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Abstract

The asymptotic expansions of the Wright functions of the second kind,
introduced by Mainardi [see Appendix F of his book Fractional Calculus
and Waves in Linear Viscoelasticity (2010)],

=Yt e =Y T <o <)

n!l'(—no —no+1—o0)

n=0 n=0
for x — 400 are presented. The situation corresponding to the limit o —
17 is considered, where M, (x) approaches the Dirac delta function 6(x—1).
Numerical results are given to demonstrate the accuracy of the expansions
derived in the paper, together with graphical illustrations that reveal the

transition to a Dirac delta function as o — 1~
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1. Introduction

The particular Wright function under consideration (also known as a
generalized Bessel function) is defined by

Wiu(z) = ;::0 s (1.1)
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where A is supposed real and pu is, in general, an arbitrary complex pa-
rameter. The series converges for all finite z provided A > —1 and, when
A = 1, it reduces to the modified Bessel function z(!=#)/21, ;(2,/z). The
asymptotics of this function were first studied by Wright [14] 15] using the
method of steepest descents applied to the integral representation

1 (0+) Y
Wyu(z) = ﬂ/ RN g (A> <1, pe Q). (1.2)
a —0o0
The case corresponding to A = —o, 0 < ¢ < 1 arises in the analy-

sis of time-fractional diffusion and diffusion-wave equations. The function
with negative A has been termed a Wright function of the second kind by
Mainardi [4], with the function with A > 0 being referred to as a Wright
function of the first kind. In the former context, Mainardi [4, Appendix F]
defined the auxiliary functions

= ()
FO—(Z) = W_0—70(—Z) = Z m,

n=1
Mo(2) = Wog1-g(=2) =D n!F(—EL:TZj'nl —o)

0<o<1, (1.3)

0<o<1 (14)

n=0
These functions are interrelated by the following relation:
Fy(z) = 0zM,(2). (1.5)

The case = 0 in (L.I) also finds application in probability theory and is
discussed extensively in [I3], where it is denoted by

P(A,0;2) = Wxo(2) (1.6)

and referred to as a 'reduced’” Wright function.
Plots of M, (z) for real z and varying o are presented in [4, Appendix F]

and [5]. These graphs illustrate the transition between the special values
1

o = 0,3,1, where M,(z) has simple representations in terms of known
functions. These are
1
MO(x) = e—m’ M1/2(x) = = 6_m2/47 M1/3(.’E) = 32/3Ai(:1:/31/3)7 (17)

NG

where Ai is the Airy function. As ¢ — 17, the function M, (x) tends to
the Dirac delta function §(z — 1).

In this paper we present the asymptotic expansions of F,(z) and M, (z)
for z — +o00 by exploiting the known asymptotics of the function ¢(—o, 0, x)
discussed in [13]. The resulting expansions involve a combination of algebraic-
type and exponential-type expansions, for which explicit representation of
the coefficients in both types of expansion is given. In order to give a self-
contained account, we describe the derivation of the expansion for M, (z)
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based on the asymptotics of integral functions of hypergeometric type de-
scribed in [10] (see also [11, §4.2]). The asymptotic treatment of the func-
tion W ,(2) given by Wright [14], [15] did not give precise information
about the coeflicients appearing in the exponential expansions; see also
[10] for a more detailed account.

2. The asymptotic expansions of F,(z) and M,(z) for z — +oo
We define the quantities
k=1—-0,9=0— % h=0% X =nr(ha)'/%, Alo) = @(%)“. (2.1)
The connection between Fy(x) and the function ¢ defined in (L6 is
Fy(z) = ¢(—0,0,—x).

The asymptotic expansions of ¢(—c,0,x) for x — +oo when 0 < 0 < 1
are given in [I3] §5.2]. We therefore obtain the expansions stated in the
following theorem:

THEOREM 2.1. When 0 < ¢ < 1 we have the expansion of the auxiliary
Wright function F,(x) given by * |

F,(x) ~ %:)lee_)( icj(a)(—X)_j 0<o<1) (2.2)
and
E'(z) + H'(x) (0<O‘<%)
Fa(_x) ~ (23)
H'(x) A<o<1)

as © — +oo, where A'(c) = A(o)(o/k)" and c¢y(0) = 1. The formal
exponential and algebraic expansions E'(z) and H'(x) are defined by (see
[13, (5.10), (5.11)])

E'(z) := &Xl/%){wsm/“ ch(a)(—X) 7 cos[X sin ?U + — (19 7]
T
j=0
and
B li —(k+1)/0
o Pt LT k;—l)

* There is a factor (—)’ missing in the sum in [I3} (5.20)].
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The case 0 = % needs no special attention since

—x2/4

x
= ——e€
2w ’

but see the comment at the end of Section [3 as this case is associated with
a Stokes phenomenon.

