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Abstract

The multinomial Mittag-Leffler function plays a crucial role in the study
of multi-term time-fractional evolution equations. In this work we establish
basic properties of the Prabhakar type generalization of this function with
the main emphasis on complete monotonicity. As particular examples,
the relaxation functions for equations with multiple time-derivatives in the
so-called “natural” and “modified” forms are studied in detail and useful
estimates are derived. The obtained results extend known properties of
the classical Mittag-Leffler function. The main tools used in this work are
Laplace transform and Bernstein functions’ technique.
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1. Introduction

The time-fractional diffusion equation (tFDE) was derived via the frame-
work of a continuous time random walk under the assumption that the mean
waiting time has a power-law decaying tail proportional to tα, α ∈ (0, 1).
The solution of the tFDE accurately describes the power-law decaying be-
havior in a large number of anomalous diffusion processes [39]. To improve
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the modeling accuracy of single-term tFDE, diffusion equations with mul-
tiple time-derivatives are proposed, which permit to describe also processes
whose scaling law changes with time [31, 39]. Such an example is the
derived in [43] two time-scale mobile-immobile tFDE model for the subdif-
fusive transport of solutes in heterogeneous porous media.

The multi-term generalizations of the tFDE, involving time-derivatives
of orders distributed in the interval (0, 1], are considered in two forms:
the so-called “natural” (or Caputo) form and “modified” (or Riemann-
Liouville) form, for the precise definitions see [31, 39] and equations (4.2)
and (4.3) below. Initial-boundary value problems for the equation in ”nat-
ural” form are studied analytically and numerically in a large number of
works. Based on eigenfunction expansion, explicit solution is given in
[30], the fundamental well-posedness theory is established in [25], maxi-
mum principles are derived in [30, 27], smoothing properties are studied
in [19], complete monotonicity of the corresponding relaxation functions is
discussed in [2, 13]. Regarding numerical treatments, we refer to [19, 44].
For further studies on multi-term equations in Caputo form see e.g. [38],
where different types of spatial operators are considered, and [45], where
the multi-term time-space Caputo-Riesz fractional diffusion equation on an
infinite domain is examined. Concerning the tFDE in “modified” form,
explicit expressions of the solutions of two- and three-term equations are
derived in terms of series of Fox H-functions in [15, 22, 40]. The Rayleigh-
Stokes problem for a generalized second-grade fluid, which is a special case
of a two-term “modified”-form equation, is studied analytically and nu-
merically in [7]. Abstract framework for multi-term evolution equations is
developed in [23], see also [3].

The multinomial Mittag-Leffler function

E(μ1,...,μm),β(z1, . . . , zm) :=
∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

k!

k1! . . . km!

∏m
j=1 z

kj
j

Γ
(
β +

∑m
j=1 μjkj

) ,
where zj ∈ C, μj > 0, β ∈ R, j = 1, . . . ,m, is proposed in [16] and
used for solving multi-term fractional differential equations with constant
coefficients by operational method in [16, 28, 29]. Originally, it is named
“multivariate” Mittag-Leffler function. The current name is attributed to
this function in [18]. The multinomial Mittag-Leffler function plays a cru-
cial role in the study of multi-term time-fractional diffusion equations. This
is due to the fact that the time-dependent components in the eigenfunction
expansion of the solution to initial-boundary value problems for multi-term
equations are expressed in terms of multinomial Mittag-Leffler functions,
see e.g. [19, 25, 27, 30]. To prove existence and regularity results, estimates
for this function are essential.
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The following useful estimate is established in [25]: for 0 < β < 2,
1 > μ1 > μj > 0, and −K ≤ zj < 0, where K > 0, j = 2, . . . ,m, and
μ1π/2 < ν < μ1π, there exists a constant C = C(μ1, . . . , μm, β,K, ν), such
that ∣∣E(μ1,...,μm),β(z1, . . . , zm)

∣∣ ≤ C

1 + |z1| , ν ≤ | arg(z1)| ≤ π. (1.1)

Estimate (1.1) is a natural extension of a property of the classical Mittag-
Leffler function ([34], Theorem 1.6) and has found numerous applications
in the study of initial-boundary value problems for the tFDE in “natural”
form, such as in deriving regularity estimates and smoothing properties for
the solution [19, 25] and in the study of different types of inverse problems
[1, 24, 26, 46]. However, estimate (1.1) is not suitable when the tFDE in
“modified” form is considered.

In a series of papers [4, 5, 6] initial-boundary-value problems for diffu-
sion equations with multiple time derivatives and nonlocal boundary condi-
tions are considered. The nonlocal character of one of the boundary condi-
tions leads to a non-selfadjoint problem and multidimensional eigenspaces.
This, in turn, implies that the time-dependent components in the gen-
eralized eigenfunction expansions of the solutions are expressed in terms
of multinomial Mittag-Leffler functions and convolutions of them. It is
known that convolution of two classical Mittag-Leffler functions is a Prab-
hakar function [12]. Therefore, the need of Prabhakar type generalization
of the multinomial Mittag-Leffler function naturally emerge in the context
of nonlocal boundary value problems for the multi-term tFDE. Such a gen-
eralization is defined and used in [4].

For other types of multi-index and multi-variable generalizations of the
classical Mittag-Leffler function we refer to the recent surveys [20, 33] and
the last edition of the monograph [12].

In this paper the study of the multinomial Prabhakar type function and
the multi-term tFDEs in their two forms are intertwined. First, basic prop-
erties of the multinomial Prabhakar type function are established with the
main emphasis on complete monotonicity. The obtained results are applied
to prove well-posedness of the considered equations. As particular exam-
ples, the relaxation functions for equations with multiple time-derivatives
in the “natural” and “modified” forms are studied in detail and useful es-
timates are derived. This, in turn, provides some new relations for the
multinomial Mittag-Leffler functions. The main tools used in the present
work are Laplace transform and Bernstein functions’ technique.

