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Abstract

The Cattaneo or telegrapher’s equation describes the crossover from ini-
tial ballistic to normal diffusion. Here we study and survey time-fractional
generalisations of this equation that are shown to produce the crossover of
the mean squared displacement from superdiffusion to subdiffusion. Condi-
tional solutions are derived in terms of Fox H-functions and the δth-order
moments as well as the diffusive flux of the different models are derived.
Moreover, the concept of the distribution-like is proposed as an alternative
to the probability density function.
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1. Introduction

Brownian diffusion processes [18, 81, 37] are characterised by the linear
growth in time of the mean squared displacement (MSD),

〈
x2�(t)

〉 ∼ t. This
process is governed by the coupled system of partial differential equations,

J (x, t) = −∂x� (x, t) , −∂xJ (x, t) = ∂t� (x, t) , (1.1)

here used in dimensionless units, respectively representing the constitutive
equation (Fick’s first law) and the continuity equation, where J(x, t) is the
diffusive flux and �(x, t) is the distribution of the diffusing substance at
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position x and time t. Combining both equations, we obtain the diffusion
equation (Fick’s second law) ∂t�(x, t) = ∂2x�(x, t). Here, ∂

n
ζ denotes the nth

partial derivative with respect to the variable ζ. Equations (1.1) subject
to the initial condition �(x, 0+) = δ(x), x ∈ R, in terms of the Dirac delta
function (unit impulse function), and the “natural” boundary conditions
lim|x|→∞ �(x, t) = 0, produce the famed Gaussian shape of �(x, t) with the
linear growth of the MSD of the diffusing particles.

In this formulation Brownian motion is overdamped, i.e., any inertial
effects of the diffusing tracer particle are considered to have decayed. In
the original Langevin equation formulation, the particle motion at times
shorter than the relaxation time (given in terms of the particle mobility)
is inertia-dominated and thus ballistic [37, 34]. One way to incorporate
the crossover from initial ballistic motion 〈x2(t)〉 ∼ t2 to final diffusive
motion 〈x2(t)〉 ∼ t was achieved in the discussion of heat transport [33] in
the form of the Cattaneo or telegrapher’s equation discussed in Section 2.
Today, this field has adopted more general stochastic processes to account
for the ever better resolved patterns involved in heat transport, [17]. In
this paper we study and survey the mathematical properties of generalised
Cattaneo-type equations, in which the integer scaling exponents of ballistic
and diffusive motion are replaced by given real-valued exponents.

Already in 1926 Richardson reported a process which deviates from
equations (1.1) in the form of the cubic time dependence of the relative
MSD of two particles in a turbulent flow [68]. In a wide variety of systems,
the MSD of the diffusing particles follows the power-law form [6, 48, 49]〈

x2�(t)
〉 ∼ tβ, β > 0, (1.2)

distinguishing subdiffusive processes with 0 < β < 1, the normal Brownian
process with β = 1, superdiffusive processes with 1 < β < 2, the ballistic
process with β = 2, and superballistic processes, β > 2.

To describe such anomalous diffusion processes, fractional kinetic equa-
tions as proposed by Schneider and Wyss [88, 79], Zaslavsky [90], and Nig-
matullin [61], are found to be outstanding tools. The time-fractional diffu-
sion equation, for instance, given in the natural (Caputo) form [40, 41, 42]

JC(x, t) = −∂x�(x, t), −∂xJC(x, t) = C
0+D

β
t �(x, t), (1.3)

or in the modified (Riemann-Liouville) form

JRL (x, t) = −RL
0+ D

1−β
t ∂x� (x, t) , −∂xJRL (x, t) = ∂t� (x, t) , (1.4)

capture well the subdiffusive regime for �(x, 0+) = δ(x), x ∈ R, and

lim|x|→∞ �(x, t) = 0. Here C
0+D

β
t and RL

0+ D
β
t , 0 < β < 1, are respectively

the Caputo and Riemann-Liouville fractional derivatives (see Appendix A).
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Similarly, the time-fractional wave equation in the natural form

C
0+D

β
t JC (x, t) = −∂x� (x, t) , −∂xJC (x, t) = C

0+D
β
t � (x, t) , (1.5)

or in the modified form

RL
0+ D

β
t JRL (x, t) = −RL

0+ D
1−β
t ∂x� (x, t) , −∂xJRL (x, t) = ∂t� (x, t) , (1.6)

0 < β < 1, cover the superdiffusive regime when � (x, 0+) = δ (x), x ∈ R,
and lim|x|→∞ � (x, t) = 0.

Several early studies suggested that the scaling behaviour in terms of
a single exponent, equation (1.2), is unable to describe many physical pro-
cesses, such as the Sinai diffusion model [80], truncated Lévy-flights [44], or
subdiffusive motion in velocity fields [50]. By now, the mono-scaling beha-
viour has been challenged to describe the temporal variation of the MSD in
biological cells [4, 29, 63, 57], in protein surface water [84], phospholipids
and cholesterols in a lipid bilayer [31, 32, 54], and in viscoelastic flows [89],
see also the reviews [55, 47] and the references therein. These works were
the basis for a string of papers [11, 12, 13, 14, 82, 15, 72] in which fractional
order derivatives in the fractional diffusion equations (1.3) and (1.4) are re-
placed by derivatives of distributed-order [9]. Distributed-order time or
space fractional diffusion equations are shown to be a versatile tool for the
mathematical description of physical processes that become less anomalous
in the course of time (accelerating subdiffusion and decelerating superdiffu-
sion) or more anomalous in the course of time (retarding subdiffusion and
accelerating superdiffusion).

In [16] a generalised Cattaneo-type equation was proposed, yielding the
dynamic crossover behaviour〈

x2�(t)
〉 ∼

{
t2α, t→ 0+,
tα, t→ ∞,

(1.7)

where 0 < α < 1. When 0 < α < 0.5, equation (1.7) represents a retarded
subdiffusion process, which can be considered a special case of the double-
order time fractional diffusion equation of the natural type (β2 = 2β1) [11],
and when 0.5 < α < 1, it represents a transition from the superdiffusive to
subdiffusive regime, see also [65, 45, 2]. In the case α = 1 we recover the
characteristic property of the classical Cattaneo model, see equation (2.2)
below, the crossover from ballistic to normal diffusion. The reader is also
referred to generalisations of diffusion, Fokker-Planck, and diffusion-wave
equations by introduction of a generalised memory kernel [73, 74, 75]. How-
ever, recent numerical simulations have shown different transitions from
superdiffusion to subdiffusion which are not, in all cases, covered by equa-
tion (1.7), see e.g., quasiperiodic interacting systems [38] and dewetting-
spreading-wetting transitions of self-propelled (run-and-tumble) clustered
disks in a substrate with randomly placed pinning sites [76].
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In this work, we present different forms of generalised Cattaneo-type
equations, based on single-order and distributed-order time-fractional de-
rivatives, which provide a variety of transitions from superdiffusive to sub-
diffusive motion. We first outline these forms in Section 2. Conditional
solutions for the distributions of the proposed models are derived in terms of
Fox H-functions, and the corresponding δth-order moments are discussed in
Section 3. In Section 4 we consider the diffusive flux, an important measur-
able quantity. Moreover, we introduce and study the so-called distribution-
like, a quantity similar to the physical distribution, from which we obtain
alternative formulations for the diffusion, fractional diffusion, and fractional
Cattaneo-type diffusion equations. The subordination of time-fractional
Cattaneo-type diffusion to the Gaussian process is also discussed. Finally,
we summarise our results, and draw our conclusions in Section 5. We give
a brief outline of the mathematical preliminaries in Appendix A and show
the methods of deriving our solutions by solving four problems in Appendix
B.