The coefficients ¢;j(o) appearing in the exponential expansions in The-
orem [Z1] can be obtained **| from [10} (4.6)] (when the parameter § therein
is replaced by o). We have:

Fyjo()

(2—0)(1—-20)

65(0) = Sy dile) (G21), (24)

where the first few coefficients d;(o) are:
di(o) =1, do(o) =2+ 190 + 202,
1
d3(o) = g(556 — 16280 — 909302 — 16280> + 5560?),

1
dy(o) = g(4568 + 2266680 — 46570202 — 20134790° — 4657020
+ 2266680° 4 45680°),

1
ds(0) = (2622064 — 125086240 — 1676850800° + 3020089040

+ 11152353670 + 3020089040° — 16768508005°
— 1259862407 + 26220645°)

1
dg(o) = 5(167898208 + 227749465120 — 8828000452802 — 6118639764725°

+10414302421260* + 34468511316570° + 10414302421260°
— 61186397647207 — 882800045280° + 227749465120
4 167898208510).

These polynomial coefficients are related to the so-called Zolotarev polyno-
mials, see [13].

From the relation (L.5]), we have M, (+z) = F,(+x)/(+mx) and after a
little algebra we deduce the expansion of M, (z) given by:

** There is a misprint in the coefficient ¢ in [I0, (4.6)]: the quantity multiplying &
should be 6 + 410 4 4102 4 60°. The same misprint appears in [T1} (33)].
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THEOREM 2.2. When 0 < ¢ < 1 we have the expansion of the auxiliary
Wright function M, (x) given by:

M, (z) ~ %‘:)Xﬁe—x icj(a)(—X)—j (0<o<1) (2.5)
and . .
E(x)+ H(x) (0<0<%)
MJ(_‘T) ~ (26)
H(x) (A<o<1)

as x — 400, where the coefficients c;(c) are as defined in Theorem|[2.1l The
formal exponential and algebraic expansions E(x) and H(x) are defined by

R A > ,
E(z) = %X%X CO8 o/t ch(a)(—X)_J cos[X sin % + %(19 — )]
§=0
and
1 &, o (kto)/o
T Z:: k'T(—k

k=1

For z — +o0, the function M, (z) is exponentially small for all values
of o in the interval 0 < ¢ < 1. The case of M,(—=z), however, is seen
to be more structured. When 0 < o < %, the factor cosmo/k > 0 and
M, (—z) is exponentially large (with an oscillation) as x — 400, with the
algebraic expansion H () being subdominant. When o = %, this factor is
zero and E( ) is oscillatory with an algebraically controlled amplitude and
H(z)=0. When § < ¢ < 3, the expansion E(z) is exponentially small and
the behaviour of M (—x) i 1s controlled by the algebraic expansion. Finally,
when % < 0 < 1 the expansion of M,(—x) is purely algebraic in character.

3. The asymptotic expansion of M,(z) for x — +oo

In order to make this paper more self contained we present in this
section an alternative derivation of the expansion of M,(x) as x — Fo0.
Define the function

F(2) ::ZWZ” (0<o<1) (3.1)
n=0 :

Then use of the reflection formula for the gamma function shows that the
auxiliary Wright function M, (x) defined in (I.4]) can be expressed in terms
of F(z) as

M, (z) = 1 Z W (—x)"sinm(n+1)o
n=0 )



ON THE ASYMPTOTICS OF WRIGHT FUNCTIONS ... 99

1 , , , ,
= 2—{6”“9.7-"(336_”“) + e F(ze™)}, (3.2)
T
and in a similar manner
1 . . . .
M,(—z) = %{e”m}"(ﬂvem”) + e ™ F(zem™) ). (3.3)

From the discussion in [10, Section 2|, the Stokes lines for F(z), where
its exponential expansion is maximally subdominant relative to its algebraic
expansion, are situated on the rays arg z = +7x. An important distinction
between ([B.2) and (B3]) when = > 0 is that for M,(—z) the arguments of
the functions F(ze*™7) are only situated on the Stokes lines arg z = 7k
when o = %, since k =1 —0 = %, whereas for M,(z) the arguments of
F(zeT™*) are situated on the Stokes lines for all values of ¢ in the range
0<o<1.

