Mittag—Leffler func-

tion is defined as

o r

z '+ r)

ES = : L, 8,0 €C, R(a) >0, (1.5
a,ﬁ('z) —~ F(Oﬁ'f’ +6) T'F((S) Z,Q B (Oé) ( )
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and we know by direct calculation that (see e.g. [15], formula (2.3.24))

/OO 1D (¢t dt = 2P (1 - Cz_6>_5 , (1.6)

0
where R(a) > 0, R(B) > 0, R(2) > 0, z > ||/, Using (L8], we obtain

P(T), € dt) = NP LEE L (=xt")dt, A >0,t>0,v€(0,1], k€ N*.
(1.7)

REMARK 1.1. Note that, for v = 1, the above density reduces to that
of an Erlang(\, k) distributed random variable. This can be seen by simply
noticing that

—\)"T(r + k:) Arth=te=Al
P(T}, € dt) = dt \Feh—! =dt =0 k e N*.
(T Z T(r+ k)T (k—1)!

(1.8)

REMARK 1.2. The Erlang(\, k) distribution is a special case of the
Gammal(a, c) distribution. Consider a sequence Zi,...,Z, of indepen-
dent random variables each following a Gamma distribution of parameter
(a1,¢),...,(an,c). It is well known that their sum W, is still a Gamma of
parameter (aj + ...+ ay,c). Then the sequence of fractions @1, ...,Q, has
a joint (/N — 1)-dimensional Dirichlet distribution of parameters aq,...,a,
with density

n—1 an—1
fQ(Ql, .o 7Qﬂ—l) = E((;11)+¥(ZZ)) qtlll_l e <1 — Z qi) (19)

with g1 + ...+ ¢, = 1 and is independent of W,.

The proof of the results in Remark[[.2]can be found in several textbooks
and lecture notes (see e.g. [2], Lemma 1.5).

REMARK 1.3. The random variables 7; have the following asymptotic
behaviour for ¢ — oo [8]:
sin(vm) I'(v)
]P)(ﬂ > t) ~ _7'[' tV I

therefore, their sums T}, belong to the basin of attraction of the v-stable
subordinator.

t>1; (1.10)

REMARK 1.4. The distributions considered in the present paper belong
to the class of distributions on the simplex discussed in [5] (see (Z2]) below

and [3]).
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This paper contains the following material. Section Pl concerns the
definition and properties of the fractional Dirichlet distribution. Section
mirrors Section 2] and is devoted to the generalized Dirichlet distribution.
Section M explains how to simulate the fractional Dirichlet distribution and
presents the results of Monte Carlo simulations in order to illustrate the
relation between the fractional Dirichlet distribution and the generalized
Dirichlet distribution.

2. Construction of the fractional Dirichlet distribution

Based on Remark [Tl and Remark [[2], we now define a generalization
of the Gamma distribution and we immediately present a fractional gener-
alization of the Dirichlet distribution.

DEFINITION 2.1 (Fractional Gamma distribution). Let X be a positive
real valued random variable with distribution

u(dr) =P(X € dx) = A/Bac”’B_lEgyﬁ(—)\a:”) dz, (2.1)

where A > 0, 2 >0, 8 >0, v € (0,1]. Then X is said to be distributed as
a fractional Gamma of parameters \, 3,v (we write X ~ FG(\,3,v)) (see

[19]; for applications to renewal processes see [4l [16] 17, [18]).

REMARK 2.1. The Laplace transform of p reads

/OOO e “p(de) = <)\ izy>ﬁ, z> 0. (2.2)

By means of (21]), we will construct a generalization of the Dirichlet
distribution. We consider n independent random variables Z;, 1 = 1,...,n,
distributed as fractional Gamma random variables of parameters (1, 8;,v),
v € (0,1], 8; > 0, i = 1,...,n, respectively. Furthermore, define the
sum W =2y + ...+ Zy, set Q; = Z;/W,i=1,...,n, and consider the
transformation

n—1
(Zy,.. o Zn) — <WQ1,...,WQH_1,W(1—ZQZ-)). (2.3)
1=1

vskip-2pt Note that, from ([2.2)), the distribution of W is fractional Gamma
as well, i.e. W ~ FG(1,53,v), where 3 = Y | ;. The joint pdf of the
vector (VV7 Q) = (VV7 Qh s 7Qn—1) reads

f(W,Q)(y7Q17’ .- 7Qn—1) (24)
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n—1 vBn—1
= [H(yqi)”ﬁi_lEff,,gz( (yai)” ] [ 1—2%]