The rest of the paper is organized as follows. Section 2 is concerned
with the definition and basic relations for the multinomial Prabhakar type
function. Complete monotonicity and asymptotic behavior is studied in
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Section 3. Multi-term evolution equations are considered in Section 4.
Section 5 is devoted to a detailed study of the properties of the related
relaxation functions. In Section 6 the moments of the Green function are
expressed in terms of multinomial Prabhakar type functions. Definitions
and basic properties of fractional calculus operators and Bernstein functions
are listed in an Appendix.

2. Multinomial Prabhakar type function: basic relations

The classical Prabhakar function is defined as [11, 35]

Eδ
μ,β(z) :=

∞∑
k=0

(δ)k
k!

zk

Γ(β + μk)
, z ∈ C, μ, β, δ ∈ R, μ > 0, (2.1)

where (δ)k denotes the Pochhammer symbol

(δ)k = δ(δ + 1) . . . (δ + k − 1), k ∈ N, (δ)0 = 1,

and Γ(·) is the Euler gamma function.
A multinomial generalization of the Prabhakar function (2.1) is defined

next. For the sake of brevity we use the vector notation �μ = (μ1, μ2, . . . , μm).

The multinomial Prabhakar function is defined as follows, [4]:

Eδ
�μ, β(z1, . . . , zm) :=

∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

(δ)k
k1! · · · km!

∏m
j=1 z

kj
j

Γ
(
β +

∑m
j=1 μjkj

) , (2.2)

where zj ∈ C, μj, β, δ ∈ R, μj > 0, j = 1, . . . ,m.

In general, the parameters μj, β, δ, are allowed to assume complex val-
ues with �μj > 0. In this work, however, we restrict our attention to real
parameters, which are of particular interest for the considered applications.

The classical Prabhakar function (2.1) is recovered from (2.2) form = 1.
The binomial variant (m = 2) of function (2.2) was recently introduced and
studied in [10]. In the special case δ = 1 the Pochhammer symbol yields
(1)k = k! and the function (2.2) is the multinomial Mittag-Leffler function

E(μ1,...,μm),β(z1, . . . , zm) = E1
(μ1,...,μm),β(z1, . . . , zm). (2.3)

If δ is a negative integer, then the Prabhakar function (2.2) is defined by a
finite sum, and E0

�μ, β(·) = 1/Γ(β).

Let us note that the double summation in (2.2) can be formally replaced
by the multiple summation

∑∞
k1,...,km=0 :=

∑∞
k1=0 . . .

∑∞
km=0. This yields

a multiple power series, which converges absolutely and locally uniformly,
and thus defines an entire function in each zj, j = 1, . . . ,m. Therefore,
both representations are equivalent.
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Applying successive term by term differentiation in (2.2) and using the
identity (δ)k+1 = δ(δ + 1)k, we deduce the relation(

∂

∂zj

)n

Eδ
�μ, β(z1, . . . , zm) = (δ)nE

δ+n
�μ, nμj+β(z1, . . . , zm),

which generalizes a well-known identity for m = 1, see e.g. [35], Eq.(2.1).

In the rest of this work we are concerned only with the following multi-
nomial Prabhakar type function of a single variable t > 0, which is of
particular importance for the study of multi-term time-fractional equations

Eδ
(μ1,...,μm),β(t; a1, . . . , am) := tβ−1Eδ

(μ1,...,μm),β(−a1tμ1 , . . . ,−amtμm), (2.4)

where μj > 0, β > 0, δ ∈ R, aj > 0, j = 1, . . . ,m. For the sake of brevity

the short notation Eδ
�μ,β(t;�a) is used for the function (2.4). Definition (2.2)

yields the series representation

Eδ
�μ,β(t;�a) =

∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

(−1)k(δ)k
k1! . . . km!

(∏m
j=1 a

kj
j

)
tβ−1+

∑m
j=1 μjkj

Γ
(
β +

∑m
j=1 μjkj

) . (2.5)

The first terms in the power series (2.5) give the following asymptotic ex-
pansion for t→ 0:

Eδ
�μ,β(t;�a) ∼

tβ−1

Γ(β)
− δ

m∑
j=1

aj
tβ−1+μj

Γ(β + μj)
, t→ 0. (2.6)

We study the multinomial Prabhakar type function (2.4) applying Laplace
transform (LT) technique. For this reason we are concerned only with
locally integrable functions Eδ

�μ,β(t;�a). Taking into account (2.6), this is

guaranteed by the assumptions on the parameters of function (2.4).

Theorem 2.1. The Laplace transform Êδ
�μ,β(s;�a) of the multinomial

Prabhakar type function Eδ
�μ,β(t;�a) is given by the identity

Êδ
�μ,β(s;�a) := L

{
Eδ
�μ,β(t;�a)

}
(s) =

s−β(
1 +

∑m
j=1 ajs

−μj

)δ
(2.7)

for s ∈ C, such that �s > 0 and
∣∣∣∑m

j=1 ajs
−μj

∣∣∣ < 1.

P r o o f. By applying term-wise Laplace transform to the series (2.5)

and using the LT pair L
{

tα−1

Γ(α)

}
(s) = s−α for α > 0, �s > 0, we obtain
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L
{
Eδ
�μ,β(t;�a)

}
(s) = s−β

∞∑
k=0

∑
k1+...+km=k
k1≥0,...,km≥0

(−1)k(δ)k
k1! . . . km!

m∏
j=1

(
ajs

−μj
)kj ,

which implies (2.7) by the use of the binomial series

(1 + Z)−δ =
∞∑
k=0

(δ)k
k!