From [10, §4.1] (see also [12, §2.3]), the asymptotic expansion of F(z)
is given by ,

E(z) 4+ H(zeT™) (larg z| < 7k —¢)
F(z) ~ (3.4)
H(zeT™) (mk + €< |arg z| < )
as |z| = oo. The upper or lower signs are chosen according as arg z > 0 or
arg z < 0, respectively and e denotes an arbitrarily small positive quantity.
The formal exponential and algebraic expansions E(z) and H(z) are defined
by

E(z) := A(0) 2% i ci(0)Z277,  Z:=k(h2)'", (3.5)
j=0
H(2) = % > (;—?k r(k%”)z*’“")/a, (3.6)
k=0

where the parameters k, h, ¢ and A(o) are defined in (2.I)) and the co-
efficients ¢;(o) are those appearing in Theorem 1; see Appendix A for an
algorithm for the calculation of these coefficients.

The exponential expansion E(z) is dominant in the sector | arg 2| < 37k
and becomes exponentially small in the adjacent sectors %m@ < |arg z| <
wk. On arg z = +wk, E(z) is maximally subdominant relative to the
algebraic expansion and switches off in a smooth manner (at fixed |z|)
across these Stokes lines. The expansion in this case is given in Subsection
3.1.

3.1. The expansion of M,(x) as © — 4o0o0. To deal with this case we
require the expansion of F(xet™*) for large 2 > 0. As stated above, the
arguments of F(z) are situated on the Stokes lines arg z = +mx, where the
exponential expansion is in the process of switching off as | arg z| increases.
From [10] (4.7)], we have the expansion
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+mic M—1 kto
e (%
|

I_-(:L,eim'n) ~ ) x—(k—i—a)/a

=

g
k=0

[ee] .
+ming —X L. iBj(o) —j

+(Xe™)’e ;(2AJ(U) + m)( X) (3.7)
as © — +o0o, where Aj(0) = A(o)cj(o) and m denotes the optimal trun-
cation index (that is, truncation at, or near, the smallest term) of the
algebraic expansion; see also [9, §4.2]. The coefficients B;(c) involve linear
combinations of the A;(o); see [10, §4.1]. However, the precise values of
m and Bj(c) do not concern us here since in the combination (3.2]) the
algebraic expansion and the terms involving B;(o) all cancel.

The algebraic component of the right-hand side of (8.2)) is then seen to
be

1 m—1 k-‘rO’

Z { 7rm9 —7rm 7m) (k+cr)/cr+e—7ri19(mewm.e—m)—(k—ko)/a}
2ro
=0

_(k+a)/a = O,

cos (v iy I( %
k!

k=0

upon recalling that ¥ = o — % The exponentially small contributions

involving the coefficients Bj(o) in (8.1]) are also seen to cancel in the com-

bination in (3.2]), thereby yielding the expansion (2.5]) stated in Theorem

3.2. The expansion of M,(—z) as z — +oc (when o # 3)
The algebraic component in the expansion for M,(—z) is from (B.6]) and

B3)

I’j[((l)) - %{emﬂﬂ(xewia . e—m’) + e—wiﬁﬂ(xe—m'o . ewi)}
T
1 - F(%) —7mi\—(k+o0)/o mi\—(k+o)/c
= o > (e RN ety )
k=0

1 i x—(k-l—cr)/cr (3 8)

o = KT (=k/o) ’ .
Note that H(z)

0 when 0 = 1/p, p = 2,3,4,.... The exponential

component (with w := e™?/* for brevity) is, from (&),
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. 1 . . . .
E(x):= —{e““?E(mem") + e_”mE(me_m“)}

2
_ Xﬂ XwHmid/k — ) -7 X/w—mid/k = ) —J
— %{e D Aj(0)(Xw) T+ e > Aj(0)(X/w) I}
j=0 Jj=0
= X_ﬂeXCOS’m/"‘ iA-(U)(—X)_j cos [ X sin o E(ﬁ —J)] (3.9)
T = I kK K ’

provided 0 < o < % Then, from (B4]), we obtain the expansion (2.0]) in
Theorem

REMARK 3.1. The expansion (26]) in Theorem 22l does not hold when
o= % as this case requires a separate treatment on account of the Stokes
phenomenon. However, this is not essential here since by (L.7)) we have the

exact value M /o(+z) = 712 exp [—22/4]. It is worth noting that when

o= % = Kk, the algebraic expansion I;T(:r) = (0 and, since cj(%) =0 for 7 >

1, the exponential expansion F(z) in &) reduces to 27 /2 exp [—22/4],
which is twice the correct value. This is due to our not having taken into
account the Stokes phenomenon present in the particular case of ([2.6]) in
1

Theorem 2 corresponding to o = 5.