=1
n—1 v
x B <—(y—y Qi> >y”‘1
=1
n—1
_ vB;—1 vBn—1 n 1 vBi— Bi v
= (Hy > [Hq By s, (—(ya:) )]
=1

n—1 vfn—1 n—1 v
X (1_2%') Efj;ﬁn<—(y—y2qi) )
= 1=1
n—1 vBn—1
= [H ¢/ B ( (yqz-)”)] (1 = Qi>
=1
x By, < (v- quz) >

The joint pdf of @ = (Q1,...,Qnr—1) is then obtained by marginalization.
Hence,

n—1 vfn—1
falar,- -, qn—1) (H quﬁl > (1 - Z%) (2.5)
i=1

[e.9] n—l - ’
<[ T B 0B, (< (- v ) Y
1=1 =

REMARK 2.2. On the n-dimensional simplex A,, the probability den-
sity of the random vector (Q1,...,Qy), where > @, =1 a.s., writes

]P((Qly"'a@n) € d(Q1,...,qn)) (2'6)
= H‘JVBH/ Vot Eflgi (—(yq)") dy.

i=1

Notice that for » = 1 the integral in the rhs of ([2.6]) can be easily solved
and the Dirichlet(8 = (51,...,8y,)) is obtained. In this case (Q1,...,Qx)
is uniformly distributed on A, for g; =1, i € N*.

If v € (0,1) with 5; = 1, we have
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P((Ql,..-,Qn)Ed(ql,.--,qn)):Hq;’_lf ””1HEW (yai)") dy,
=1

(2.7)
which is symmetric but not uniform.
If we let instead B; = 1/v (again symmetric), we obtain

P((Q1s---.@n) €dlar,- -, an)) —/ "1HE1/” (ya:)")dy.  (2.8)

2.1. Properties. The derivation of the marginal moments can be done
explicitly using the formulas in Section 2.2 of [5].

PROPOSITION 2.1. Let Q = (Q1,...,Qn-1) be a random vector dis-
tributed with pdf (Z5)). For each j =1,...,n — 1, we have,
Bi
EQ; = 22, 2.9
J /8 ( )
B;i(B = B)) 3
VarQ, = 257~ Pi) (1 4 B(1 — ). 2.10
1= Gy ) 210

P r o o f. By Proposition 2 of [5] we have

~ (4 1 B 1 B—B;
EQ; = _/0 (& <1—|—z”> > <1+z”> az (211)

OOB'I/ZV_l _
= : 1+2)7"d
/0 Ty (142") z

_g [ G
_BJ/O (14+w)s+tl B’

Similarly, the second moment writes

E ) o) d2 1 B 1 B—Bjd
2 __ - _ 2.12
@ /0 a2 <1+z”> <1—|—z’/> : (2.12)

_ /oo |:U2z2u—2ﬁj(ﬁj +1) By - 1)zu—2} 1+ z,,)—BJrBde
0

(14 2v)Pi+2 (14 22)%H
F=w o o w g [T dw
= yﬁ](ﬁ+1)/0 (1+w)5+2dw+(1 7/)5]/0 (1+w)5+1
_ BB+ B
“Useen UV
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and hence after some computation

_ Bi(B=5)) 51—
Var Q; = TG (1+8(1—-v)). (2.13)

REMARK 2.3. Notice that the first factor of the variance ([2.I0]) is in fact
the variance of a one-dimensional marginal of a Dirichlet(3) distribution.

It follows that the marginals are overdispersed with respect to those of a
Dirichlet(8) distribution.

We now proceed by analyzing the aggregation property and therefore
the marginal distributions.