(−Z)k, |Z| < 1, (2.8)

and the multinomial theorem

(Z1 + . . .+ Zm)k =
∑

k1+...+km=k
k1≥0,...,km≥0

k!

k1! . . . km!

m∏
j=1

Z
kj
j .

�

The LT pair (2.7) shows that, in general, the representation as a multi-
nomial Prabhakar type function is not unique. For example, the identity
E2δ
μ,β(t; a) = Eδ

(μ,2μ),β(t; 2a, a
2) can be proven by the use of (2.7). Moreover,

the order of parameters μj (resp. aj) in (2.4) can be changed simulta-
neously. For clarity, in what follows we choose the representation with
minimal m and when a special arrangement of the parameters μj (resp.
aj) is assumed, this is explicitly stated.

A reduction of parameters result is established next.

Theorem 2.2. For any j = 1, . . . ,m, there holds

Eδ
�μ,β(t;�a) =

∞∑
k=0

(δ)k
k!

(−aj)kEk+δ
(μ1,...,μj−1,μj+1,...,μm),μjk+β(t;�a

′), (2.9)

where �a = (a1, . . . , am) and �a′ = (a1, . . . , aj−1, aj+1, . . . , am).

P r o o f. Representation (2.9) is deduced from the following identity
obtained by the use of the binomial series (2.8)

Êδ
�μ,β(s;�a) = s−β

(
1 + Σ′)−δ

(
1 +

ajs
−μj

1 + Σ′

)−δ

=

∞∑
k=0

(δ)k
k!

(−aj)k s−μjk−β

(1 + Σ′)k+δ
,

where Σ′ =
∑

l als
−μl , l = 1, 2, . . . , j − 1, j + 1, . . . ,m, by applying (2.7)

and the uniqueness of Laplace transform. �

In the particular case δ = 1, m = 2, representation (2.9) appears in the
context of two-term time-fractional equations, where instead of the usual
in this case binomial Mittag-Leffler function, an infinite series of Prabhakar
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functions is used, see e.g. [5, 6]. Let us note that further reduction identities
can be found in [34], Chapter 5.

The integration, differentiation and convolution properties for the multi-
nomial Prabhakar type functions, given next, extend those for the classical
Prabhakar function (see e.g. [11]).

Theorem 2.3. The following identities hold true:

Jα
t

(
Eδ
�μ,β(t;�a)

)
= Eδ

�μ,β+α(t;�a), α > 0, (2.10)(
d

dt

)n

Eδ
�μ,β(t;�a) = Eδ

�μ,β−n(t;�a), β > n, (2.11)(
Eδ
�μ,β(·;�a)

)
∗
(
Eδ0
�μ,β0

(·;�a)
)
(t) = Eδ+δ0

�μ,β+β0
(t;�a), (2.12)

where Jα
t is the Riemann-Liouville fractional integral and ∗ denotes the

Laplace convolution.

The above identities can be verified directly from the series definition
(2.5), or, proving by the use of (2.7) that the Laplace transforms of both
sides coincide. Technically, the second method is easier and the proofs are
straightforward. For this reason they are omitted here. In the binomial
case m = 2 the above identities are proved in detail in [10].

3. Complete monotonicity

This section is devoted to the study of complete monotonicity property
of the multinomial Prabhakar type function (2.4) for t > 0. Concerning
the classical Prabhakar type function the current most general result states
that the function tβ−1Eδ

μ,β(−tμ), t > 0, is completely monotone if the

parameters satisfy the conditions [11]

0 < μ ≤ 1, 0 < μδ ≤ β ≤ 1.

A detailed proof can be found in [8]. This result is extended next to the
multinomial case. The proof uses the Bernstein functions’ technique, for
details see Appendix. It is based on the following result.

Proposition 3.1. Let α ∈ (0, 1] and 0 ≤ αj < α ≤ 1, qj > 0,
j = 1, . . . ,m. Then⎛

⎝sα +

m∑
j=1

qjs
αj

⎞
⎠1/α

∈ CBF and

⎛
⎝s−α +

m∑
j=1

qjs
−αj

⎞
⎠−1/α

∈ CBF .
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P r o o f. Property (P8) in the Appendix implies by induction that for
any f, f1, . . . , fm ∈ CBF and α ∈ [−1, 1]\{0} there holds⎛

⎝fα(s) + m∑
j=1

fαj (s)

⎞
⎠1/α

∈ CBF . (3.1)

It remains to plug in (3.1) the complete Bernstein functions f(s) = s,

fj(s) = q
1/α
j sαj/α, j = 1, . . . ,m. �

Theorem 3.2. Let 1 ≥ μ1 > μ2 > . . . > μm > 0, 0 < μ1δ ≤ β ≤ 1,
and aj > 0, j = 1, . . . ,m. Then

Eδ
(μ1,...,μm),β(t; a1, . . . , am) ∈ CMF , t > 0. (3.2)

P r o o f. We prove complete monotonicity of Eδ
�μ,β(t;�a) by applying cri-

terion (P3) in the Appendix. To establish Êδ
�μ,β(s;�a) ∈ SF we note that,

according to (P4), it is equivalent to
(
Êδ
�μ,β(s;�a)

)−1 ∈ CBF , or, taking into

account (2.7), to

sβ−μ1δ

⎛
⎝sμ1 +

m∑
j=1

ajs
μ1−μj

⎞
⎠δ

∈ CBF . (3.3)

Let first β 
= μ1δ. To prove (3.3) we apply (P7) to the function ϕ
α1(s).ψα2(s)

with α1 = β − μ1δ > 0, α2 = μ1δ > 0, and

ϕ(s) = s, ψ(s) =

⎛
⎝sμ1 +

m∑
j=1

ajs
μ1−μj

⎞
⎠1/μ1

,

where ϕ ∈ CBF and ψ ∈ CBF (according to Proposition 3.1).
If β = μ1δ then the function in (3.3) is ψμ1δ(s) and it is a complete

Bernstein function as a composition of two complete Bernstein functions:
ψ(s) and sμ1δ, where μ1δ ≤ 1, see (P6).