2. Generalised Cattaneo equations

Several representative models were introduced during the last seven
decades in order to address the shortcomings of the Fourier-Fickian law in
modelling the necessary finite propagation speed in heat and signal trans-
port. One of the most prominent is the Cattaneo model, also known as
Maxwell-Cattaneo or telegrapher’s equation [10, 58], as well as the phonon
scattering model [25], and the parabolic and hyperbolic two-step models
[70, 71]. The monograph [86] contains a comprehensive historical back-
ground on these developments, see also [3].

The Cattaneo equation in dimensionless form reads [10]

(1 + ∂t)J (x, t) = −∂x� (x, t) , −∂xJ (x, t) = ∂t� (x, t) , (2.1)

which encodes the characteristic ballistic-diffusive crossover property of the
MSD [65, 46, 87] 〈

x2�(t)
〉 ∼ {

t2, t→ 0+,
t, t→ ∞,

(2.2)

with an exact solution for �(x, t) in terms of modified Bessel functions [30].
The first fractional Cattaneo equation was proposed by Nonnenmacher and
Nonnenmacher [62]. The time-fractional Cattaneo equation (TFCE) has
two familiar forms [16, 2]. The first form (natural type), uses the Caputo
fractional derivative,

GCE-I:
(
1 + C

0+D
α
t

)
JC (x, t) = −∂x� (x, t) , −∂xJC (x, t) = C

0+D
β
t � (x, t) ,

(2.3)
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with � (x, 0+) = δ(x), JC (x, 0+) = 0, x ∈ R, lim|x|→∞ � (x, t) = 0, and
α, β ∈ (0, 1]. The second form of the time-fractional Cattaneo equation
uses the Riemann-Liouville fractional derivative and is given by

GCE-I:
(
1 + RL

0+ D
α
t

)
JRL (x, t) = −RL

0+ D
1−β
t ∂x� (x, t) ,

−∂xJRL (x, t) = ∂t� (x, t) , (2.4)

with � (x, 0+) = δ (x), x ∈ R, lim|x|→∞ �(x, t) = 0, and α, β ∈ (0, 1].
The time-fractional Cattaneo equations (2.3) and (2.4) are termed GCE-I
with two fractional parameters, where the equivalence between them for the
distribution �(x, t) was shown in [2]. Note that we decorate the flux in (1.3)
and (2.3) with C, and in (1.4) and (2.4) with RL to point out that these
equations are not necessarily equivalent for the flux. Note also that both
equations (2.3) and (2.4) reduce to (2.1) in the limiting case α = β = 1, and
the generalised version of the Cattaneo-type equation of [16] is recovered
whenever α = β. If we only set α = 1 in equations (2.3) and (2.4), we get

GCE-III: (1 + ∂t) JRL (x, t) = −RL
0+ D

1−β
t ∂x� (x, t) ,

−∂xJRL (x, t) = ∂t� (x, t) , (2.5)

with �(x, 0+) = δ(x), JRL (x, 0+) = 0, x ∈ R, lim|x|→∞ �(x, t) = 0, and
β ∈ (0, 1]. Alternatively,

GCE-III: (1 + ∂t) JC (x, t) = −∂x� (x, t) ,
−∂xJC (x, t) = C

0+D
β
t � (x, t) , (2.6)

with �(x, 0+) = δ(x), JC (x, 0+) = 0, x ∈ R, lim|x|→∞ � (x, t) = 0, and
β ∈ (0, 1] , which are known in the literature as GCE-III. Conversely, if we
set β = 1 in (2.3) and (2.4), we obtain the GCE-IV

GCE-IV:
(
1 + RL

0+ D
α
t

)
J (x, t) = −∂x� (x, t) , −∂xJ (x, t) = ∂t� (x, t) ,

(2.7)
with � (x, 0+) = δ (x), x ∈ R, lim|x|→∞ � (x, t) = 0, and α ∈ (0, 1], where
RL
0+ D

α
t can be replaced by C

0+D
α
t and J (x, 0+) = 0 should be added to the

initial conditions.
Equations (2.5) to (2.7) can be further generalised using the distri-

buted-order derivatives to take the more general forms

(1 + ∂t)JRL (x, t) = −RL
0+ D

p(1−ν)
t ∂x� (x, t) ,

−∂xJRL (x, t) = ∂t� (x, t) , (2.8)

with � (x, 0+) = δ (x), JRL (x, 0+) = 0, x ∈ R, lim|x|→∞ � (x, t) = 0, and
sup(p) ⊆ [0, 1],

(1 + ∂t)JC (x, t) = −∂x�(x, t), −∂xJC (x, t) = C
0+D

p(ν)
t �(x, t), (2.9)
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with � (x, 0+) = δ(x), JC (x, 0+) = 0, x ∈ R, lim|x|→∞ � (x, t) = 0, and
sup(p) ⊆ [0, 1],(

1 + RL
0+ D

p(ν)
t

)
J (x, t) = −∂x� (x, t) , −∂xJ (x, t) = ∂t� (x, t) , (2.10)

with � (x, 0+) = δ (x), x ∈ R, lim|x|→∞ �(x, t) = 0, and sup(p) ⊆ [0, 1],

whereCa+D
p(ν)
t and RL

a+ D
p(ν)
t are the distributed-order time-fractional deriv-

atives in the Caputo and Riemann-Liouville senses respectively, defined
through

C
a+D

p(ν)
t f (t) =

∫
sup(p)

p (ν)Ca+D
ν
t f (t) dν,

RL
a+ D

p(1−ν)
t f(t) =

∫
sup(p)

p (1− ν)RL
a+ D

ν
t f (t) dν

=

∫
sup(p)

p (ν)RL
a+ D

1−ν
t f(t)dν, (2.11)

and p (ν) is a probability density function, namely, p(ν) ≥ 0∀ν ∈ sup(p),
and

∫
sup(p) p(ν)dν =1. The non-negativity of the distribution �(x, t) of

equations (2.3) to (2.10) was discussed in detail in [2]. Equation (2.10) was
proposed in [1] and analysed in [91] using the multi-term assumption [39].

