Home Multidimensional van der Corput-Type estimates involving Mittag-Leffler functions
Article
Licensed
Unlicensed Requires Authentication

Multidimensional van der Corput-Type estimates involving Mittag-Leffler functions

  • Michael Ruzhansky and Berikbol T. Torebek EMAIL logo
Published/Copyright: December 31, 2020

Abstract

The paper is devoted to study multidimensional van der Corput-type estimates for the intergrals involving Mittag-Leffler functions. The generalisation is that we replace the exponential function with the Mittag-Leffler-type function, to study multidimensional oscillatory integrals appearing in the analysis of time-fractional evolution equations. More specifically, we study two types of integrals with functions Eα, β(i λ ϕ(x)), x ∈ ℝN and Eα, β(iαλ ϕ(x)), x ∈ ℝN for the various range of α and β. Several generalisations of the van der Corput-type estimates are proved. As an application of the above results, the Cauchy problem for the multidimensional time-fractional Klein-Gordon and time-fractional Schrödinger equations are considered.


Editorial Note

This paper has been presented at the online international conference “WFC 2020: Workshop on Fractional Calculus”, Ghent University, Belgium, 9–10 June 2020.


Acknowledgements

The authors were supported in parts by the FWO Odysseus Project 1 grant G.0H94.18N: Analysis and Partial Differential Equations. The first author was supported in parts by the EPSRC grant EP/R003025/1. The second author was supported by the Ministry of Education and Science of the Republic of Kazakhstan Grant AP08052046. No new data was collected or generated during the course of research.

References

[1] L. Boudabsa, T. Simon, P. Vallois, Fractional extreme distributions. ArXiv. (2019). 1–46. arXiv: 1908.00584v1 (2019), 46 pp.Search in Google Scholar

[2] A. Carbery, M. Christ and J. Wright, Multidimensional van der Corput and sublevel set estimates. J. Amer. Math. Soc. 12, No 4 (1999), 981–1015. Volume - added by VK10.1090/S0894-0347-99-00309-4Search in Google Scholar

[3] R. Chen, G. Yang, Numerical evaluation of highly oscillatory Bessel transforms. J. Comput. Appl. Math. 342 (2018), 16–24.10.1016/j.cam.2018.03.026Search in Google Scholar

[4] J. Dong, M. Xu, Space-time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344 (2008), 1005–1017.10.1016/j.jmaa.2008.03.061Search in Google Scholar

[5] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications Springer Monographs in Mathematics, Springer, Heidelberg, 2014; 2 Ed., 2020.10.1007/978-3-662-61550-8Search in Google Scholar

[6] R. Grande, Space-time fractional nonlinear Schrödinger equation. SIAM J. Math. Anal. 51, No 5 (2019), 4172–4212.10.1137/19M1247140Search in Google Scholar

[7] I. Kamotski and M. Ruzhansky, Regularity properties, representation of solutions and spectral asymptotics of systems with multiplicities. Comm. Partial Diff. Equations 32 (2007), 1–35.10.1080/03605300600856816Search in Google Scholar

[8] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, 2006.Search in Google Scholar

[9] M. Naber, Time fractional Schrödinger equation. J. Math. Phys. 45 (2004), 3339–3352.10.1063/1.1769611Search in Google Scholar

[10] D.H. Phong, E.M. Stein, J. Sturm, Multilinear level set operators, oscillatory integral operators, and Newton polyhedra. Math. Ann. 319 (2001), 573–596.10.1007/PL00004450Search in Google Scholar

[11] I. Podlubny, Fractional Differential Equations Academic Press, New York, 1999.Search in Google Scholar

[12] M. Ruzhansky, Multidimensional decay in the van der Corput lemma. Studia Math. 208 (2012) 1–10.10.4064/sm208-1-1Search in Google Scholar

[13] M. Ruzhansky, B.T. Torebek, Van der Corput lemmas for Mittag-Leffler functions.arXiv:2002.07492 (2020), 32 pp.10.1016/j.bulsci.2021.103016Search in Google Scholar

[14] M. Ruzhansky, B.T. Torebek, Van der Corput lemmas for Mittag-Leffler functions, II, α-directions. ArXiv, 2020, 1-19, arXiv:2005.04546 (2020), 19 pp.10.1016/j.bulsci.2021.103016Search in Google Scholar

[15] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Ser. 43, Princeton Univ. Press, Princeton, 1993.10.1515/9781400883929Search in Google Scholar

[16] X. Su, J. Zheng, Hölder regularity for the time fractional Schrödinger equation. Math. Meth. Appl. Sci. 43, No 7 (2020), 4847–4870.10.1002/mma.6239Search in Google Scholar

[17] X. Su, Sh. Zhao, M. Li, Dispersive estimates for fractional time and space Schrödinger equation. Math. Meth. Appl. Sci. 2019 (2019); doi: 10.1002/mma.5550.10.1002/mma.5550Search in Google Scholar

[18] X. Su, Sh. Zhao, M. Li, Local well-posedness of semilinear space-time fractional Schrödinger equation. J. Math. Anal. Appl. 479, No 1 (2019), 1244–1265.10.1016/j.jmaa.2019.06.077Search in Google Scholar

[19] J.G. van der Corput, Zahlentheoretische Abschätzungen. Math. Ann. 84, No 1-2 (1921), 53–79.10.1007/BF01458693Search in Google Scholar

[20] S. Xiang, On van der Corput-type lemmas for Bessel and Airy transforms and applications. J. Comput. Appl. Math. 351 (2019), 179–185.10.1016/j.cam.2018.11.007Search in Google Scholar

[21] S. Xiang, Convergence rates of spectral orthogonal projection approximation for functions of algebraic and logarithmatic regularities. ArXiv, (2020), 1–27, arXiv:2006.01522 (2020), 27 pp.10.1137/20M134407XSearch in Google Scholar

[22] S. Zaman, S., Siraj-ul-Islam, I. Hussain, Approximation of highly oscillatory integrals containing special functions. J. Comput. Appl. Math. 365 (2020), Art. ID 112372.10.1016/j.cam.2019.112372Search in Google Scholar

Received: 2020-06-09
Published Online: 2020-12-31
Published in Print: 2020-12-16

© 2020 Diogenes Co., Sofia

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2020-0082/html
Scroll to top button