In this way (3.3) is verified and, thus, we proved that Êδ
�μ,β(s;�a) ∈ SF .

Moreover, since β > 0, (2.7) implies Êδ
�μ,β(s;�a) → 0 as s → ∞. There-

fore, the conditions in (P3) are established and the proof of the theorem is
completed. �

Let us note that the condition β ≤ 1 is also necessary for complete
monotonicity property (3.2). Indeed, Eδ

�μ,β(t;�a) ∈ CMF implies that the
asymptotic expansions of this function for t → 0 as well as for t → +∞
should be completely monotone functions. We see from (2.6) that at t→ 0
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the function Eδ
�μ,β(t;�a) behaves as t

β−1/Γ(β), which is completely monotone

only when β ≤ 1.

Next we derive the asymptotic expansion for t → ∞. To this end we

need the expansion of Êδ
�μ,β(s;�a) for s → 0. Let μ1 > μ2 > . . . > μm > 0.

Then for s→ 0,

Êδ
�μ,β(s;�a) =

sμ1δ−β

(sμ1 + amsμ1−μm + . . . + a2sμ1−μ2 + a1)δ
∼ sμ1δ−β

(a2sμ1−μ2 + a1)δ

and, therefore

Eδ
�μ,β(t;�a) ∼ a−δ

2 tβ−μ2δ−1Eδ
μ1−μ2,β−μ2δ

(−a1a−1
2 tμ1−μ2

)
, t→ +∞.

From the asymptotic behavior of the Prabhakar function (see e.g. [11], eq.
(3.13)) the leading term as t→ +∞ is obtained as follows

Eδ
�μ,β(t;�a) ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a−δ
1

tβ−μ1δ−1

Γ(β − μ1δ)
, μ1δ 
= β,

−δa−δ−1
1 a2

t−μ1+μ2−1

Γ(−μ1 + μ2)
, μ1δ = β,

, t→ +∞. (3.4)

We observe that the leading terms in (3.4) are completely monotone func-
tions under the assumptions of Theorem 3.2.

Let us point out that (3.4) can be guaranteed only when aj > 0 for
each j = 1, . . . ,m. In the classical case m = 1 this is known [11]. A
relevant counterexample concerning the two-term case is provided in [25],
Remark 4.1.

We also note that, according to (P3) and (P9), the complete mono-

tonicity property (3.2) implies that Êδ
�μ,β(s;�a) can be analytically extended

to the whole complex plane cut along the negative real axis. Therefore, the
function sμ1 + ams

μ1−μm + . . . + a2s
μ1−μ2 + a1 should not have any zeros

there. This is guaranteed by the assumptions μj < μ1 ≤ 1 and aj > 0. The
question whether these conditions are also necessary for complete mono-
tonicity property (3.2) in the multinomial case needs further investigation.
Let us mention here the study in [41] of the zeros of such functions with
μ1 > 1, which could be helpful.

Further, let us note that identity (2.7) implies

Êδ
�μ,β(s;�a)Ê−δ

�μ,1−β(s;�a) = 1/s, s > 0. (3.5)

Therefore, according to property (P5) in the Appendix, Êδ
�μ,β(s;�a) ∈ SF if

and only if Ê−δ
�μ,1−β(s;�a) ∈ SF . If β ∈ (0, 1) then both Laplace transforms

vanish as s → ∞ and according to (P3) Eδ
�μ,β(t;�a) ∈ CMF if and only if
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E−δ
�μ,1−β(t;�a) ∈ CMF . In other words, identity (3.5) implies that Eδ

�μ,β(t;�a)

and E−δ
�μ,1−β(t;�a) are Sonine kernels, that is

Eδ
�μ,β(t;�a) ∗ E−δ

�μ,1−β(t;�a) = 1, t > 0,

and the complete monotonicity of the one implies the complete monotonic-
ity of the other. In this way we obtained the following corollary.

Corollary 3.1. Under the assumptions of Theorem 3.2 and β 
= 1
there holds

E−δ
(μ1,...,μm),1−β(t; a1, . . . , am) ∈ CMF , t > 0. (3.6)

4. Multi-term time-fractional evolution equations

Let CD
α
t and Dα

t denote the fractional time-derivatives in the Caputo
and Riemann-Liouville sense, respectively, and let A be a generator of a
bounded analytic semigroup (see e.g. [9]). In this section we are con-
cerned with the two types of multi-term generalizations of the single-term
fractional evolution equation (t > 0,x ∈ R

n)

CDα
t u(x, t) = Au(x, t) + f(x, t), 0 < α ≤ 1. (4.1)

Let 1 ≥ α > α1 > ... > αm > 0, bj > 0, j = 1, ...,m. We consider the
multi-term tFDE in the so-called ”natural” (or Caputo) form

CDα
t u(x, t) +

m∑
j=1

bj
CD

αj

t u(x, t) = Au(x, t) + f(x, t), t > 0, (4.2)

and in the so-called ”modified” (or Riemann-Liouville) form

∂

∂t
u(x, t) = D1−α

t Au(x, t) +
m∑
j=1

bj D
1−αj

t Au(x, t) + f(x, t), t > 0. (4.3)