In this work, we are interested in the case

p(ν) = p1δ (ν − α) + p2δ(ν − β), (2.12)

where 0 < α < β ≤ 1 and p1 + p2 = 1. It is salient that when α = β,
or p1 = 1, p2 = 0, the distributed-order versions of the time-fractional
Cattaneo-type equations (2.8) to (2.10) respectively reduce to the general-
ised Cattaneo equations of type III and IV, equation (2.5) to (2.7). Let us
call equations (2.8) to (2.10) with (2.11) and (2.12) the double-order time-
fractional Cattaneo equations of types I, II, and III. The generic form of
the analytical solution for the above Cattaneo-type equations in Laplace-
Fourier space, (A.5) and (A.6), can be written aŝ̃� (k, s) = η(s)/s

η(s) + k2
, (2.13)

where η(s) is the characteristic function to be defined below, and in Laplace
space as

�̃(x, s) =

√
η(s)

2s
exp(−|x|

√
η(s)), (2.14)

with δth-order moment〈
|x|δ (s)

〉
= 2

∫ ∞

0
xδ�̃ (x, s) dx =

√
η(s)

s

∫ ∞

0
xδexp

(
−x

√
η(s)

)
dx

=
Γ (δ + 1)

s[η(s)]δ/2
, (2.15)
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and thus 〈
|x|δ (t)

〉
= Γ (δ + 1)L−1

{
1

s[η (s)]
δ
2

}
. (2.16)

3. Analytical solution and mean squared displacement

Here we provide the exact solutions of the Cattaneo-type equations
featured in the previous section, in addition to their corresponding MSDs.

3.1. Generalised Cattaneo equation of type I. In the case of GCE-
I with two fractional parameters (TFCE), equations (2.3) and (2.4), the
characteristic function η(s) defined in (2.13) is given by

η (s) = sβ (sα + 1) . (3.1)

Thus, we have ̂̃�GCE−I (k, s) =
sβ−1 (sα + 1)

sβ (sα + 1) + k2
. (3.2)

Referring to Problem B.1 in appendix B the solution of equation (3.2) can
be extracted from (B.1) by setting χ0,1 = 1, and γ = α+ β, so that we get

�GCE−I (x, t) =
∞∑
n=0

(−1)n

n!
tαn [�1 (x, t) + tα�2 (x, t)],

�1 (x, t) =
1√

4πtα+β
H2,0

1,2

[
x2

4tα+β

∣∣∣∣∣
(
1 + αn− α+β

2 , α+ β
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�2 (x, t) =
1√

4πtα+β
H2,0

1,2

[
x2

4tα+β

∣∣∣∣∣
(
1 + αn + α−β

2 , α+ β
)

(0, 1) ,
(
1
2 + n, 1

) ]
. (3.3)

Three subcases of (3.3) can be deduced: the GCE-III (α = 1), the GCE-
IV (β = 1), and GCE-I with single fractional parameter (α = β). We refer
to the solution of the space-time fractional Cattaneo equation obtained in
[69] which can be considered a special case of (3.3) if the space-fractality is
disregarded. Further properties on the space-time Cattaneo equation can
be found in [8] and [85].

The δth-order moments can be derived by substituting (3.1) into (2.16)
and inverting the Laplace transform using (A.19),〈

|x|δ (t)
〉
GCE−I

= Γ (δ + 1) t
α+β
2

δE
δ
2

α,α+β
2

δ+1
(−tα) , (3.4)

where Eγ
α,β(z) is the Prabhakar generalisation of the Mittag-Leffler function

(A.16). An equivalent form to (3.4) can be deduced via the Mellin transform
of (3.3), see (A.9), and we get
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〈
|x|δ (t)

〉
GCE−I

= 2

∫ ∞

0
xδ�GCE−I (x, t) dx

= 2M{�GCE−I (x, t) ;x} (δ + 1)

= 2
∞∑
n=0

(−1)n

n!
tαn[M{�1 (x, t) ;x} (δ + 1)

+ tαM{�2(x, t);x}(δ + 1)]

=
2δ√
π
Γ

(
1 +

δ

2

)
Γ

(
1 + δ

2

)
t
α+β
2

δ
∞∑
n=0

⎧⎨⎩
(
1 + δ

2

)
n

Γ
[
αn+ α+β

2 δ + 1
] (−tα)n

n!

+ tα
(
1 + δ

2

)
n

Γ
[
αn+ α+β

2 δ + α+ 1
] (−tα)n

n!

⎫⎬⎭
=

2δ√
π
Γ

(
1 +

δ

2

)
Γ

(
1 + δ

2

)
t
α+β
2

δ

×
[
E

δ
2
+1

α,α+β
2

δ+1
(−tα) + tαE

δ
2
+1

α,α+β
2

δ+α+1
(−tα)

]
. (3.5)

Both forms of the MSD, (3.4) and (3.5), should be equivalent. This equival-
ence of (3.4) and (3.5) can be verified by the aid of Legendre’s duplication
rule and the recurrence relation (A.21). Both forms also have the same
limiting behaviour, see (A.17),

〈
|x|δ (t)

〉
GCE−I

∼

⎧⎪⎨⎪⎩
2δ√
π

Γ(1+ δ
2)Γ(

1+δ
2 )

Γ(1+α+β
2

δ)
t
α+β
2

δ, t→ 0+;

2δ√
π

Γ(1+ δ
2)Γ(

1+δ
2 )

Γ(1+β
2
δ)

t
β
2
δ, t→ ∞,

(3.6)

and when δ = 2, we find the asymptotic behaviour of the MSD,

〈
x2(t)

〉
GCE−I

∼
{

2tα+β

Γ (α+β+1) , t→ 0+,
2tβ

Γ (β+1) , t→ ∞.
(3.7)

The MSD (3.7) generalises the result of GCE-I with one fractional
parameter (1.7). It can also represent a retarded subdiffusion process if
0 < α+ β < 1, and a generic crossover from superdiffusion to subdiffusion
if 1 < α + β < 2. The case 0 < α + β < 1 is analogous to the finding of
Chechkin and colleagues [11, 14, 82, 15, 72]. On the other hand, the case
1 < α + β < 2 can depict many phases in [76] for certain pinning forces
at low disk activity. The probability density (3.3) and the MSD (3.7) are
presented in Figures 1a and 1b respectively. In Figure 1a, the subdiffusive
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(a)

(b)

Figure 1. (a) Spatial evolution of the probability density
�GCE−I of GCE-I at short time t = 0.1 for different frac-
tional parameters. (b) Temporal evolution of the MSD of
GCE-I. The normal and ballistic diffusion limits are shown
in the light grey curves.

transition regime in the short-time limiting included in the Cattaneo-type
equation is clear in the blue curve, where 0 < α + β < 1. In the red and
green curves, the superdiffusion process is dominant since 1 < α+β < 2. In
Figure 1b the blue curve, i.e., the case corresponding to α = 0.5, β = 0.2,
the retarded subdiffusion process is salient in the course of time. In the red
and green curves of Figure 1b, which consider the choices α = 0.5, β = 0.8
and α = 0.8, β = 0.8, namely 1 < α + β < 2, respectively, the crossover
from superdiffusion to subdiffusion in both curves is obvious.