PROPOSITION 2.2 (Aggregation property). Consider the pdf defined
in equation (2.5]) and the random variable Q = Z§:1 Qi; where 1 <k <n
and i; denotes any permutation of the indices. Then the random variable

Z =WQ has pdf @I) with 8 =Y"_, §;,.

P r o o f. The proof is immediate considering that Q comes from the

sum of i.i.d. positive random variables each one with Laplace transform
given by (2.2 and then divided by W. Therefore Z = W Q has pdf given

by @I) with 8 =%, ;. 0
An immediate corollary of this result is

COROLLARY 2.1 (Marginal pdf). Consider the pdf in equation (2.5)).
Then its marginal on Q; is given by

falar) = ¢ (1 — g BP0 (2.14)

[P () B (= ) d

As the three-parameter Mittag-Leffler function has a representation as
an H-function [15],

T (2) = HW" [z

g |, 2.15)

for suitable choices of (a;, A;) and (b;, B;), the marginal pdf ([ZI4]) can be
expressed in terms of an H-function too.
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PROPOSITION 2.3. If Q; is the random variable with pdf (2.14]), then

A 1 vBi=1(] _ o\~ (Bit1)
fQi(qZ) = VF(/Bi)F(B _ ,BZ)qZ (1 QZ) (2-16)

1%
. qi
x lim H22 | [ -2
210 3’3[<1—qz‘>

P roof. In the integral (2I4) set

(1=8,1) (1=B+e1) (v(e—pi)v)
(0,1) (e —pi, 1) (1—=vB,v) |~

61=03i, o=B-Bi, 1 =¢q/, and @ = (1 —q)". (2.17)

Denote with Igf 5, the resulting integral and observe that

3 [ B N S b _
I3, = ;/0 YR B 5 (—ya) By 5, (—y2) dy. (2.18)

For § > 0 and v € (0, 1] we have
1 (1-4,1)
5 L | ;
E} 5(2) = F(é)Hl’Q [ z‘ (0,1) (1 - v6,v) } . (2.19)

For n € (0, ), by using (Z19) and Theorem 2.9 in [12], we have

15, 5, :/0 yn_lEg}uél(_yql)Ef,anz(—y@)dy (2.20)
6 22 @1 |(1=61,1) (1=n1) (62 —n),v)
F((Sl)r((sQ) 33 q2 (07 1) (52 -1, 1) (1 - V517 V) .

Set n = f—¢ in [220) with e € (0, 3), and use 217 to recover Ig-_ﬁg—g-' Ife
is sufficiently small, the poles —I, 8; —e — 1, (v3; —=1-1)/v,1 = 0,1,2,..., do
not coincide with the poles ; +k, 5 —e+k, (v(e—6;)+k)/v,k =0,1,2,... .
Then, according to Theorem 1.1 in [12], the H-function in ([2I6]) makes
sense for all ¢; € (0,1) as Ay + Ay — A3+ By + Bo — B3 =4 —2v > 0. The
claim follows by taking the limit as € | 0 of T g__g_ 5 O

REMARK 2.4. By using Properties 2.1, 2.3 and 2.5 of [12], the H-
function in (2.I6]) can be rewritten interchanging 8; with 8 — ; and ¢; with
1 — g;, which corresponds to commuting the two Mittag-Leffler functions in

E.14).
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According to Theorems 1.3 and 1.4 in [I2], since

3 3 BB

;(Bi —A) =0, Z];[l o =1, (2.21)
3

Z(bi —a;) =Bl —-v)+v(B—e)>0,

=1

the H-function in (2.I6]) has a power series expansion. The following propo-
sitions rely on this property.
PROPOSITION 2.4. For ¢; < 1/2 and f3; not a positive integer
i—1 — ;
y @ (1= g)
vI'(B:)T(B = Bi)

. . 0 . Vk
X r(ﬁ‘)—rr(_ﬂl)r(ﬂl) +Y (-1)*Dy (q—> ] (2.22)
1

fQi (Qi

(=vB)L(Whi) = 1—q
where
D~ LB+RT(=B - KT@i+k)  (1-¢)""T(Bi~k)T(B-Bi+k)
F T RT(—(Bi + k)T (B; + k) P T(—vk)T(vk) '