Let us point out that in our considerations of equations (4.2) and (4.3) the
case α = 1 is included in order to cover important models, such as the two
time-scale mobile-immobile model for the subdiffusive transport of solutes
in heterogeneous porous media [43], and the Rayleigh-Stokes problem for
a generalized second grade fluid [7]. Therefore, it is not possible to use for
the study of equations (4.2) and (4.3) the framework of general fractional
derivative proposed in [21]. Indeed, if for example, the multi-term derivative
operator in (4.2) with α = 1 is represented as a general fractional derivative,
the corresponding kernel of this derivative would contain a Dirac delta
function, see also [17] for a related discussion.
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For a unified approach to the two types of multi-term tFDEs, (4.2) and
(4.3), we rewrite them for f ≡ 0 as a Volterra integral equation

u(x, t) = u(x, 0) +

∫ t

0
κ(t− τ)Au(x, τ) dτ, t > 0, (4.4)

where the kernel κ(t) = κ1(t) in the case of equation (4.2) and κ(t) = κ2(t)
in the case of equation (4.3). The Laplace transforms of the kernels obey
κ̂i(s) = 1/gi(s), i = 1, 2, where

g1(s) = sα +

m∑
j=1

bjs
αj , g2(s) =

⎛
⎝s−α +

m∑
j=1

bjs
−αj

⎞
⎠−1

. (4.5)

Therefore, taking into account (2.7), we deduce

κ1(t) = E(α−α1,...,α−αm),α(t; b1, . . . , bm), (4.6)

κ2(t) =
tα−1

Γ(α)
+

m∑
j=1

bj
tαj−1

Γ(αj)
. (4.7)

The kernels κi(t) ∈ C(R+) ∩ L1
loc(R+) are completely monotone functions,

see Theorem 3.2. Then [36], Corollary 2.4, implies that the problem (4.4)
is well-posed and admits a bounded analytic solution operator S(t).

We observe that the functions g1(s) and g2(s) in (4.5) are complete
Bernstein functions (the second one as inverse of a Stieltjes function, see
(P4)). Moreover, according to Proposition 3.1, a stronger property is sat-

isfied: gi(s)
1/α ∈ CBF , i = 1, 2. This together with (P6) also implies

gi(s)
1/β =

(
gi(s)

1/α
)α/β ∈ CBF , 0 < α ≤ β ≤ 1, i = 1, 2. (4.8)

Due to property (4.8) the following subordination result can be established
in the same way as Theorem 5.1 in [3].

Theorem 4.1. Let 0 < α ≤ β ≤ 1 and assume the single-term problem
(4.1) of order β admits a bounded solution operator Sβ(t). Then the solu-
tion operator S(t) of problem (4.2), resp. (4.3), satisfies the subordination
identity

S(t) =

∫ ∞

0
ϕ(t, τ)Sβ(τ) dτ, t > 0, (4.9)

with function ϕ(t, τ) defined by

ϕ(t, τ) =
1

2πi

∫ γ+i∞

γ−i∞
exp

(
st− τg1/β(s)

) g1/β(s)

s
ds, γ, t, τ > 0,
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where g(s) = g1(s) in case of problem (4.2) and g(s) = g2(s) in case of
problem (4.3). The function ϕ(t, τ) is a probability density function, i.e. it
satisfies the properties

ϕ(t, τ) ≥ 0,

∫ ∞

0
ϕ(t, τ)dτ = 1. (4.10)

Let us note that subordination results in a more general setting are
established in [37] by constructing an appropriate transmutation operator.

5. Relaxation functions

Setting A = −λ, λ > 0, in equations (4.2) and (4.3) leads to two forms
of multi-term relaxation equations. In this section we study the properties
of the relaxation functions, obtained as solutions of these equations.

By the use of Laplace transform we deduce that the solution of the
relaxation equation in ”natural” form

CDα
t u(t) +

m∑
j=1

bj
CD

αj

t u(t) + λu(t) = f(t), t > 0; u(0) = 1, (5.1)

is given by

u(t) = u1(t;λ) +

∫ t

0
v1(t− τ ;λ)f(τ) dτ, (5.2)

and the solution of the relaxation equation in “modified” form

u′(t) + λD1−α
t u(t) + λ

m∑
j=1

bjD
1−αj

t u(t) = f(t), t > 0; u(0) = 1, (5.3)

is represented as

u(t) = u2(t;λ) +

∫ t

0
u2(t− τ ;λ)f(τ) dτ, (5.4)

where the functions u1(t;λ), v1(t;λ), and u2(t;λ) satisfy the following
Laplace transform identities

ûi(s;λ) =
gi(s)

s(gi(s) + λ)
, i = 1, 2; v̂1(s;λ) =

1

g1(s) + λ
, (5.5)

with g1(s) and g2(s) defined in (4.5).
The functions u1(t;λ) and v1(t;λ) are the relaxation functions related

to problem (5.1) and u2(t;λ) is the relaxation function related to problem
(5.3). Laplace transform inversion in (5.5) by the use of (2.7) yields the
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following explicit representations in terms of multinomial Mittag-Leffler
functions

u1(t;λ) = 1− λE(α,α−α1,...,α−αm),α+1 (t;λ, b1, . . . , bm) , (5.6)

u2(t;λ) = E(α,α1,...,αm),1 (t;λ, λb1, . . . , λbm) , (5.7)

v1(t;λ) = E(α,α−α1,...,α−αm),α (t;λ, b1, . . . , bm) . (5.8)

In the single term case the relaxation functions reduce to the classical
Mittag-Leffler functions ui(t;λ) = Eα(−λtα), i = 1, 2, and v1(t;λ) =
tα−1Eα,α(−λtα).