Remark 3.1. In spite of the generality of the limiting behaviour (3.7)
covering a wide range of transitions over the subdiffusive regime or from
the superdiffusive to the subdiffusive regime, it is still constrained by the
fact that the parameter β occurs in both the short-time and the long-time
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behaviours. In essence, the presence of the parameter β in the short-time
behaviour causes an exemplary transition such as〈

x2�(t)
〉 ∼

{
t1.8, t→ 0+,
t0.3, t→ ∞,

impossible to be captured by the GCE-I (and thus its special cases; GCE-III
and GCE-IV) with two fractional parameters.

Remark 3.2. It is noteworthy mentioning that GCE-I (3.2) can be
written in terms of the generalised diffusion-wave equation with two power-
law memory kernels [75], namely,∫ t

0
ξ (t− τ) ∂2τ� (x, τ)dτ = ∂2x� (x, t) , (3.8)

where ξ(t) = t1−β

Γ (2−β) +
t1−α−β

Γ (2−α−β) , � (x, 0
+) = δ (x), ∂t� (x, 0

+) = 0, lim|x|→∞
� (x, t) = 0, and α, β ∈ (0, 1], and in terms of the generalised diffusion-wave
equation with regularised Prabhakar derivative, see (A.4),

P
0+D

1,α+β
α,−1,t� (x, t) = ∂2x� (x, t) , (3.9)

where � (x, 0+) = δ (x), ∂t� (x, 0
+) = 0 lim|x|→∞ � (x, t) = 0, and provided

that 0 < α, β < 1 and 1 < α+ β < 2.

Remark 3.3. The normalisation of (3.3) can be verified through the
Mellin transform,∫ ∞

−∞
�GCE−I (x, t) dx = 2

∫ ∞

0
�GCE−I (x, t) dx

= 2M{�GCE−I (x, t) ;x} (1)

= 2
∞∑
n=0

(−1)n

n!
tαn [M{�1 (x, t) ;x} (1) + tαM{�2 (x, t) ;x} (1)]

=

∞∑
n=0

(−1)n

[
tαn

Γ (1 + αn)
+

tα(n+1)

Γ [1 + α (n+ 1)]

]
= 1.

3.2. Double-order Cattaneo equation of type I. The double-order
time-fractional Cattaneo equation of type I (DTFCE-I) (2.8), (2.11) and
(2.12), which is distinguished from the double-order time-fractional diffu-
sion equation of the modified form by the presence of a wave motion in the
short-time behaviour, possesses the characteristic function

η (s) =
s+ 1

p1s−α + p2s−β
, (3.10)
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where 0 < α < β ≤ 1 and p1 + p2 = 1. For sufficiently large values of

time, it can be shown that η (s) ∼ (
p1s

−α + p2s
−β

)−1
. The solution of

DTFCE-I in the Laplace-Fourier space is thus given by (2.13) and (3.10),

̂̃�I (k, s) = sα + sα−1

sα+1 + sα + k2 (p1 + p2sα−β)
, (3.11)

which is a special case of Problem B.2, when χ0,1 = 1, and γ = α + 1.
Then, one can deduce that

�I (x, t) =
∞∑
n=0

(−t)n
n!

n∑
m=0

(
n
m

)[
p2
p1
tβ−α−1

]m
[�1 (x, t) + t�2 (x, t)],

where

�1 (x, t) =
1√

4πp1tα+1

×H2,1
2,3

[
x2

4p1tα+1

∣∣∣∣ (
1
2 −m, 1

)
;
(
1
2 + n+ (β − α− 1)m− α

2 , α+ 1
)

(0, 1) ,
(
1
2 + n−m, 1

)
;
(
1
2 , 1

) ]
,

�2 (x, t) =
1√

4πp1tα+1

×H2,1
2,3

[
x2

4p1tα+1

∣∣∣∣ (
1
2 −m, 1

)
;
(
3
2 + n+ (β − α− 1)m− α

2 , α+ 1
)

(0, 1) ,
(
1
2 + n−m, 1

)
;
(
1
2 , 1

) ]
(3.12)

where p1 ≥ p2. It can be verified that the distribution (3.12) is normalised
as follows∫ ∞

−∞
�I (x, t) dx = 2M{�I (x, t) ;x} (1)

=

∞∑
n=0

(−t)n
n!

n∑
m=0

(
n
m

)[
p2
p1
tβ−α−1

]m
×
{

Γ (1 + n−m)Γ (m)

Γ (0)Γ (1 + n+ (β − α− 1)m)

+
Γ (1 + n−m)Γ (m)× t

Γ (0)Γ (2 + n+ (β − α− 1)m)

}
.

Since 1/Γ (0) = 0, the above series has non-zero value only at m = 0, then∫ ∞

−∞
�I (x, t) dx =

∞∑
n=0

(−t)n
{

1

Γ (1 + n)
+

t

Γ (2 + n)

}
= 1.

The δth- order moments of DTFCE-I can be determined from equations
(2.16) and (3.10),
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〈
|x|δ (s)

〉
I

=
Γ (δ + 1)(s+ 1)−δ/2

s(p1s−α + p2s−β)
−δ/2

=
Γ (δ + 1)p

δ/2
1 s−

β+1
2

δ−1
(
1 + 1

s

)−δ/2(
sβ−α + p2

p1

)−δ/2

= Γ (δ + 1)p
δ/2
1

∞∑
n=0

(−1)n(δ/2)n
n!

s−
β+1
2

δ−1−n(
sβ−α + p2

p1

)−δ/2
,

where the expansion (1 + x)−r =
∑∞

n=0
(−1)n(r)n

n! xn, r ∈ R+, |x| < 1, was

employed to
(
1 + 1

s

)−δ/2
for the values Re (s) > 1. Therefore,〈

|x|δ (t)
〉
I
= Γ (δ+1)p

δ/2
1 t

α+1
2

δ
∞∑
n=0

(−t)n(δ/2)n
n!

E
−δ/2

β−α,α+1
2

δ+n+1

(
−p2
p1
tβ−α

)
.

(3.13)
Note that the δth-order moments (3.13) represents the exact formula at
short and intermediate times time t (since Re (s) > 1).

