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Abstract

The asymptotic expansions of the Wright functions of the second kind,
introduced by Mainardi [see Appendix F of his book Fractional Calculus
and Waves in Linear Viscoelasticity (2010)],

Fσ(x) =
∞∑
n=0

(−x)n

n!Γ(−nσ)
, Mσ(x) =

∞∑
n=0

(−x)n

n!Γ(−nσ + 1− σ)
(0 < σ < 1)

for x → ±∞ are presented. The situation corresponding to the limit σ →
1− is considered, whereMσ(x) approaches the Dirac delta function δ(x−1).
Numerical results are given to demonstrate the accuracy of the expansions
derived in the paper, together with graphical illustrations that reveal the
transition to a Dirac delta function as σ → 1−.
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1. Introduction

The particular Wright function under consideration (also known as a
generalized Bessel function) is defined by

Wλ,μ(z) =

∞∑
n=0

zn

n!Γ(λn+ μ)
, (1.1)
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where λ is supposed real and μ is, in general, an arbitrary complex pa-
rameter. The series converges for all finite z provided λ > −1 and, when
λ = 1, it reduces to the modified Bessel function z(1−μ)/2Iμ−1(2

√
z). The

asymptotics of this function were first studied by Wright [14, 15] using the
method of steepest descents applied to the integral representation

Wλ,μ(z) =
1

2πi

∫ (0+)

−∞
t−μet+zt−λ

dt (λ > −1, μ ∈ C). (1.2)

The case corresponding to λ = −σ, 0 < σ < 1 arises in the analy-
sis of time-fractional diffusion and diffusion-wave equations. The function
with negative λ has been termed a Wright function of the second kind by
Mainardi [4], with the function with λ > 0 being referred to as a Wright
function of the first kind. In the former context, Mainardi [4, Appendix F]
defined the auxiliary functions

Fσ(z) = W−σ,0(−z) =
∞∑
n=1

(−z)n

n!Γ(−nσ)
, 0 < σ < 1, (1.3)

Mσ(z) = W−σ,1−σ(−z) =
∞∑
n=0

(−z)n

n!Γ(−nσ + 1− σ)
, 0 < σ < 1. (1.4)

These functions are interrelated by the following relation:

Fσ(z) = σzMσ(z). (1.5)

The case μ = 0 in (1.1) also finds application in probability theory and is
discussed extensively in [13], where it is denoted by

φ(λ, 0; z) = Wλ,0(z) (1.6)

and referred to as a ’reduced’ Wright function.
Plots of Mσ(x) for real x and varying σ are presented in [4, Appendix F]

and [5]. These graphs illustrate the transition between the special values
σ = 0, 12 , 1, where Mσ(x) has simple representations in terms of known
functions. These are

M0(x) = e−x, M1/2(x) =
1√
π
e−x2/4, M1/3(x) = 32/3Ai(x/31/3), (1.7)

where Ai is the Airy function. As σ → 1−, the function Mσ(x) tends to
the Dirac delta function δ(x − 1).

In this paper we present the asymptotic expansions of Fσ(x) and Mσ(x)
for x → ±∞ by exploiting the known asymptotics of the function φ(−σ, 0, x)
discussed in [13]. The resulting expansions involve a combination of algebraic-
type and exponential-type expansions, for which explicit representation of
the coefficients in both types of expansion is given. In order to give a self-
contained account, we describe the derivation of the expansion for Mσ(x)
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based on the asymptotics of integral functions of hypergeometric type de-
scribed in [10] (see also [11, §4.2]). The asymptotic treatment of the func-
tion Wλ,μ(z) given by Wright [14], [15] did not give precise information
about the coefficients appearing in the exponential expansions; see also
[10] for a more detailed account.

2. The asymptotic expansions of Fσ(x) and Mσ(x) for x → ±∞
We define the quantities

κ = 1− σ, ϑ = σ − 1

2
, h = σσ, X = κ(hx)1/κ, A(σ) =

√
2π

σ

(σ
κ

)σ
. (2.1)

The connection between Fσ(x) and the function φ defined in (1.6) is

Fσ(x) = φ(−σ, 0,−x).