(2.23)

P r oo f. Consider the H-function H§§ in (2.I6]). If 3; is not a positive
integer, we have By(bo+1) # Ba(bi+k) for [,k =0,1,2,.... Thus, thanks to
(221)), from Theorem 1.3 of [12], H §§ is an analytical function in ¢ /(1—¢;)”
and has the following power series expansion for ¢; < 1/2:

o0

T(by —k)T(1—a1 +K)T(L —as+ k) (-1)F [ ¢ \* s \"™

,;) F(l—b?,—l—ulk)r(aS—Vk) k! (1—%‘) +<1_Qi>
X Dby — K)T(1 —ay + by + k)T —az +by+ ) (<1)F [/ ¢ \**
+kZ:;) F(l —b3+u(b2+k))1‘(a3 —I/(bg—l—k‘)) k! <1—qi> '
(2.24)

The claim follows replacing a; = 1 — ;a2 = 1 — f+¢,a3 = v(e — Bi), by =
e — (B; and b3 = 1 — vf; in (2:24]) and taking the limit as € | 0. O

REMARK 2.5. If v(f; + k) is not a positive integer for £k = 0,1,2,...
thanks to the reflection formula for the gamma function [12], we might
simplify the expansion in (222 using
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LB —k)L(Bi+k) _ sin(mv(Bi +k))
D(=v(B; + k) T(v(B; + k) sin(m(B; + k))

Similarly we get I'(—vk)I'(vk) = —n/(kvsin(nvk)) if vk is not a positive
integer.

E (2.25)

PROPOSITION 2.5. For ¢; > 1/2 and 3 — ; not a positive integer

—(v(B—B:i)+1) (1— qi)V(B—/Bz‘)—l

_ 4%
fQi(qi) = Uf(ﬁi)F(ﬁ_ - Bi)
(BB - > —a)"
’ [F(ﬁ e e RS ] o
where
p, LBk L5 =i+ K)D(B - Bi + k) (2.27)

kU T(—v(B—Bi + k)T (B - Bi+ k)

i v(B=) D(Bi+k)D(B— B — k)
" (1 = qz-> T(—vk)T(vk)

P r o o f. Consider again the H-function Hi’g in (2I6). If 5—p3; is not a
positive integer, we have Aj(1—ag+1) # As(1—a1+k) for [,k =0,1,2,...
From (221I) and Theorem 1.4 of [12], Hi’g is an analytical function in
¢/ /(1 — g;)” and has the following power series expansion for ¢; > 1/2:

F'l—ai+k) (b2 +1—a +k)I'(a1 —ag — k) (_1)’f ¢ v(a1—1-k)
—~L(az +v(l—a + k)P —bs—v(l—ar+k) Kk |[1-g

o

n Z 1 — a9 + k‘ (b2 +1—a9+ k‘) F(CLQ — a1 — k‘) (—1)k q; viaz—1-k)
Flas+v(l—as+k)T(1—bs—v(l—as+ k) Kk [1—g¢

=0
(2.28)

The claim follows replacing a; = 1— B;,a2 = 1 — f+¢,a3 = v(e — i), by =
e — f; and by = 1 — vf; in (2.28]) and taking the limit as € | 0. O

By using the reflection formula for the gamma function, also the ex-
pansion (2.20]) might be simplified similarly to what has been addressed in
Remark 251
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3. An alternative generalization

We now give an alternative generalization with desirable properties
which in addition approximates the fractional Dirichlet distribution with
density (2.5]) for appropriate values of the parameters.