Subordination identities for the relaxation functions ui(t;λ) can be
derived from the scalar version of Theorem 4.1, where S(t) = ui(t;λ),
Sβ(t) = Eβ(−λtβ). In particular, for β = 1 it follows

ui(t;λ) =

∫ ∞

0
ϕi(t, τ)e

−λτ dτ, t > 0, i = 1, 2, (5.9)

where the functions ϕi(t, τ) are nonnegative and normalized. A subordina-
tion result for the third relaxation function v1(t;λ) is given next.

Theorem 5.1. The relaxation function v1(t;λ) obeys the identity

v1(t;λ) =

∫ ∞

0
ψ(t, τ)e−λτ dτ, t > 0, (5.10)

where the kernel ψ(t, τ) is nonnegative and admits the representation

ψ(t, τ) = hα(t, τ) ∗ hα1(t, b1τ) ∗ . . . ∗ hαm(t, bmτ). (5.11)

Here ∗ denotes the Laplace convolution and

hα(t, σ) = σ−1/αLα

(
tσ−1/α

)
, (5.12)

where Lα(r) is the Lévy extremal stable density, defined by L̂α(s) = e−sα .

P r o o f. Consider a subordination kernel ψ(t, τ), which Laplace trans-
form with respect to t satisfies

ψ̂(s, τ) =

∫ ∞

0
e−stψ(t, τ) dt = e−τg1(s). (5.13)

Then, the functions v1(t;λ) defined by identity (5.10) obeys∫ ∞

0
e−stv1(t;λ) dt =

∫ ∞

0
e−τg1(s)e−λτ dτ =

1

g1(s) + λ
.

Comparing this result to (4.5), it follows by the uniqueness of the Laplace
transform that v1(t;λ) defined by (5.10) is indeed the relaxation function
(5.8). In this way (5.10) is established.
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Since g1(s) ∈ CBF then by applying (P2) it follows e−τg1(s) ∈ CMF .
The nonnegativity of ψ(t, τ) then follows by the Bernstein’s theorem. From
(5.13) and (4.5)

ψ̂(s, τ) = e−τg1(s) = e−τ(sα+
∑m

j=1 bjs
αj) = e−τsα

m∏
j=1

e−τbjs
αj
,

which, after Laplace transform inversion, yields representation (5.11). �

By fractional integration of (5.10) and taking into account (5.8) and
identity (2.10) we deduce the following representation for completely mono-
tone multinomial Mittag-Leffler functions, which is of independent interest.

Corollary 5.1. Let 0 < α ≤ β ≤ 1, 0 < αj < α, λ > 0, βj > 0,
j = 1, . . . ,m. Then

E(α,α−α1,...,α−αm),β (t;λ, b1, . . . , bm) =

∫ ∞

0
φ(t, τ)e−λτ dτ, t > 0, (5.14)

where the kernel φ(t, τ) is nonnegative and admits the representation

φ(t, τ) =
tβ−α−1

Γ(β − α)
∗ hα(t, τ) ∗ hα1(t, b1τ) ∗ . . . ∗ hαm(t, bmτ)

if α < β and φ(t, τ) = ψ(t, τ), defined in (5.11), when α = β. The functions
hα(t, ·) are defined in (5.12).

Some properties of the relaxation functions for the equations in “natu-
ral” and “modified” forms, including useful estimates, are collected in the
next theorem.

Theorem 5.2. For any λ > 0 the relaxation functions u1(t;λ), u2(t;λ),
and v1(t;λ) are positive, strictly decreasing, completely monotone for t > 0,
and admit analytic extensions to the half-plane � t > 0. The relation holds
true

∂

∂t
u1(t;λ) = −λv1(t;λ). (5.15)

The following uniform bounds are satisfied

0 < ui(t;λ) < 1, t > 0, ui(0;λ) = 1, i = 1, 2, (5.16)

ui(t;λ) ≤ 1

1 + λli(t)
, i = 1, 2, (5.17)
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where

l1(t) = (1 ∗ κ1) (t) = E(α−α1,...,α−αm),α+1(t; b1, . . . , bm), (5.18)

l2(t) = (1 ∗ κ2) (t) = tα

Γ(α+ 1)
+

m∑
j=1

bj
tαj

Γ(αj + 1)
. (5.19)

For any λ ≥ λ0 > 0 and t > 0

ui(t;λ) ≤ ui(t;λ0), i = 1, 2, v1(t;λ) ≤ v1(t;λ0), (5.20)

and there holds the estimate

C ≤ λ

∫ T

0
v1(t;λ) dt < 1, T > 0, (5.21)

where the constant C = 1− u1(T ;λ0) > 0 is independent of λ.

P r o o f. We prove that functions ui(t;λ) admit bounded analytic ex-
tensions to the half-plane �t > 0 by using the following characterization of
functions which are bounded analytic in a sector (see e.g. [36], Theorem
0.1): For a function F defined on (0,∞) and θ0 ∈ (0, π/2] the following
statements are equivalent:
(i) F (s) admits an analytic extension to the sector | arg s| < π/2 + θ0 and
sF (s) is bounded on each subsector | arg s| ≤ π/2 + θ, θ < θ0;
(ii) there is a function f(t) analytic for | arg t| < θ0 and bounded on each

sector | arg t| ≤ θ < θ0, such that F (s) = f̂(s) for s > 0.
We use this characterization in both directions. First, since the function

f(t) = e−λt is analytic and bounded for �t > 0, it follows that∣∣∣sf̂(s)∣∣∣ = ∣∣∣∣ s

s+ λ

∣∣∣∣ ≤M, | arg s| ≤ θ, θ < π. (5.22)

The functions gi(s) ∈ CBF . Hence, according to (P9), they admit analytic
extensions to the sector | arg s| < π and

| arg gi(s)| ≤ | arg s|, s ∈ C\(−∞, 0].