The asymptotic expansions of φ(−σ, 0, x) for x → ±∞ when 0 < σ < 1
are given in [13, §5.2]. We therefore obtain the expansions stated in the
following theorem:

Theorem 2.1. When 0 < σ < 1 we have the expansion of the auxiliary
Wright function Fσ(x) given by ∗

Fσ(x) ∼ A′(σ)
2π

X1/2e−X
∞∑
j=0

cj(σ)(−X)−j (0 < σ < 1) (2.2)

and

Fσ(−x) ∼
⎧⎨
⎩

E′(x) +H ′(x) (0 < σ < 1
2)

H ′(x) (12 < σ < 1)
(2.3)

as x → +∞, where A′(σ) = A(σ)(σ/κ)κ and c0(σ) = 1. The formal
exponential and algebraic expansions E′(x) and H ′(x) are defined by (see
[13, (5.10), (5.11)])

E′(x) :=
A′(σ)
π

X1/2eX cos πσ/κ
∞∑
j=0

cj(σ)(−X)−j cos
[
X sin

πσ

κ
+

π

κ
(ϑ− j)

]

and

H ′(x) :=
1

σ

∞∑
k=0

x−(k+1)/σ

k! Γ(1− k+1
σ )

.

∗ There is a factor (−)j missing in the sum in [13, (5.20)].
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The case σ = 1
2 needs no special attention since

F1/2(x) =
x

2
√
π
e−x2/4,

but see the comment at the end of Section 3 as this case is associated with
a Stokes phenomenon.

The coefficients cj(σ) appearing in the exponential expansions in The-
orem 2.1 can be obtained ∗∗ from [10, (4.6)] (when the parameter δ therein
is replaced by σ). We have:

cj(σ) =
(2− σ)(1− 2σ)

23j3jj!σj
dj(σ) (j ≥ 1), (2.4)

where the first few coefficients dj(σ) are:

d1(σ) = 1, d2(σ) = 2 + 19σ + 2σ2,

d3(σ) =
1

5
(556 − 1628σ − 9093σ2 − 1628σ3 + 556σ4),

d4(σ) =
1

5
(4568 + 226668σ − 465702σ2 − 2013479σ3 − 465702σ4

+ 226668σ5 + 4568σ6),

d5(σ) =
1

7
(2622064 − 12598624σ − 167685080σ2 + 302008904σ3

+ 1115235367σ4 + 302008904σ5 − 167685080σ6

− 12598624σ7 + 2622064σ8)

d6(σ) =
1

35
(167898208 + 22774946512σ − 88280004528σ2 − 611863976472σ3

+ 1041430242126σ4 + 3446851131657σ5 + 1041430242126σ6

− 611863976472σ7 − 88280004528σ8 + 22774946512σ9

+ 167898208σ10).

These polynomial coefficients are related to the so-called Zolotarev polyno-
mials, see [13].

From the relation (1.5), we have Mσ(±x) = Fσ(±x)/(±πx) and after a
little algebra we deduce the expansion of Mσ(x) given by:

∗∗ There is a misprint in the coefficient c2 in [10, (4.6)]: the quantity multiplying δ
should be 6 + 41σ + 41σ2 + 6σ3. The same misprint appears in [11, (33)].
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Theorem 2.2. When 0 < σ < 1 we have the expansion of the auxiliary
Wright function Mσ(x) given by:

Mσ(x) ∼ A(σ)

2π
Xϑe−X

∞∑
j=0

cj(σ)(−X)−j (0 < σ < 1) (2.5)

and

Mσ(−x) ∼
⎧⎨
⎩

Ê(x) + Ĥ(x) (0 < σ < 1
2)

Ĥ(x) (12 < σ < 1)

(2.6)

as x → +∞, where the coefficients cj(σ) are as defined in Theorem 2.1. The

formal exponential and algebraic expansions Ê(x) and Ĥ(x) are defined by

Ê(x) :=
A(σ)

π
XϑeX cos πσ/κ

∞∑
j=0

cj(σ)(−X)−j cos
[
X sin

πσ

κ
+

π

κ
(ϑ− j)

]

and

Ĥ(x) :=
1

σ

∞∑
k=1

x−(k+σ)/σ

k! Γ(− k
σ )

.