Let us thus consider a random vector Q = (Q1,...,Qn—1), n > 2, with
the following probability density function:

n—1 n—1 vfn—1
folai, - qn-1) = (H Qfﬁi_l) (1—2%') (3.1)
i=1 ]

=17 ) nolo o\ A
< e (- X))

forqi,....,q0»1 € (0,1), 1+ ...+ g1 <L, v>0,8>0i=1,...,n,
B=Bi+- -+ B

For the sake of clarity we check that fg(q1,...,qn—1) as given in (B.1])
is a genuine probability density function. This will follow by proving that

V" IT(B)
L(Br) - -T(Bn)

(3.2)

in the rhs of (8]) plays the role of a normalization coefficient.

THEOREM 3.1. We have

1 1-gi——gn-2 n—1 51 n—1 vBn—1
/0 dgy - /0 dgo s ([T ) [1-Y (3.3)
=1

=1
[t AN C
x <qT +o (1 - Z(ﬁ) > = F(ﬁly)n_'l'f(;)(ﬁ”).

=1

P r oo f. Observe that the lhs of ([B.3]) can be rewritten as

1 L—q1——gn 2 o
I= / dgp - - - / dgn—1 | [T @ (3.4)
0 0 i=1

x (1_5)—17131: <1%q>l’/8i <1+§ (1(ﬁq>u)_5’

1=
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where § = q1 + - -+ gn—1. Apply the change of variables (1 —q)/q; = z; for

1=1,...,n — 1, in multivariate integration. Thus, we have
ez, .. % )
qi = S Li i=1,...,n—1 (3.5)
n_]_ n_]_ ) 9 9 )
[li= 2+ 2 k=1 ez, 2
n—1 _n—2
J— -1 %

n—1 n—1 o
(Hj:l zj+ 2 ko1 €1k Zj)
where Z,, 1, ={1,....,k—1Lk+1,...,n—1} fork=1,...,n—1,and J
is the Jacobian of the transformation. Note that

~1
H?=1 Zj

1-q= - - . (3.6)
n— n—
(Hj:l zj+ 2 k—1 FETn—1.k Zj)
By putting [B.1) and B.6) in (34) we have
00 00 n—1 .1 n—1 1 -
B
I:/O dzl--./o dzn_lnzj R (3.7)
i=1 j=1"J

Apply the change of variables 2z} =t; fori =1,. — 1, in multivariate in-

tegration. Then, we have z; = ti/y fori=1,...,n— 1 and 17" T2 11 Zl/u !
is the Jacobian of this transformation. From (B:ﬂ)

1 0 0
I= y”—lfo dtlu'/o dtp—o In_o(t1,... , th—2), (3.8)
where
i n—1 s n-1, -8

In_o(t1, ... th_2) :/0 dtp_y i]:[ltj : 1+Z i) (3.9)

Observe that I,,_o(t1,...,t,—2) in ([39]) can be rewritten as
Ino(tt ... tas) (3.10)

-8

00 n—1 _
RGN G |
j=1

k= 1]€In 1,k
n—2
_ —Bi—1
=1
=1

- - -8B
> I8t + 0000 ez, t
x/ dt, o (14t i=1 i n__21 i€L, o) tg fn -1
0 [t
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With the change of variable z = t,, 1 ([T'=2 ti+ > 7= i€, o b))/ =it

and by recalling the Mellin trasform of (1 + z)~ 6, we recover

Ln-a(t1,. .. tn—2) (3.11)
_ e " T(B=Bu)NBr)
(Tt + ot €Ty s t;)P—Pn—1 L'(3)

Now, replace I,_s(t1,...,t,—2) in [B.8) with the closed form (BII]). This
leads us to

j 1 F(ﬁ - ﬁn—l_)F(ﬁ”—l) /0 dtl A /0 dtn_?,ln—?;(tl) ce ,tn—3)7

A L'(B)
(3.12)
where
In—?;(tb s 7tn—3) (313)
n—>2 ~ _(B_anl)
= [Cats [T H LS TT
0 j=1 k=1j€T, o4