The reader can analogously deduce a complementary exact formula for

long times by assuming Re (s) < 1, and expanding then (1 + s)−δ/2 instead

of (1 + 1/s)−δ/2. The asymptotic behaviour of all the δth-order moments
is 〈

|x|δ (t)
〉
I

∼

⎧⎪⎨⎪⎩
Γ (1+δ)p

δ/2
1

Γ(1+α+1
2

δ)
t
α+1
2

δ, t→ 0+,

Γ (1+δ)p
δ/2
2

Γ(1+βδ
2 )

t
βδ
2 , t→ ∞,

(3.14)

with MSD limiting behaviours〈
x2(t)

〉
I

∼
{

2p1tα+1

Γ (α+2) , t→ 0+,
2p2tβ

Γ (β+1) , t→ ∞,
(3.15)

for 0 < α < β ≤ 1, which can be generally viewed as a modified transition
from superdiffusion to subdiffusion. It is also included in the wide range of
crossovers covered by the generic form (3.7), however, the temporal path
on which they evolve is distinct. In the case 0.9 < β ≤ 1, it represents
processes switching from superdiffusion to normal diffusion, whereas the
case 0 < α ≤ 0.1 describes processes crossing over from normal diffusion
to subdiffusion. This type of transition can be found in the transport of
electrons in an interacting system subject to quasiperiodic potential [38],
specifically, when different interacting strengths U are considered. In Fig-
ures 2a and 2b the graphical representations of the distribution (3.12) and
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(a)

(b)

Figure 2. (a) Spatial distribution of DTFCE-I at different
instants of time for fractional parameters α = 0.3, β = 0.8
and constants p1 = p2 = 0.5. (b) MSD of the distribution
DTFCE-I versus time for fractional parameters α = 0.3,
β = 0.8 and different values of the model constants; p1 =
0.9, p2 = 0.1 (blue curve) and p1 = 0.1, p2 = 0.9 (red curve).
The case p1 = p2 = 0.5, lying between blue and red curve,
is omitted.

MSD of DTFCE-I,
〈
x2(t)

〉
I
, are shown. In the course of time, the trans-

ition from superdiffusion at small times to subdiffusion at longer times is
notable in Figure 2a. The apparent warp in the MSD temporal path of
Figure 2b seems almost like the result of changing the interacting strength
with fixed quasiperiodic potential amplitude, see Figure 2 of [38]. The
curvature of this warp can be increased by decreasing the second constant,
e.g., p1 = 0.99 and p1 = 0.01.

3.3. Double-order Cattaneo equation of type II. We consider here
the double-order time-fractional Cattaneo equation of type II (DTFCE-II),
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(2.9), (2.11) and (2.12). It reduces to the double-order time-fractional dif-
fusion equation of the natural form in the relatively long temporal domain
which typifies subdiffusive processes that become more anomalous with
time progress. The characteristic function η (s) is given as

η (s) = (s+ 1)
(
p1s

α + p2s
β
)
, (3.16)

where 0 < α < β ≤ 1 and p1 + p2 = 1. It appears from (3.16) that
η (s) ∼ p1s

α + p2s
β for relatively large values of time which coincides the

characteristic function of the double-order time-fractional diffusion equa-
tion of the natural form. In the long time limit, η (s) ∼ p1s

α+p2s
β ∼ p1s

α

proviso p1 ≤ p2. Upon setting η (s) ∼ p1s
α in (2.13), one can get〈

x2(t)
〉 ∼ tα, and vice versa in the short time limit. This result was

analytically shown in [11, 82, 15, 72]. The distribution of DTFCE-II is a
direct consequence of using of (3.16) in (2.13),

̂̃�II (k, s) = p1s
α + p2s

β + p1s
α−1 + p2s

β−1

p1sα+1 + p2sβ+1 + p1sα + p2sβ + k2
. (3.17)

A similar case to (3.17) has been processed in Problem B.3. Thus,
setting χ0,1 = 1, γ1 = α + 1 and γ2 = β + 1 in (B.3) leads to the solution
of DTFCE-II,

�II (x, t) =

∞∑
n=0

(−tβ−α
)n

n!

n∑
m=0

(
n
m

)(
p1
p2

)n−m

t(α−β−1)m

×
m∑
�=0

(
m
�

)[
p1
p2
tβ−α

]�
×

×
{
p1
p2
tβ−α [�1 (x, t) + t�3 (x, t)] + �2 (x, t) + t�4 (x, t)

}
,

�1 (x, t) =
1√

4πtβ+1

p2

×H2,0
1,2

[
p2x

2

4tβ+1

∣∣∣∣∣
(
1
2 +m+ (β − α) (n−m+ �+ 1)− β

2 , β + 1
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�2 (x, t) =
1√

4πtβ+1

p2

×H2,0
1,2

[
p2x

2

4tβ+1

∣∣∣∣∣
(
1
2 +m+ (β − α) (n−m+ �)− β

2 , β + 1
)

(0, 1) ,
(
1
2 + n, 1

) ]
,
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�3 (x, t) =
1√

4πtβ+1

p2

×H2,0
1,2

[
p2x

2

4tβ+1

∣∣∣∣∣
(
3
2 +m+ (β − α) (n−m+ �+ 1)− β

2 , β + 1
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�4 (x, t) =
1√

4πtβ+1

p2

×H2,0
1,2

[
p2x

2

4tβ+1

∣∣∣∣∣
(
3
2 +m+ (β − α) (n−m+ �)− β

2 , β + 1
)

(0, 1) ,
(
1
2 + n, 1

) ]
,(3.18)

where p1 < p2. The distribution (3.18) is normalised over R. Indeed,∫ ∞

−∞
�II (x, t) dx =

∞∑
n=0

(
−tβ−α

)n
n∑

m=0

(
n
m

)(
p1
p2

)n−m

t(α−β−1)m

×
m∑
�=0

(
m
�

)[
p1
p2
tβ−α

]�
×
{

p1
p2
tβ−α

Γ (1 +m+ (β − α) (n−m+ �+ 1))

+

p1
p2
tβ−α+1

Γ (2 +m+ (β − α) (n−m+ �+ 1))

+
1

Γ (1 +m+ (β − α) (n−m+ �))

+
t

Γ (2 +m+ (β − α) (n−m+ �))

}
= 1,

which can be attained by expansion for n = 0, 1, 2, 3. We find that all terms
cancel each other except the first term of 1/Γ (1 +m+ (β − α) (n−m+ �)).

Following similar procedures to the δth-order moments of DTFCE-I,
we obtain〈
|x|δ (t)

〉
II

=
Γ (δ + 1)t

β+1
2

δ

p
δ/2
2

∞∑
n=0

(−t)n(δ/2)n
n!