For x → +∞, the function Mσ(x) is exponentially small for all values
of σ in the interval 0 < σ < 1. The case of Mσ(−x), however, is seen
to be more structured. When 0 < σ < 1

3 , the factor cos πσ/κ > 0 and
Mσ(−x) is exponentially large (with an oscillation) as x → +∞, with the

algebraic expansion Ĥ(x) being subdominant. When σ = 1
3 , this factor is

zero and Ê(x) is oscillatory with an algebraically controlled amplitude and

Ĥ(x) ≡ 0. When 1
3 < σ < 1

2 , the expansion Ê(x) is exponentially small and
the behaviour of Mσ(−x) is controlled by the algebraic expansion. Finally,
when 1

2 < σ < 1 the expansion of Mσ(−x) is purely algebraic in character.

3. The asymptotic expansion of Mσ(x) for x → ±∞
In order to make this paper more self contained we present in this

section an alternative derivation of the expansion of Mσ(x) as x → ±∞.
Define the function

F(z) :=
∞∑
n=0

Γ(nσ + σ)

n!
zn (0 < σ < 1). (3.1)

Then use of the reflection formula for the gamma function shows that the
auxiliary Wright function Mσ(x) defined in (1.4) can be expressed in terms
of F(x) as

Mσ(x) =
1

π

∞∑
n=0

Γ(σn+ σ)

n!
(−x)n sinπ(n+ 1)σ
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=
1

2π

{
eπiϑF(xe−πiκ) + e−πiϑF(xeπiκ)

}
, (3.2)

and in a similar manner

Mσ(−x) =
1

2π

{
eπiϑF(xeπiσ) + e−πiϑF(xe−πiσ)

}
. (3.3)

From the discussion in [10, Section 2], the Stokes lines for F(z), where
its exponential expansion is maximally subdominant relative to its algebraic
expansion, are situated on the rays arg z = ±πκ. An important distinction
between (3.2) and (3.3) when x > 0 is that for Mσ(−x) the arguments of
the functions F(xe±πiσ) are only situated on the Stokes lines arg z = ±πκ
when σ = 1

2 , since κ = 1 − σ = 1
2 , whereas for Mσ(x) the arguments of

F(xe±πiκ) are situated on the Stokes lines for all values of σ in the range
0 < σ < 1.

From [10, §4.1] (see also [12, §2.3]), the asymptotic expansion of F(z)
is given by

F(z) ∼
⎧⎨
⎩

E(z) +H(ze∓πi) (| arg z| ≤ πκ− ε)

H(ze∓πi) (πκ+ ε ≤ | arg z| ≤ π)
(3.4)

as |z| → ∞. The upper or lower signs are chosen according as arg z > 0 or
arg z < 0, respectively and ε denotes an arbitrarily small positive quantity.
The formal exponential and algebraic expansions E(z) andH(z) are defined
by

E(z) := A(σ)ZϑeZ
∞∑
j=0

cj(σ)Z
−j , Z := κ(hz)1/κ, (3.5)

H(z) :=
1

σ

∞∑
k=0

(−)k

k!
Γ
(k + σ

σ

)
z−(k+σ)/σ , (3.6)

where the parameters κ, h, ϑ and A(σ) are defined in (2.1) and the co-
efficients cj(σ) are those appearing in Theorem 1; see Appendix A for an
algorithm for the calculation of these coefficients.

The exponential expansion E(z) is dominant in the sector | arg z| < 1
2πκ

and becomes exponentially small in the adjacent sectors 1
2πκ < | arg z| ≤

πκ. On arg z = ±πκ, E(z) is maximally subdominant relative to the
algebraic expansion and switches off in a smooth manner (at fixed |z|)
across these Stokes lines. The expansion in this case is given in Subsection
3.1.