Therefore, in view of (5.5) and (5.22), ûi(s;λ) admit analytic extensions to
the sector | arg s| < π and

|sûi(s;λ)| =
∣∣∣∣ gi(s)

gi(s) + λ

∣∣∣∣ ≤M, | arg s| ≤ θ, θ < π.

This implies that the functions ui(t;λ) admit bounded analytic extensions
for �t > 0. The analyticity of v1(t;λ) is then inferred taking into account
relation (5.15), proven below.

Complete monotonicity of u2(t;λ) and v1(t;λ) follows from the explicit
representations (5.7) and (5.8) and Theorem 3.2. To prove that u1(t;λ) ∈
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CMF we use a different argument. First, note that h(s) = s
s+λ ∈ CBF ,

since h−1(s) = 1+λs−1 ∈ SF , see (P4), and the function g1(s)
g1(s)+λ ∈ CBF as

a composition of the complete Bernstein functions h(s) and g1(s), see (P6).

Therefore, the function g1(s)
s(g1(s)+λ) ∈ SF and vanishes as s → +∞. Then

property (P3) gives for the inverse Laplace transform u1(t;λ) ∈ CMF .
Integral equation (5.23) yields ui(0;λ) = 1. Since ui(t;λ), v1(t;λ) ∈

CMF , they are nonnegative and nonincreasing functions for t > 0. This
fact, together with their analyticity, implies that these functions are positive
and strictly decreasing.

The integral equation (4.4) implies for the relaxation functions ui(t;λ)

ui(t;λ) = 1− λ

∫ t

0
κ(t− τ)ui(τ ;λ) dτ, t > 0, i = 1, 2. (5.23)

Taking into account the fact that ui(t;λ) are positive and decreasing func-
tions, the integral equation (5.23) yields

1 = ui(t;λ) + λ

∫ t

0
κ(t− τ)ui(τ ;λ) dτ ≥ ui(t;λ) + λui(t;λ)

∫ t

0
κ(τ) dτ,

which implies estimates (5.17).
From (5.5) and u1(0;λ) = 1 we deduce

L
{
∂u1
∂t

}
(s;λ) =

g1(s)

g1(s) + λ
− 1 = − λ

gi(s) + λ
= −λv̂1(s;λ).

Identity (5.15) then follows from the uniqueness property of the Laplace
transform.

The inequalities (5.20) follow directly from the subordination identities
(5.9) and (5.10). Indeed, for λ ≥ λ0

ui(t;λ) =

∫ ∞

0
ϕi(t, τ)e

−λτ dτ ≤
∫ ∞

0
ϕi(t, τ)e

−λ0τ dτ = ui(t;λ0),

and analogously for v1(t;λ). Here the nonnegativity of the functions ϕi(t, τ)
and ψ(t, τ) is essential.

Applying (5.15) we deduce

λ

∫ T

0
v1(t;λ) dt = 1− u1(T ;λ).

This together with the first inequality in (5.20) and 0 < u1(T ;λ) < 1
implies (5.21). �

Let us note that all statements in Theorem 5.2 extend known properties
of the classical Mittag-Leffler functions Eα(−λtα) and tα−1Eα,α(−λtα).
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6. Moments of the Green functions

As an application of the multinomial Prabhakar type functions (2.5), in
this section we derive expressions for the moments of the Green functions
of the multiterm tFDEs in terms of such functions. Consider the Cauchy

problem for the multi-term tFDEs (4.2) and (4.3), where A =
(

∂
∂x

)2
, x ∈ R.

The fundamental solution (Green function) G(x, t) is defined by assuming
the initial and boundary conditions

G(x, 0) = δ(x); x ∈ R, lim
|x|→∞

G(x, t) = 0, t > 0,

where δ(·) is the Dirac delta function. Applying as usual Laplace transform
with respect to the temporal variable and Fourier transform with respect
to the spatial variable, we derive for the Green function G(x, t) in Fourier-
Laplace domain (see e.g. [31, 39])

̂̃G(k, s) = g(s)/s

g(s) + k2
, k ∈ R, s > 0. (6.1)

Here g(s) = g1(s) in the case of “natural”-form equation (4.2) and g(s) =
g2(s) in the case of “modified”-form equation (4.3), and the definitions of
these functions are given in (4.5). By Fourier inversion in (6.1) the Laplace
transform of the solution is obtained as follows

Ĝ(x, s) =
√
g(s)

2s
exp

(
−|x|

√
g(s)

)
, x ∈ R. (6.2)

Let γ > 0. Representation (6.2) implies for the Laplace transforms of
the moments 〈|x|γ(t)〉 of order γ∫

R

xγĜ(x, s) dx =

√
g(s)

s

∫ ∞

0
xγ exp

(
−x

√
g(s)

)
dx =

Γ(γ + 1)

s(g(s))γ/2
,

where the formula
∫∞
0 xb−1e−ax dx = Γ(b)a−b is used. Taking inverse

Laplace transform, we obtain by the use of (2.7)

〈|x|γ1(t)〉 = C1 Eγ/2

(α−αm,α−αm−1,...,α−α1),
αγ
2
+1

(t; bm, bm−1, ..., b1)

for the “natural”-form diffusion equation (4.2), where C1 = Γ(γ + 1), and

〈|x|γ2(t)〉 = C2 E−γ/2
(α−αm,α1−αm,...,αm−1−αm),αmγ

2
+1

(
t;

1

bm
,
b1
bm
, ...,

bm−1

bm

)
,

for the “modified”-form equation (4.3), where C2 = Γ(γ + 1)b
γ/2
m .