4. Numerical results

We present some numerical results to verify the expansions in Theorems
1 and 2. In Table 1 the values (accurate to 10dp) of the coefficients c¢;(o)
appearing in the exponential expansion are shown for two values of o.
Table 2 shows the absolute relative error in the computation of M, (x) as a
function of the truncation index j with the expansion (Z5]) in Theorem 2.2
Table 3 shows the same error in the computation of M,(—x) for different
values of x with the expansion (2.6]). Note that for 0 =1/4 and ¢ = 1/3 in
Table 3 we have H(z) = 0. For o = 2/5, the algebraic expansion H(z) has
been optimally truncated, but for o = 2/3 the truncation index was taken
as k = 11.
The limit ¢ — 17 in M,(x) can be obtained by setting 0 = 1 — ¢,
e — 071 so that the parameters in (2.0]) become
1 €

k=¢ V==-—¢ X=
2 1—e€

1=V, A(o) = /=T (1_6)1_6.

1—c¢ €
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TABLE 1. Values of the coefficients ¢j(o) for ¢ = 1/4 and
o =3/4.

o=1/4 o=3/4

-+1.0000000000 | +1.0000000000
+0.1458333333 | —0.0347222222
+0.0835503472 | —0.0167582948
+0.0597617067 | —0.0224719333
+0.0052249186 | —0.0510817883
—0.2249669579 | —0.1651975373
—1.1657705000 | —0.6952815250

DU W N~ O S

TABLE 2. Values of the absolute relative error in the com-
putation of M, (x) for different truncation index j.

oc=1/4 o=23/4
=06 xz =10 r=4 =0

2.623 x 1072 | 1.376 x 1072 || 1.262 x 1073 | 2.531 x 1074
2.819 x 1073 | 7.618 x 10~* || 2.190 x 10~° | 8.881 x 10~7
4123 x 107* [ 5.561 x 1072 || 1.054 x 1076 | 8.654 x 1079
2.877 x 107° | 1.336 x 1079 | 9.988 x 1079 | 3.359 x 10~ 12
2.915 x 107° | 3.111 x 1077 || 2.819 x 10710 | 3.874 x 10~1°

DN O .

TABLE 3. Values of the absolute relative error in the com-
putation of M, (—z) for varying z.

x o=1/4 o=1/3 o=2/5 o=2/3

5.260 x 1072 | 3.447 x 10~* | 6.825 x 1072 | 6.130 x 104
2.176 x 1074 | 1.570 x 1075 | 2.863 x 1072 | 2.988 x 106
6.088 x 1076 | 2.510 x 1076 | 5.153 x 10~* | 3.365 x 10~*
013787 x 1076 [ 3.111 x 1077 | 4.993 x 10~ | 6.279 x 1011
211.048 x 1077 | 1.508 x 1078 | 1.431 x 1077 | 2.397 x 1012

== 00 O i

Then from Theorem [2.2] we obtain the leading behavior:
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(a1 — )t/

My(z) ~ o exp [~ - “(@(1- )] (@)
ex—2¢
Mo(oa) ~ FsTO+ {1407} (4.2)

as ¢ — 400 and € — 0. The above approximation for M,(x) agrees with
that obtained in [6] by application of the saddle-point method applied to
the integral (L.2]). This argument is explained in Section [l

Plots of M, (x) given by (d.1]) are shown in Figs. [l Rland B and plots of
M, (—z) given by (4.2]) are shown in Fig. [l These illustrate the transition
to a Dirac delta function as e — 0.

100

107
05 1 15 2

FIGURE 1. Plots of M,(z) for ¢ = 0.1 in linear (up) and
semi-logarithmic scale (down).