3.1. The expansion of Mσ(x) as x → +∞. To deal with this case we
require the expansion of F(xe±πiκ) for large x > 0. As stated above, the
arguments of F(z) are situated on the Stokes lines arg z = ±πκ, where the
exponential expansion is in the process of switching off as | arg z| increases.
From [10, (4.7)], we have the expansion
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F(xe±πiκ) ∼ e±πiσ

σ

m−1∑
k=0

Γ(k+σ
σ )

k!
x−(k+σ)/σ

+ (Xe±πi)ϑe−X
∞∑
j=0

(1
2
Aj(σ)± iBj(σ)√

2πX

)
(−X)−j (3.7)

as x → +∞, where Aj(σ) = A(σ)cj(σ) and m denotes the optimal trun-
cation index (that is, truncation at, or near, the smallest term) of the
algebraic expansion; see also [9, §4.2]. The coefficients Bj(σ) involve linear
combinations of the Aj(σ); see [10, §4.1]. However, the precise values of
m and Bj(σ) do not concern us here since in the combination (3.2) the
algebraic expansion and the terms involving Bj(σ) all cancel.

The algebraic component of the right-hand side of (3.2) is then seen to
be

1

2πσ

m−1∑
k=0

(−)k
Γ(k+σ

σ )

k!

{
eπiϑ(xe−πiκ·eπi)−(k+σ)/σ+e−πiϑ(xeπiκ·e−πi)−(k+σ)/σ

}

=
cos π(ϑ− σ)

πσ

m−1∑
k=0

Γ(k+σ
σ )

k!
x−(k+σ)/σ ≡ 0,

upon recalling that ϑ = σ − 1
2 . The exponentially small contributions

involving the coefficients Bj(σ) in (3.7) are also seen to cancel in the com-
bination in (3.2), thereby yielding the expansion (2.5) stated in Theorem
2.2.

3.2. The expansion of Mσ(−x) as x → +∞ (when σ �= 1
2)

The algebraic component in the expansion for Mσ(−x) is from (3.6) and
(3.3)

Ĥ(x) : =
1

2π

{
eπiϑH(xeπiσ · e−πi) + e−πiϑH(xe−πiσ · eπi)}

=
1

2πiσ

∞∑
k=0

Γ(k+σ
σ )

k!
{(xe−πi)−(k+σ)/σ − (xeπi)−(k+σ)/σ}

=
1

σ

∞∑
k=1

x−(k+σ)/σ

k! Γ(−k/σ)
. (3.8)

Note that Ĥ(x) ≡ 0 when σ = 1/p, p = 2, 3, 4, . . . . The exponential
component (with ω := eπiσ/κ for brevity) is, from (3.5),
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Ê(x) :=
1

2π

{
eπiϑE(xeπiσ) + e−πiϑE(xe−πiσ)

}

=
Xϑ

2π

{
eXω+πiϑ/κ

∞∑
j=0

Aj(σ)(Xω)−j + eX/ω−πiϑ/κ
∞∑
j=0

Aj(σ)(X/ω)−j
}

=
Xϑ

π
eX cos πσ/κ

∞∑
j=0

Aj(σ)(−X)−j cos
[
X sin

πσ

κ
+

π

κ
(ϑ − j)

]
, (3.9)

provided 0 < σ < 1
2 . Then, from (3.4), we obtain the expansion (2.6) in

Theorem 2.2.

Remark 3.1. The expansion (2.6) in Theorem 2.2 does not hold when
σ = 1

2 as this case requires a separate treatment on account of the Stokes
phenomenon. However, this is not essential here since by (1.7) we have the

exact value M1/2(±x) = π−1/2 exp [−x2/4]. It is worth noting that when

σ = 1
2 = κ, the algebraic expansion Ĥ(x) ≡ 0 and, since cj(

1
2) = 0 for j ≥

1, the exponential expansion Ê(x) in (3.9) reduces to 2π−1/2 exp [−x2/4],
which is twice the correct value. This is due to our not having taken into
account the Stokes phenomenon present in the particular case of (2.6) in
Theorem 2 corresponding to σ = 1

2 .