E
δ/2

β−α,β+1
2

δ+n+1

(
−p1
p2
tβ−α

)
,

(3.19)
for short- and intermediate- times, with the limiting behaviours

〈
|x|δ (t)

〉
II

∼

⎧⎪⎨⎪⎩
Γ (1+δ)

p
δ/2
2 Γ(1+β+1

2
δ)
t
β+1
2

δ, t→ 0+;

Γ (1+δ)

p
δ/2
1 Γ(1+αδ

2 )
t
αδ
2 , t→ ∞,

(3.20)
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and MSD asymptotes〈
x2(t)

〉
II

∼
{

2tβ+1

p2Γ (β+2) , t→ 0+,
2tα

p1Γ (α+1) , t→ ∞,
(3.21)

where 0 < α < β ≤ 1 and p1+p2 = 1. The limiting behaviour (3.21) proves
that the DTFCE-II provides a second modified version of the transitions
from superdiffusion to subdiffusion. On the other hand, for 0.9 < β ≤ 1 and
0 < α ≤ 0.9, we have a crossover from ballistic behaviour to subdiffusion,
which essentially characterises the DTFCE-II. This crossover could not be
performed by the generic behaviour (3.7) nor the specific behaviour (3.15).
The distribution (3.18) and the MSD of the DTFCE-II are drawn in figures
3a and 3b, respectively. In accord with the condition (p1 < p2), see (3.18)
below, we set p1 = 0.4, p2 = 0.6 in Figure 3a. Also, we choose α =
0.3, β = 0.8 for closer comparisons with Figure 2a. The DTFCE-II curve
remarkably records values for the distribution �II (x, t) higher than those
recorded in figure 2a for DTFCE-I. In the course of time, the transition
from superdiffusion at small times to subdiffusion at long times is notable
here as well. The presence of p1 and p2, where p1 + p2 = 1, in the MSD
covers a significant range in the vicinity of the points tβ+1 and tα, see Figure
3b.

3.4. Double-order Cattaneo equation of type III. In this subsection,
we study the effect of distributed-order fractional derivatives on the gener-
alised Cattaneo equation of type IV. The resulting model is termed double-
order time-fractional Cattaneo equation of type III (DTFCE-III), having
the characteristic function

η (s) = s
(
1 + p1s

α + p2s
β
)
, (3.22)

where 0 < α < β ≤ 1 and p1 + p2 = 1. The long time behaviour of
(3.22) is distinctly η (s) ∼ s, which in combination with (2.13) conducts
as, the most prominent, the Gaussian distribution, i.e.

〈
x2(t)

〉 ∼ t.

Conversely for short times (3.22) behaves as η (s) ∼ s
(
p1s

α + p2s
β
)
.

This form resembles the characteristic function of the double-order time-
fractional wave equation of natural type [2, 75, 23], which offers decelerating
superdiffusive behaviour in the intermediate short-time domain, see Section
3.3 in [75]. Thus, the study of the characteristic function suggests the
progress

〈
x2(t)

〉 ∼ tβ+1 → t in the course of time.
The characteristic function (3.22) with (2.13) produces the (k-s) form̂̃�III (k, s) = 1 + p1s

α + p2s
β

p1sα+1 + p2sβ+1 + s+ k2
, (3.23)

which has been considered in a generic form in Problem B.4. Consequently,
invoking equation (B.4) after setting χ0,1 = 1, γ1 = α + 1 and γ2 = β + 1,
helps in getting the exact (conditional) form
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(a)

(b)

Figure 3. (a) Spatial distribution of DTFCE-II at different
instants of time for fractional parameters α = 0.3, β =
0.8 and constants p1 = 0.4, p2 = 0.6. (b) MSD

〈
x2
〉
II

of
DTFCE-II as a function of time for fractional parameters
α = 0.3, β = 0.8 and different values of model constants;
p1 = 0.9, p2 = 0.1 (blue curve) and p1 = 0.1, p2 = 0.9 (red
curve).

�III (x, t) =

∞∑
n=0

(−1)n

n!

[
tβ

p2

]n n∑
m=0

(
n
m

)[p1
tα

]m
×
{
tβ

p2
�1 (x, t) +

p1
p2
tβ−α�2 (x, t) + �3 (x, t)

}
,

�1 (x, t) =
1√

4πtβ+1/p2

×H2,0
1,2

[
x2

4tβ+1/p2

∣∣∣∣∣
(
1
2 + βn− αm+ β

2 , β + 1
)

(0, 1) ,
(
1
2 + n, 1

) ]
,



72 E. Awad, R. Metzler

�2 (x, t) =
1√

4πtβ+1/p2

×H2,0
1,2

[
x2

4tβ+1/p2

∣∣∣∣∣
(
1
2 + βn− αm+ β

2 − α, β + 1
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�3 (x, t) =
1√

4πtβ+1/p2

×H2,0
1,2

[
x2

4tβ+1/p2

∣∣∣∣∣
(
1
2 + βn− αm− β

2 , β + 1
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

where p1 ∈ [0, 0.3], p2 ∈ [0.7, 1], p1 + p2 = 1, β ∈ [0.4, 1], 0 < α < β. The
normalisation of (3.24) can be checked through the expansion of the series∫ ∞

−∞
�III (x, t) dx =

∞∑
n=0

(−1)n
n∑

m=0

(
n
m

)⎧⎨⎩
pm1
pn+1
2

tβ(n+1)−αm

Γ (1 + β (n+ 1)− αm)

+

pm+1
1

pn+1
2

tβ(n+1)−α(m+1)

Γ (1 + β (n+ 1)− α (m+ 1))
+

pm1
pn2
tβn−αm

Γ (1 + βn− αm)

⎫⎪⎬⎪⎭ = 1.

The scaling properties for the DTFCE-III can be obtained through its δth-
order moments〈

|x|δ (t)
〉
III

=
Γ (δ + 1)t

β+1
2

δ

p
δ/2
2

∞∑
n=0

(−tβ)n
n!

(δ/2)n
pn2

×En+δ/2

β−α,β+1
2

δ+βn+1

(
−p1
p2
tβ−α

)
, (3.24)

for short- and intermediate-time values, with short- and long-time beha-
viours 〈

|x|δ (t)
〉
III

∼
⎧⎨⎩

Γ (1+δ)

p
δ/2
2 Γ(1+β+1

2
δ)
t
β+1
2

δ, t→ 0+,

Γ (1+δ)

Γ(1+ δ
2)
t
δ
2 , t→ ∞.