5. The Kreis-Pipkin Method

This section focuses on the argument introduced as a variant of the
saddle-point method by Kreis and Pipkin in [2] (revisited by Mainardi and
Tomirotti in [7] for a wave problem in fractional viscoelasticity) to deal
with sharply peaked functions around x ~ 1, in the limit where ¢ — 0.
The method is of interest from a numerical point of view, allowing us to
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deal with functions that are also physically relevant such as, in seismology,
the pulse response in the nearly elastic limit.

20

—c=0.01

—c=0.01

10

FIGURE 2. Plots of M,(x) for ¢ = 0.01 in linear (up) and
semi-logarithmic scale (down).

In this way it is possible, adapting the Kreis-Pipkin method to the
M —Wright function, to study its asymmetric structure when it tends to-
wards the Dirac delta function §(z — 1).
We start by recalling the integral definition of the auxiliary Wright
function Fy(x) (compare (L.2])
1 [Oh -
Fy(x) = / T dt, >0, 0< 0 <1, (5.1)

2m J_

related to the function M, (z) by (LH). Taking into account the procedure
described in [2], we have with o = 1 — € that the exponent is stationary at
the point:

1

ty = ———.
0 z(1—¢)
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200
—c=0.001
150 /
100 /
50
092 094 096 098 1 1.02 1.04
10°
—¢=0.001
102 N
10
10°
//
T
107!
094 095 096 097 098 099 1 101 102 103 1.04

FIGURE 3. Plots of M, (x) for e = 0.001 in linear (up) and
semi-logarithmic scale (down).

T
HE - -e=0.1
HE
8 e S N €=0.01
1
H | €=0.001
6y
1
1
4 \
\
2 \
~
S o
RN . i S [ P
0 05 1 15 2 25 3
102y
Y - -e=0.1
Y
WE————— €=0.01
A
ERERN €=0.001
10° <
- =
107 =
wek e L LT
.
0 05 1 15 2 25 3

FIGURE 4. Plots of M, (—x) for different values of € in linear
(up) and semi-logarithmic scale (down).
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The next step is to expand t~¢ in powers of e¢lnt/ty, this being more
accurate than expanding the exponent in powers of t—t, and using z = t/ty.
The final result is:

A (0+) Al
Fo(z) ~ mic eh#(inz=1) dz, A = ety, (5.2)

where we emphasize that this procedure is valid only in the limit ¢ — 0.
The relation (LE) tells us that the expression of M,(z) can be simply
obtained from knowledge of Fj(x), and vice versa. The exponential factor
appearing in (5.2]) has a saddle point at z = 1 and the contour can be made
to coincide with the steepest descent path, which is locally perpendicular to
the real z-axis at the saddle. Then finally, by means of the steepest descent
method, the function M, (z) as 0 — 1~ can be expressed via a real integral.

The results are presented in Figs. Bl 6] and [} each figure shows a com-
parison in linear and semi-logarithmic scale between three curves obtained
using different methods. These are respectively the Kreis-Pipkin method,
(1) of this work and the classical saddle-point method used by Mainardi
and Tomirotti [6] (denoted by M-T 1995 in the figures). Note that the
curves obtained via (A1) and M-T 1995 are equivalent, and indeed can be
simply shown to be analytically equivalent. The plots for 0 < x ~ 1 in
the Kreis-Pipkin method were obtained via an integral representation for
M, (x) combined with matching to the leading asymptotic behavior.

The method proposed by Kreis and Pipkin is thus seen to be a useful tool
to reproduce the asymmetric structure of M, (x) that would be impossible
with the standard saddle-point method.

6. Conclusions

We have given asymptotic expansions as x — £oo for the auxiliary
Wright functions Fy, (x) and M, (z) defined in (L.3]) and (I.4)) when 0 < o <
1. These expansions consist of series of an exponential and algebraic char-
acter whose relative dominance depends on the parameter o. An algorithm
for determining the coefficients in the exponential expansion is discussed
and explicit representation of the first few coefficients has been given.