Let us note that the indices in the brackets of the above multinomial
Prabhakar type functions are specially arranged, so that the first index, α−
αm, is the largest. The obtained representations for the moments, together
with the properties (2.10), (3.2), and (3.6), imply that the moments of
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the Green functions of both equations are Bernstein functions (integrals of
completely monotone functions) provided αγ ≤ 2.

The corresponding mean squared displacements
〈|x|2i (t)〉 are derived by

setting γ = 2. This yields〈|x|2i (t)〉 = 2li(t), i = 1, 2,

where the functions l1(t) and l2(t) are defined in (5.18) and (5.19). As we
see, l2(t) is a finite sum, and this is the case for all moments of even order
for the equation in ”modified” form.

The asymptotic behavior of the derived moments can be deduced from
the asymptotic expansions (2.6) and (3.4) for the multinomial Prabhakar

type functions. In this way we obtain 〈|x|γ1(t)〉 ∼ tαγ/2 as t → 0 and

〈|x|γ1(t)〉 ∼ tαmγ/2 as t→ ∞ for the equation (4.2) in “natural” form, while
for the equation (4.3) in “modified” form the opposite behavior is observed:

〈|x|γ2(t)〉 ∼ tαmγ/2 as t→ 0 and 〈|x|γ2(t)〉 ∼ tαγ/2 as t→ ∞. The established
results are in agreement with those given in [31, 39] for particular cases.

Appendix

The Riemann-Liouville and the Caputo fractional derivatives, Dα
t and

CD
α
t , are defined as follows

Dα
t =

d

dt
J1−α
t , CD

α
t = J1−α

t

d

dt
, 0 < α < 1,

where Jβ
t denotes the Riemann-Liouville fractional integral

Jβ
t f(t) =

1

Γ(β)

∫ t

0
(t− τ)β−1f(τ) dτ, β > 0; J0

t = I.

The Laplace transform (LT) of a function f(·) is denoted as follows

f̂(s) = L{f(t)}(s) =
∫ ∞

0
e−stf(t) dt,

and ∗ denotes the Laplace convolution (f ∗ g)(t) = ∫ t
0 f(t− τ)g(τ) dτ .

The Laplace transform of fractional order operators obeys the identities

L{Jα
t f}(s) = s−αf̂(s), α > 0,

L{CDα
t f}(s) = sαf̂(s)− sα−1f(0) if α ∈ (0, 1],

L{Dα
t f}(s) = sαf̂(s) if α ∈ (0, 1), f(0) <∞.

Definitions of special classes of functions and their properties used in
this work are given next in a simplified form.
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A real-valued infinitely differentiable on R+ function ϕ(t) is said to be
a completely monotone function (CMF) if

(−1)nϕ(n)(t) ≥ 0, t > 0, n ∈ N0.

The characterization of the class of completely monotone functions is given
by the Bernstein’s theorem which states that a function is completely mono-
tone if and only if it can be represented as the Laplace transform of a
non-negative measure (non-negative function or generalized function).

A non-negative function ϕ defined on R+ is said to be a Bernstein
function (ϕ ∈ BF) if ϕ′(t) ∈ CMF .

The class of Stieltjes functions (SF) consists of all functions defined on
R+ which have the representation (see [21])

ϕ(s) =
a

s
+ b+

∫ ∞

0
e−sτψ(τ) dτ, s > 0,

where a, b ≥ 0, and ψ ∈ CMF ∩ L1
loc(R+) and the Laplace transform of ψ

exists for any s > 0. The inclusion SF ⊂ CMF holds true.
A function ϕ defined on R+ is said to be a complete Bernstein functions

(CBF) if and only if ϕ(s)/s ∈ SF , s > 0. There holds CBF ⊂ BF .
Basic examples of Stieltjes and complete Bernstein functions are the

following: s−α ∈ SF and sα ∈ CBF for α ∈ [0, 1].

A selection of properties is listed next:

(P1) The class CMF is closed under pointwise multiplication.
(P2) CMF ◦ BF ⊂ CMF , where ◦ denotes composition of two functions.
(P3) ϕ ∈ CMF ∩L1

loc(R+) if and only if ϕ̂(s) ∈ SF and lims→+∞ ϕ̂(s) = 0.
(P4) ϕ(s) ∈ CBF , ϕ 
≡ 0, if and only if 1/ϕ(s) ∈ SF .
(P5) ϕ(s) ∈ SF , ϕ 
≡ 0, if and only if (sϕ(s))−1 ∈ SF .
(P6) CBF ◦ CBF ⊂ CBF .
(P7) Let ϕ,ψ ∈ CBF and α1, α2 ∈ (0, 1), α1 + α2 ≤ 1. Then

ϕα1(s).ψα2(s) ∈ CBF .
(P8) Let ϕ,ψ ∈ CBF and α ∈ [−1, 1]\{0}. Then

(ϕα(s) + ψα(s))1/α ∈ CBF .
(P9) If ϕ ∈ SF or ϕ ∈ CBF then it can be analytically extended to the
complex plane cut along the negative real axis and

| argϕ(z)| ≤ | arg z|, z ∈ C\(−∞, 0].

For proofs of the above statements (P1)-(P9) we refer to [36], Chapter 4,
[42], Chapters 6 and 7, and [14], Theorem 2.6.
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