By comparing the integral in (BI3]) with that in (BI0]), we observe that
the former has the same expression of the latter with /3 replaced by § —
Bn—1. Thus, by recurring to the same arguments employed to compute
I, o(t1,...,ty—2) we recover

an_g tf_ﬁn—l_/j”—Q_Bi_l
—3 —3 — —
(H?:l t; + Zzzl = ti)ﬁ Br—1—Pn—2

(- Bn-1 = Bn—2)l(Bn—2)
F(ﬁ - ﬁn—l) ‘

Replacing I,,_3(t1,...,tp—3) in (BI2]) with the closed form [BI4) we get
1 F(B - /Bn—l - /Bn—Q)F(/Bn—l)F(/Bn—Q)

In—3(t17 cee 7tn—3) -

(3.14)

I=— 5 (3.15)
x/ dtl---/ Atnaln_a(t1, ... tns),
0 0
where
oo n-3 _
Ln_a(ti, .. tna) = /0 dty s [] ¢ P ome it (3.16)

Jj=1
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—(B—Bn-1—Bn-2)

HtﬁZ II ¢

k= 1]€In 3,k

which indeed has the same expression of I, 3 and I3 with suitable up-

dates of 8. The result follows by iterating from i = 4 up to i = n — 1 the
computation of

I Vn1_1 Gy z+2r f;))ﬂk n-it2 T (Br) (3.17)

X / dtl s / dtn—iIn—i(tla . 7tn—i)
0 0

with
o0 n— Z+l 2 n—1
B=3 ki n—ita Br—Bi—
Ln—i(te, . tn—s) / dt,_ii1 H ) k=n—it+2 BP0 (3.18)
0 G
n—i+1 n—i+1 _(B_ZZ;TIL—i+26k)

X H t + Z H tj
k=1 j€Z, i1,k
We obtain the closed form expression

Hn—i tB_ZZ;TlhiJrl Bk—ﬁj_l

it
Lni(tr, .. tni) = Ten ;Zni S (3.19)
(ﬁ Zk n— z+2 ) (ﬁn i+1)
(ﬁ Zk n—i+2 )
with >0 7) iez, ., ti = 1 for i = n — 1. The last replacement with I (t1)
gives

1 T8+ BT(Bs) - .. - T(Buy) [ i
I = g ( 1 ) (F?%) ( 1)\/0 dt1(1+t1) (B1+8 )tf 1

(3.20)

from which the claimed result follows by observing that

/0°° diy "N 1) ") = T(B,)T(81) /T (B + B)-
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REMARK 3.1.  Alternatively, in (7)) use the transformation z; ' =
t1,...,2, = t,. Then, we have (cf. [9] no. 4.638/3, p. 649)

n—1,vB3;—1
oo oo A
I= [ dty--- [ dtn_y HZ L _ (3.21)
0 0 (

T+ty+-+th 1)6
L(B1) - - T(Bp1) T(B—P1— - — Bu1)
N v I'(B) ’
which is in agreement with ([B.3]).

REMARK 3.2. On the n-dimensional simplex A,, the pdf of the random
vector (Q1,...,Qyp), where > Q, =1 a.s., writes

P((Q1,...,Qn) €dlar, ..., an)) (3.22)

vVIT(B) 5 \—f S Bl
EA R EA AR Y

"; li[ <ZZ qul >B

with B(8) = [[.,T(8:)/T (3.1, Bi). In short we write (Q1,...,Qyn) ~
GDIR(v, B).

Notice that for v = 1 the Dirichlet(3) is obtained. In this case the
random vector (Q1,...,Q,) is uniformly distributed on A, for g; = 1,
1 € N*. If instead we only let 5; = 1,

P((Ql,...,czmed<q1,...,qn>>—(q”l ”;ql [[e 62
” =1

which is symmetric but clearly not uniform. If §; = 1/v (again symmetric)
we obtain

v 1T (n/v)

A

(3.24)

]P((Qly"'a@n) € d(‘]la"'an)) =

REMARK 3.3. The alternative generalized Dirichlet distribution con-
sidered in this section (i.e. that with pdf (B.1])) can be derived by the same
procedure described in Section 2] with (Z;)” distributed as Gamma(f;, 1),
1=1,...,n— 1. Note that the random variable X such that X, v > 0, is
Gamma(a, 1)-distributed, a > 0, is a special case of the generalized Gamma
distribution (see e.g. [I1], Section 8.7). In particular, X has pdf
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_ —mV
e 1e T