Numerical results are presented to confirm the accuracy of the expan-
sions. Of particular interest is the the limit ¢ — 17, where the function
M, (x) approaches a Dirac delta function centered on z = 1. Graphical re-
sults based on the Kreis-Pipkin method are given that illustrate the leading
asymptotic forms and the transition of M,(x) to a delta function.
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Appendix A. An algorithm for the computation
of the coefficients c;(o)

In this Appendix we describe an algorithm for the computation of the
coefficients ¢;(o) appearing in the exponential expansion of the function
F(z)in (3I). A full account of this procedure is given in [10, Appendix A],
where it is shown that the c;(o) result from the inverse factorial expansion
of the ratio of gamma functions I'(cs+0) /T'(1+s) for large |s|. This inverse
factorial expansion takes the form

c=0.1

=—K-P Method
-—Eq. 4.1
= -M-T 1995

10"
£ =—K-P Method

—Eq. 4.1
~ -M-T 1995

100t

102
05 1 15 2

FIGURE 5. Comparison of the three different methods
for the computation of My(z) in linear (up) and semi-
logarithmic (down) scale, for e = 0.1.
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20 €= 9.01
=—=K-P Method
—Eq. 4.1
150 - -M-T 1995
10 - nl
5- J
O | |
0.95 1 1.05 1.1 1.15
10%¢ €= 9.01
F =—K-P Method
—Eq. 4.1
. = -M-T 1995
10" £
100F £
107! :
0.95 1 1.05 1.1 1.15

FIGURE 6. Comparison of the three different methods
for the computation of My(z) in linear (up) and semi-
logarithmic (down) scale, for e = 0.01.

T(os + o) (ks + 1) &og(o) o(1)

— K\S
I(1+s) = rAo(o) (hr") {JZ_; (ks +1'); * (/{S—F’ﬁ/)M}
(A1)
for |s| — oo uniformly in |arg s| < 7 — €, where the parameters &, h, 9,
Ap(o) are defined in ([2.1), with ¢/ =1 — 9.
Introduction of the scaled Gamma function I'*(z) = F(z)(27r)_%ezz%_
leads to the representation

INas+a) = (2%)%6_0‘5 (as)o‘s'm_% e(as;a)l'™ (as + a),

z

where
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—a a \asta—1 1 ( a )
: = 1 —_— 2 = — )1 1 — ) — .
e(as;a) :==e “(1+ as) exp |(as+a 2) og (1+ o a

Then, after some routine algebra we find that the left-hand side of (A.T)
can be written as

I(os+ o)'(ks + )

T(1+s) = rAo(hr")* R(s) T(s), (A.2)
where
o I*(os+o)™*(ks+19") B e(os;0)e(ks; )
T(S) = P*(1+S) s R(S) = e(s; 1)
200 €=0.001
=——=K-P Method

N | s
/
50 /|

_

0 ——— |
0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02

€=0.001

10%¢
F =—K-P Method

102 —Eq. 4.1
i / \ ~ -M-T 1995

‘IO1 E /'/I
10 /
107" //
102 /
0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02

FIGURE 7. Comparison of the three different methods
for the computation of My(z) in linear (up) and semi-
logarithmic (down) scale, for e = 0.001.
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Substitution of (A.2)) in (A.J)) then yields the inverse factorial expansion

in the alternative form
M—1

R(s)Y(s) =
j=0
as |[s| > oo in |arg s| <7 —e.
We now expand R(s) and Y(s) for s — +oo making use of the well-
known expansion (see, for example, [12] p. 71])

D*(z) ~ D () mz™  (l2] = 005 Jarg 2| < 7w —e),
k=0

6l0) oW

(ks +7"); (ks +9)m (A-3)

where v are the Stirling coefficients with v = 1, v = —%, Yo = ﬁ,
V3 = %, ... . Then we find
* Y1 -2 CL(CL B 1) —2
r =1-=4+0 ja) =1+ ———=+0
! (as +a) > +O0(s™9), e(as;a) + e +O0(s™9),
ence
v A o B o
R(s):1+2—8—|—0(s ), T(s):1+@+0(s ),
where we have defined the quantities A and B by

1 o

A=o-1-2a_9, B=L1i9
K g K

Upon equating coefficients of s~ in (A3)) we then obtain

1 1 1

= -B)=—-(2-— 1—20). A4

SAA+ 5B) = o (2~ 0)(1 - 20) (A4)
The higher coefficients are obtained by continuation of this expansion

process in inverse powers of s. We write the product on the left-hand side

of ([A.3]) as an expansion in inverse powers of ks in the form

c1(o) =

M-—1
R(s)Y(s) =1+ Y Cj(rs) 7 +0(sM)
j=1

as s — 400, where the coefficients C; are determined with the aid of Math-
ematica; see [10, Appendix A] for details. The coefficients ¢;(o) are then
obtained by a recursive process to yield the expressions given in ([2.4]). This
procedure is found to work well in specific cases when the various parame-
ters have numerical values, where up to a maximum of 100 coefficients have
been so calculated.
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