4. Numerical results

We present some numerical results to verify the expansions in Theorems
1 and 2. In Table 1 the values (accurate to 10dp) of the coefficients cj(σ)
appearing in the exponential expansion are shown for two values of σ.
Table 2 shows the absolute relative error in the computation of Mσ(x) as a
function of the truncation index j with the expansion (2.5) in Theorem 2.2.
Table 3 shows the same error in the computation of Mσ(−x) for different
values of x with the expansion (2.6). Note that for σ = 1/4 and σ = 1/3 in

Table 3 we have Ĥ(x) ≡ 0. For σ = 2/5, the algebraic expansion Ĥ(x) has
been optimally truncated, but for σ = 2/3 the truncation index was taken
as k = 11.

The limit σ → 1− in Mσ(x) can be obtained by setting σ = 1 − ε,
ε → 0+ so that the parameters in (2.1) become

κ = ε, ϑ =
1

2
− ε, X =

ε

1− ε
(x(1− ε))1/ε, A(σ) =

√
2π

1− ε

(1− ε

ε

)1−ε
.
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Table 1. Values of the coefficients cj(σ) for σ = 1/4 and
σ = 3/4.

j σ = 1/4 σ = 3/4

0 +1.0000000000 +1.0000000000
1 +0.1458333333 −0.0347222222
2 +0.0835503472 −0.0167582948
3 +0.0597617067 −0.0224719333
4 +0.0052249186 −0.0510817883
5 −0.2249669579 −0.1651975373
6 −1.1657705000 −0.6952815250

Table 2. Values of the absolute relative error in the com-
putation of Mσ(x) for different truncation index j.

σ = 1/4 σ = 3/4
j x = 6 x = 10 x = 4 x = 6

0 2.623 × 10−2 1.376 × 10−2 1.262 × 10−3 2.531 × 10−4

1 2.819 × 10−3 7.618 × 10−4 2.190 × 10−5 8.881 × 10−7

2 4.123 × 10−4 5.561 × 10−5 1.054 × 10−6 8.654 × 10−9

4 2.877 × 10−5 1.336 × 10−6 9.988 × 10−9 3.359 × 10−12

6 2.915 × 10−5 3.111 × 10−7 2.819 × 10−10 3.874 × 10−15

Table 3. Values of the absolute relative error in the com-
putation of Mσ(−x) for varying x.

x σ = 1/4 σ = 1/3 σ = 2/5 σ = 2/3

4 5.260 × 10−2 3.447 × 10−4 6.825 × 10−2 6.130 × 10−4

6 2.176 × 10−4 1.570 × 10−5 2.863 × 10−2 2.988 × 10−6

8 6.088 × 10−6 2.510 × 10−6 5.153 × 10−4 3.365 × 10−9

10 3.787 × 10−6 3.111 × 10−7 4.993 × 10−5 6.279 × 10−11

12 1.048 × 10−7 1.508 × 10−8 1.431 × 10−7 2.397 × 10−12

Then from Theorem 2.2 we obtain the leading behavior:
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Mσ(x) ∼ (x(1 − ε))1/(2ε)−1

√
2πε

exp
[− ε

1− ε
(x(1− ε))1/ε

]
, (4.1)

Mσ(−x) ∼ εx−2−ε

(1− ε)
Γ(1 +

1

σ
){1 +O(x−1/σ)} (4.2)

as x → +∞ and ε → 0. The above approximation for Mσ(x) agrees with
that obtained in [6] by application of the saddle-point method applied to
the integral (1.2). This argument is explained in Section 5.

Plots of Mσ(x) given by (4.1) are shown in Figs. 1, 2 and 3, and plots of
Mσ(−x) given by (4.2) are shown in Fig. 4. These illustrate the transition
to a Dirac delta function as ε → 0.

0.5 1 1.5 2
0

0.5

1

1.5

2

 = 0.1

0.5 1 1.5 2
10-1

100

101

 = 0.1

Figure 1. Plots of Mσ(x) for ε = 0.1 in linear (up) and
semi-logarithmic scale (down).

5. The Kreis-Pipkin Method

This section focuses on the argument introduced as a variant of the
saddle-point method by Kreis and Pipkin in [2] (revisited by Mainardi and
Tomirotti in [7] for a wave problem in fractional viscoelasticity) to deal
with sharply peaked functions around x ∼ 1, in the limit where ε → 0+.
The method is of interest from a numerical point of view, allowing us to
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deal with functions that are also physically relevant such as, in seismology,
the pulse response in the nearly elastic limit.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

 = 0.01

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
10-2

10-1

100

101

102

 = 0.01

Figure 2. Plots of Mσ(x) for ε = 0.01 in linear (up) and
semi-logarithmic scale (down).