(3.25)

Hence, the MSD of the DTFCE-III reads〈
x2(t)

〉
III

∼
{

2tβ+1

p2Γ (β+2) , t→ 0+,

2t, t→ ∞,
(3.26)

which confirms the predictions of the characteristic functions (3.22). The
domination of the largest exponent in the short-time domain is evident. The
behaviour (3.26) represents generally a transition from superdiffusion to
strictly normal diffusion. What distinguishes this model from the GCE-IV,
in essence, is the presence of another smaller fractional parameter α, which
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unfortunately disappears from (3.26), and the constant p2 in the short-time
limit. This parameter, however, seems to be activated in the short-time
domain, which may lead to a retardation in this time scale. In Figure 4a we
represent graphically the probability density function �III(x, t) of DTFCE-
III at different values of time for the fractional parameters α = 0.3, β = 0.8
and model constants p1 = 0.3, p2 = 0.7, depending on the conditions
imposed on the closed-form solution (3.24), and its MSD for fractional
parameters α = 0.3, β = 0.8 and different values of model constants in
Figure 4b. Due to the resemblance between the MSD of DTFCE-II and
DTFCE-III in the short-time behaviour, they record higher values in this
time domain compared with the DTFCE-I where the smallest exponent α
dominates.

4. Diffusive flux and distribution-like formulation

In this section we provide an alternative formulation for the Green’s
function of diffusion (1.1), time-fractional diffusion (1.3) and (1.4), and
time-fractional Cattaneo-type diffusion (2.3) and (2.4), by introducing a
field variable that behaves like the distribution of the diffusing substance
through having the same MSD of � (x, t). The exact formulas for the dif-
fusive flux are also derived.

4.1. Normal diffusion. At first, let us start with the normal diffusion
equation (1.1) which can be converted using the transform technique to

̂̃� (k, s) = 1

s+ k2
, ̂̃J (k, s) =

−ık
s+ k2

, (4.1)

where � (x, t) and J (x, t) have the same partial differential (diffusion) equa-
tion ∂2xf (x, t) = ∂tf (x, t) with different initial conditions for the concen-
tration � (x, 0+) = δ(x) and diffusive flux J (x, 0+) = −u1(x), and u1(x) is
the unit doublet function, see Section A.4 in Appendix A. Rewriting (4.1)
in the form

�̃ (x, s) =
1

2
√
s
exp

(− |x| √s) , J̃ (x, s) =
|x|
2x

exp
(− |x|√s) , (4.2)

ensures the non-negativity of � (x, t) and J (x, t). It is clear that �̃ (x, λ) is a
completely monotone function for λ > 0, see Section A.5 in Appendix A, as
a product of two completely monotone functions, and

∫∞
−∞ �̃ (x, s) dx = 1/s

which prove that � (x, t) is a probability density function (PDF). On the
other hand, evidently, the flux J (x, t) changes its sign according to the sign
of x, where sign(x) = |x|/x. Physically, the three-dimensional flux J(x, t),
x = (x1, x2, x2), is a vector quantity expressing the rate of movement of
diffusing particles through a unit area. So, it is not expected that J (x, t)
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(a)

(b)

Figure 4. (a) Spatial distribution of DTFCE-III at dif-
ferent instants of time for fractional parameters α = 0.3,
β = 0.8 and constants p1 = 0.3, p2 = 0.7. (b) MSD

〈
x2
〉
III

of the DTFCE-III as a function of time for fractional para-
meters α = 0.3, β = 0.8 and different values of model con-
stants; p1 = 0.9, p2 = 0.1 (blue curve) and p1 = 0.1, p2 = 0.9
(red curve).

is a PDF. Furthermore, if we retrieve (4.2) in the space-time domain, we
get (see also [19])

� (x, t) =
1√
4πt

exp

(
−x

2

4t

)
, J (x, t) =

x

2t
√
4πt

exp

(
−x

2

4t

)
, (4.3)

which shows the Gaussian behaviour for particle distribution with
〈
x2�(t)

〉 ∼
t and positive skewness for the diffusive flux in the positive half-real axis.
The diffusive flux reverses its sign in the negative half-real axis because
of the presence of x. In other words, the overall flux has to vanish, i.e.∫∞
−∞ J (x, t) dx = 0.
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Let us consider the quantity

Q (x, t) = x J (x, t) =
x2

2t
√
4πt

exp

(
−x

2

4t

)
=
x2

2t
� (x, t) , (4.4)

which takes the dimensional form Q′(x′, t′) = x′
DJ

′(x′, t′) = −x′∂x′�′(x′, t′),
where the prime symbols stand for dimensional variables and D is the
diffusion coefficient. Hereby, it has the same dimension of �′(x′, t′), i.e.
[Q′] = [�′] = mol/cm3. Moreover, its Laplace transform is given as

Q̃ (x, s) =
1

2
|x| exp (− |x|√s) . (4.5)

We note that Q̃ (x, λ) is a completely monotone function for λ > 0, see

definitions (A.1) and (A.4), and
∫∞
−∞ Q̃ (x, s) dx = 1/s, thereby, Q (x, t) is

a PDF. Interestingly, the MSD of Q (x, t) is given by〈
x2Q(t)

〉
= 6t = 3

〈
x2�(t)

〉
, (4.6)

namely, Q encodes a behaviour similar to the classical distribution �(x, t)
although it possesses a different form, and we call it the ”distribution-like”.

Using the concept of this distribution-like, we can summarise the main
result of this subsection as follows: the classical Fourier-Fick equation (1.1)
subject to a Dirac delta initial distribution and unit doublet for the initial
flux can be rewritten in the sense of the distribution-like as

Q (x, t) = x J (x, t) , x∂2xJ (x, t) = ∂tQ (x, t) , (4.7)

subject to the initial conditions Q (x, 0+) = −U1(x) and diffusive flux
J (x, 0+) = −u1(x), and boundary condition lim|x|→∞Q (x, t) = 0, where
U1(x) is the modified unit doublet function, see equations (A.27) and
(A.29).

4.2. Time-fractional diffusion. To describe the anomalous diffusive be-
haviour 〈x2�(t)〉 ∼ tβ, β > 0, considerable effort has been invested on the
mathematical physics side. Owing to the fact that non-Brownian diffusion
is non-universal, today a wide variety of anomalous stochastic processes
are known [45]. Specifically, fractional diffusion equations were put forward
[48, 88, 90, 61], see [40, 43, 59, 28, 27]. Following such ideas, crossovers of
the MSD are now frequently described in terms of distributed-order frac-
tional diffusion equations, see the summaries [82, 72, 73]. We here consider
single-parameter time-fractional diffusion equations.