=yv—1 2
fx(@)=v Tla) B+ (3.25)
and Laplace transform (from (2.3.23) of [I5] and the definition of Wright
functions)

py e e (_Z—V)k

T(a) & K

Ee—zX —

D(v(k + a)). (3.26)

REMARK 3.4. The generalized Dirichlet pdf (B turns out to be a
reasonably good approximation of the fractional Dirichlet pdf ([Z3]) for 5; <
1 (see for example Fig. B]). A partial explanation is that for A = 1,5 < 1,
and v € (0, 1] the fractional Gamma pdf ([2.I)) has a rather similar shape to
the generalized Gamma pdf ([B.25]), as Fig. [[lshows for § = 0.2 and g = 0.4.
For B; > 1, the fractional Dirichlet pdf exhibits a behaviour different from
the generalized Dirichlet pdf (see for example Fig. 2]). Indeed, Fig. [l shows
a different shape of the fractional Gamma pdf compared to the generalized
Gamma pdf for 5 =2 and g = 3.

PRrROPOSITION 3.1 (Conjugate distribution). The generalized Dirichlet
distribution GDIR(v,3) (with pdf ([B.22])) is the conjugate prior to a re-
parametrized Multinomial distribution with pmf

N o s .
————— ([T | @+ ) == (3.27)
L1 ... Tyt i1
where N € Nt x; € {0,...,N},i=1,....n,n e Nt ¢ + ... + ¢, = 1,
v > 0. In particular, if the prior is GDIR(v, 3) and the likelihood is as in
B210), then the posterior becomes GDIR(v, 3 + x).

P r oo f. The proof is a straightforward application of Bayes theo-
rem. The reparametrization in B.27) is such that p;, = ¢//(>°",4d)),
i=1,...,n, are the event probabilities (i.e. > p; = 1). O

3.1. Representation in terms of Dirichlet random variables. In or-
der to derive a meaningful representation in terms of Dirichlet random
variables for the random vector @Q, we first recall the definitions of two
related classes of random vectors (see [10]).

DEFINITION 3.1 (Liouville distribution of the first kind). Let X =
(X1,...,X,) be an absolutely continuous random vector supported on the
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v=0.7, B=0.2 v=0.7, B=0.4
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FIGURE 1. Comparison of the fractional Gamma pdf (2.1])
(red line) versus the generalized Gamma pdf ([B:25]) (blue
line) for v = 0.7 and 8 = 0.2 in (a) and 8 = 0.4 in (b), as
in Fig. B, =2 in (¢) and 8 =3 in (d), as in Fig. 2l

n-dimensional positive orthant, i.e. R™ = {(x1,...,z,): x; > 0 for each i =
1,...,n}. It is said to have Liouwville distribution of the first kind if its joint
pdf writes

Ix(@1, . an) oc f (Z xz) HUE;”_I, (3.28)
=1 /) i=1

where a; > 0, ¢ = 1,...,n, and f is a positive continuous function sat-
isfying f[& Yy Lf(y)dy < oo, with @ = ay,...,a,. Further, we write

X ~ Lgl)[f()val) e 7an]‘
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DEFINITION 3.2 (Liouville distribution of the second kind). Let Z =
(Z1,...,Zy) be an absolutely continuous random vector supported on S,, =
{(z1,...,2n): zi >0foreach i =1,...,n, Y i" | z < 1}. It is said to have
Liouville distribution of the second kind if its joint pdf writes

fz(z1,. . 2n) X g (Z zz> Hzfi_l, (3.29)
=1/ i=1

where ¢; > 0,7 = 1,...,n, and ¢ is a positive continuous function satis-
fying fR+ y“tg(y)dy < oo, with ¢ = ¢1,...,¢c,. Further, we write Z ~

LPg()sc1s ... enl.

REMARK 3.5. If we let f(t) = (1 +¢t)~(@+tan+1) ¢ > 0, @,y > 0, in
[328]), then X is distributed as an inverted Dirichlet.