In this way it is possible, adapting the Kreis-Pipkin method to the
M−Wright function, to study its asymmetric structure when it tends to-
wards the Dirac delta function δ(x− 1).

We start by recalling the integral definition of the auxiliary Wright
function Fσ(x) (compare (1.2))

Fσ(x) =
1

2πi

∫ (0+)

−∞
et−xtσ dt, x > 0, 0 < σ < 1, (5.1)

related to the function Mσ(x) by (1.5). Taking into account the procedure
described in [2], we have with σ = 1− ε that the exponent is stationary at
the point:

t−ε
0 =

1

x(1− ε)
.



ON THE ASYMPTOTICS OF WRIGHT FUNCTIONS . . . 65
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Figure 3. Plots of Mσ(x) for ε = 0.001 in linear (up) and
semi-logarithmic scale (down).

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10
 = 0.1

 = 0.01

 = 0.001

0 0.5 1 1.5 2 2.5 3
10-3

10-2

10-1

100

101

102

 = 0.1

 = 0.01

 = 0.001

Figure 4. Plots of Mσ(−x) for different values of ε in linear
(up) and semi-logarithmic scale (down).
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The next step is to expand t−ε in powers of ε ln t/t0, this being more
accurate than expanding the exponent in powers of t−t0, and using z = t/t0.
The final result is:

Fσ(x) ∼ Λ

2πiε

∫ (0+)

−∞
eΛz(ln z−1) dz, Λ = εt0, (5.2)

where we emphasize that this procedure is valid only in the limit ε → 0+.
The relation (1.5) tells us that the expression of Mσ(x) can be simply
obtained from knowledge of Fσ(x), and vice versa. The exponential factor
appearing in (5.2) has a saddle point at z = 1 and the contour can be made
to coincide with the steepest descent path, which is locally perpendicular to
the real z-axis at the saddle. Then finally, by means of the steepest descent
method, the function Mσ(x) as σ → 1− can be expressed via a real integral.

The results are presented in Figs. 5, 6 and 7; each figure shows a com-
parison in linear and semi-logarithmic scale between three curves obtained
using different methods. These are respectively the Kreis-Pipkin method,
(4.1) of this work and the classical saddle-point method used by Mainardi
and Tomirotti [6] (denoted by M-T 1995 in the figures). Note that the
curves obtained via (4.1) and M-T 1995 are equivalent, and indeed can be
simply shown to be analytically equivalent. The plots for 0 ≤ x � 1 in
the Kreis-Pipkin method were obtained via an integral representation for
Mσ(x) combined with matching to the leading asymptotic behavior.
The method proposed by Kreis and Pipkin is thus seen to be a useful tool
to reproduce the asymmetric structure of Mσ(x) that would be impossible
with the standard saddle-point method.

6. Conclusions

We have given asymptotic expansions as x → ±∞ for the auxiliary
Wright functions Fσ(x) and Mσ(x) defined in (1.3) and (1.4) when 0 < σ <
1. These expansions consist of series of an exponential and algebraic char-
acter whose relative dominance depends on the parameter σ. An algorithm
for determining the coefficients in the exponential expansion is discussed
and explicit representation of the first few coefficients has been given.

Numerical results are presented to confirm the accuracy of the expan-
sions. Of particular interest is the the limit σ → 1−, where the function
Mσ(x) approaches a Dirac delta function centered on x = 1. Graphical re-
sults based on the Kreis-Pipkin method are given that illustrate the leading
asymptotic forms and the transition of Mσ(x) to a delta function.
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Appendix A. An algorithm for the computation
of the coefficients cj(σ)

In this Appendix we describe an algorithm for the computation of the
coefficients cj(σ) appearing in the exponential expansion of the function
F(z) in (3.1). A full account of this procedure is given in [10, Appendix A],
where it is shown that the cj(σ) result from the inverse factorial expansion
of the ratio of gamma functions Γ(σs+σ)/Γ(1+s) for large |s|. This inverse
factorial expansion takes the form
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 = 0.1
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Eq. 4.1
M-T 1995
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100

101  = 0.1
K-P Method

Eq. 4.1
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Figure 5. Comparison of the three different methods
for the computation of Mσ(x) in linear (up) and semi-
logarithmic (down) scale, for ε = 0.1.
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Figure 6. Comparison of the three different methods
for the computation of Mσ(x) in linear (up) and semi-
logarithmic (down) scale, for ε = 0.01.

Γ(σs+ σ)Γ(κs + ϑ′)
Γ(1 + s)

= κA0(σ)(hκ
κ)s

{M−1∑
j=0

cj(σ)

(κs + ϑ′)j
+

O(1)

(κs+ ϑ′)M

}

(A.1)
for |s| → ∞ uniformly in | arg s| ≤ π − ε, where the parameters κ, h, ϑ,
A0(σ) are defined in (2.1), with ϑ′ = 1− ϑ.

Introduction of the scaled Gamma function Γ∗(z) = Γ(z)(2π)−
1
2 ezz

1
2
−z

leads to the representation

Γ(αs + a) = (2π)
1
2 e−αs(αs)αs+a− 1

2 e(αs; a)Γ∗(αs+ a),

where
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e(αs; a) := e−a
(
1 +

a

αs

)αs+a− 1
2 = exp

[
(αs + a− 1

2
) log

(
1 +

a

αs

)
− a

]
.

Then, after some routine algebra we find that the left-hand side of (A.1)
can be written as

Γ(σs+ σ)Γ(κs + ϑ′)
Γ(1 + s)

= κA0(hκ
κ)sR(s)Υ(s), (A.2)

where

Υ(s) :=
Γ∗(σs+σ)Γ∗(κs+ϑ′)

Γ∗(1+s)
, R(s) :=

e(σs;σ)e(κs;ϑ′)
e(s; 1)

.
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Figure 7. Comparison of the three different methods
for the computation of Mσ(x) in linear (up) and semi-
logarithmic (down) scale, for ε = 0.001.
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Substitution of (A.2) in (A.1) then yields the inverse factorial expansion
in the alternative form

R(s)Υ(s) =
M−1∑
j=0

cj(σ)

(κs+ ϑ′)j
+

O(1)

(κs + ϑ′)M
(A.3)

as |s| → ∞ in | arg s| ≤ π − ε.
We now expand R(s) and Υ(s) for s → +∞ making use of the well-

known expansion (see, for example, [12, p. 71])

Γ∗(z) ∼
∞∑
k=0

(−)kγkz
−k (|z| → ∞; | arg z| ≤ π − ε),

where γk are the Stirling coefficients with γ0 = 1, γ1 = − 1
12 , γ2 = 1

288 ,

γ3 =
139

51840 , . . . . Then we find

Γ∗(αs + a) = 1− γ1
αs

+O(s−2), e(αs; a) = 1 +
a(a− 1)

2αs
+O(s−2),

whence

R(s) = 1 +
A
2s

+O(s−2), Υ(s) = 1 +
B
12s

+O(s−2),

where we have defined the quantities A and B by

A = σ − 1− ϑ

κ
(1− ϑ), B =

1

σ
+

σ

κ
.

Upon equating coefficients of s−1 in (A.3) we then obtain

c1(σ) =
1

2
κ(A +

1

6
B) = 1

24σ
(2− σ)(1− 2σ). (A.4)

The higher coefficients are obtained by continuation of this expansion
process in inverse powers of s. We write the product on the left-hand side
of (A.3) as an expansion in inverse powers of κs in the form

R(s)Υ(s) = 1 +

M−1∑
j=1

Cj(κs)
−j +O(s−M )

as s → +∞, where the coefficients Cj are determined with the aid of Math-
ematica; see [10, Appendix A] for details. The coefficients cj(σ) are then
obtained by a recursive process to yield the expressions given in (2.4). This
procedure is found to work well in specific cases when the various parame-
ters have numerical values, where up to a maximum of 100 coefficients have
been so calculated.
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