If, in 329), we choose g(t) = (1 — )11 0 <t < 1, apy1 > 0, we
have that Z is distributed as a Dirichlet.

Proposition 3.1 of [I0] tells us what is the relationship between Liou-
ville distributions of the first and of the second kind (and hence between the

Dirichlet and the inverted Dirichlet). Specifically, if Z ~ P FIOHS T
and we consider the transformation

Z;
Xi=—Z—  i=1,...,n, :
=y 7 i n (3.30)

then X ~ L%l)[f(-);cl, ..., Cpl], where

F(t) = (141)~ (g (ﬁ) , t>0. (3.31)

Plainly, the converse relation is true as well: inverting ([B.31)) (letting h =
t/(1+1t)) we have

g(h):<1ih>f<1fh>, 0<h<l. (3.32)

As a simple example, considering f(t) = (1 +t)~(¢tent1) ¢ > 0 (inverted
Dirichlet), we readily obtain g(1 — h)*»+1~1 (Dirichlet).

Now, by exploiting the above definition we prove the following distri-
butional representation for Q.



130 E. Di Nardo, F. Polito, E. Scalas

PROPOSITION 3.2. Let Q = (Q1,...,Qn—1) be distributed with pdf
@BI). Then the random vector M = (M, ..., M,_1) such that

(st
1_2?:_11 Qz

QZ v
1+<k2§@)

is distributed as a Dirichlet(3 = (81, ..., 0n))-
Conversely, if M ~ Dirichlet(3) we have that Q = (Q1,...,Qn—1) such
that

M; =

i=1,...,n—1, (3.33)

1

()

1+ (o)

is distributed with pdf (B1).

Qi = . di=1,...,n—1, (3.34)

1
v

P roof. Let us define the random vector Y = (Y3,...,Y,,_1) such

that
1- Zi:l Qi

and let 5* = 1 + ...+ Bnh_1. Combining the transformations in the proof
of Theorem and of Remark B.1] we see that Y has pdf

n—1 -8 Bnn 1
fy(yh---,y)zr(ﬂlgﬁ.fﬂ” <1+Zyz> Hy/ . (3.36)

and hence Y ~ Lfmlzl[(l—l—-)_(ﬁ*"rﬁn); Bi,. .., Pn-1] (i-e. an inverted Dirichlet
distribution).

By using the mentioned transformations between Liouville distributions
of first and second kinds we have that M ~ Lgll[(l — =By Bl
(Dirichlet), where

Y;

— L i=1,..,n—1, (3.37)
14+ yy

i =

and ([3.33)) follows.

Finally, a rewriting of the components of @ in terms of those of Y,
leads easily to (B.34). O
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4. Monte Carlo simulations

The simulation of the random variables @ for the fractional Dirichlet
distribution is straightforward based on the construction presented in Sec-
tion @l First, one needs to generate random variables with density (2.1)
and one can use the mixture representation discussed in [4]

X £ 0,

7

where U; is Gamma(3;, \)-distributed and V,, is strictly positive-stable dis-
tributed with exp(—s") as the Laplace transform of the pdf. Summing the
X; to get W and dividing X; by W gives Q;.

REMARK 4.1. For 8 =1, there is an alternative representation [13], [6]:
xLzgV,
where = is Exp(\)-distributed and Z is Cauchy-distributed.

The behaviour of the fractional Dirichlet distribution in the case N = 2
is shown in Fig. 2 for v = 0.7, 81 = 2, $2 = 3. In this case, the generalized
Dirichlet distribution is not a good approximation.

This is not the case for N =2, v = 0.7, f; = 0.2 and B3 = 0.4 where
the generalized Dirichlet distribution is a reasonably good approximation
of the fractional Dirichlet distribution. This is represented in Fig. Bl

For larger values of the parameters f3;, one gets a unimodal distribution
in both cases as shown in Fig. ll for N = 2, v = 0.95, 51 = 10, B8 = 30.

In Fig.[H the heavy character of the right tail of the generalized Dirichlet
distribution is highlighted by the log-log plot.
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