Among the single-parameter forms of the time-fractional diffusion equa-
tions we pay attention to the two forms (1.3) and (1.4) which result in the
same behaviour of the MSD (1.2), 0 < β ≤ 1, however, they produce two
different partial integrodifferential equations for the diffusive flux,

∂2xJRL (x, t) = RL
0+ D

β
t JRL (x, t) = ∂t

RL
0+ I

1−β

t JRL (x, t) , (4.8)
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which requires the initial condition limt→0+
RL
0+ I

1−β

t
JRL (x, t) = −u1(x),

whereas the other reads

∂2xJC (x, t) = C
0+D

β
t JC (x, t) , (4.9)

that works well with the conventional initial condition J (x, 0+) = −u1(x).
Remark 4.1. It is worth remarking that the RL form (1.4) can be

recovered from the form

RL
0+ I

1−β
t JRL (x, t) = −∂x� (x, t) , −∂xJRL (x, t) = ∂t� (x, t) , (4.10)

where RL
a+ D

β
t is the left inverse of RL

a+ I
β
t , i.e. RL

a+ D
β
t

(
RL
a+ I

β
t f(t)

)
= f (t),

with β > 0. Moreover, the form (4.10) produces the well-known Caputo

form ∂2x� (x, t) =
C
0+D

β
t � (x, t) for the distribution and the integrodifferential

equation (4.8) for the flux.
Let us now turn our interest to the properties offered by the forms (1.3)

and (4.10), where we disregard equation (1.4) because of its equivalence
with (59). They possess the transformed distribution

̂̃� (k, s) = sβ−1

sβ + k2
, (4.11)

which remarkably can be retrieved from (3.2) if we consider the long time
behaviour of the characteristic function (3.1), η (s) = sβ (sα + 1) ∼ sβ,
with equation (2.13), and the transformed fluxeŝ̃JC (k, s) = sβ−1 ̂̃JRL (k, s) = −ιk sβ−1

sβ + k2
. (4.12)

By taking the inverse Fourier transform of (4.11) and (4.12) we have

�̃(x, s) =

√
sβ

2s
exp

(
−|x|

√
sβ
)
, (4.13)

J̃C(x, s) = sβ−1J̃RL(x, s) =
|x|
2x
sβ−1 exp

(
−|x|

√
sβ
)
. (4.14)

It was established that the distribution � (x, t) is a PDF [88] with MSD〈
x2�(t)

〉 ∼ tβ, see also [83] for the subordination technique and [23] for the
Bernstein functions technique. It appears also from (4.14) that both fluxes
include the sign function, sign (x) = |x| /x. We introduce the distribution-
like for the time-fractional diffusion equation as

Q (x, t) = RL
0+ I

1−β

t [xJRL (x, t)] = xJC (x, t) , (4.15)

with its transform

Q̃ (x, s) =
1

2
sβ−1 |x| exp

(
− |x|

√
sβ
)
. (4.16)

One can easily check that Q̃ (x, λ) ∈ CMF for λ > 0, because it
is a product of two completely monotone functions as equation (4.16)
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explains. Also,
∫∞
−∞ Q̃ (x, s) dx = 1/s which proves the normalisation of

Q (x, t). Thus, the distribution-like of the time-fractional diffusion equa-
tions considered in this work is a probability density function. It can be
also shown that the MSD of the distribution-like is〈

x2Q(t)
〉
=

6tβ

Γ (β + 1)
= 3

〈
x2�(t)

〉
, (4.17)

which likens its counterpart in the normal diffusion case, equation (4.6).
Utilising the definition of distribution-like (4.15), we can rewrite ex-

pressions (1.3) and (4.10) in the form

Q (x, t) = RL
0+ I

1−β

t [xJRL (x, t)] , x∂2xJRL (x, t) = ∂tQ (x, t) , (4.18)

subject to the initial conditions Q (x, 0+) = −U1(x), the diffusive flux

limt→0+
RL
0+ I

1−β

t
JRL (x, t) = −u1(x), and

Q (x, t) = xJC (x, t) , x∂2xJC (x, t) = C
0+D

β
t Q (x, t) , (4.19)

x∂2xJC (x, t) = C
0+D

β
t Q (x, t) subject to the initial conditions Q (x, 0+) =

−U1(x) and the diffusive flux JC (x, 0+) = −u1(x) Both equations are sub-
jected to the boundary condition lim|x|→∞Q (x, t) = 0. In the case β = 1,
equations (4.18) and (4.19) reduce to (4.7). We have shifted the exact for-
mulas for Q (x, t), JRL(x, t) and JC (x, t) to the next subsection to avoid
reiteration.

4.3. Time-fractional finite-speed diffusion. The two forms of the time-
fractional Cattaneo equation describing the finite-speed diffusion were in-
troduced in equations (2.3) and (2.4) in the sense of Caputo and Riemann-
Liouville fractional derivatives respectively. It was shown that the distri-
bution � (x, t) resulting from (2.3) exactly coincides with the corresponding
one based on (2.4), see [2]. Nevertheless, this coincidence is lost when the
diffusive flux is considered. In point of fact, in order to mathematically
utilise Cattaneo-type equations in studying the itinerant (non-scaling) an-
omalous behaviour, the initial conditions should be imposed on the rate
of the diffusive flux, not the diffusing flux itself. Loosely speaking, equa-
tion (2.1) should be subject to ∂tJ (x, 0+) = −u1(x), equation (2.3) sub-
ject to limt→0+

C
0+D

α
t JC (x, t) = −u1(x), and equation (2.4) subject to

limt→0+
RL
0+ D

α
t
RL
0+ I

1−β

t
JRL (x, t) = −u1(x) analogously to its counterpart

in the time-fractional diffusion equation. These conditions are all leading

to zero initial flux or limt→0+
RL
0+ I

1−β

t
JRL (x, t) = 0. In analogue to remark

4.1, we suggest another form for the time fractional Cattaneo equation.

Remark 4.2. The following Cattaneo-type equation
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(
1 + RL

0+ D
α
t

)
RL
0+ I

1−β

t JRL (x, t) = −∂x� (x, t) , −∂xJRL (x, t) = ∂t� (x, t) ,
(4.20)

with � (x, 0+) = δ (x), limt→0+
RL
0+ I

1−β

t
JRL (x, t) = 0, x ∈ R, as well as

lim|x|→∞ � (x, t) = 0, and α, β ∈ (0, 1], yields the same distribution and dif-

fusive flux provided by (2.4). The condition limt→0+
RL
0+ I

1−β

t
JRL (x, t) = 0

guarantees the commutation RL
0+ D

1−β

t

[
RL
0+ D

α
t f(t)

]
= RL

0+ D
α
t

[
RL
0+ D

1−β

t
f(t)

]
.

Alternatively, it can be written as limt→0+
RL
0+ D

α
t
RL
0+ I

1−β

t
JRL (x, t) = −u1(x).

Employing the transform technique to equations (2.3) and (4.20) we
obtain ̂̃JC (k, s) = sβ−1 ̂̃JRL (k, s) = −ιk sβ−1

sα+β + sβ + k2
, (4.21)

in the Laplace-Fourier domain, and

J̃C (k, s) = sβ−1J̃RL (x, s) =
|x|
2x
sβ−1exp

(
− |x|

√
sβ (1 + sα)

)
(4.22)

in the Laplace domain. Accordingly, we take the distribution-like of the
time-fractional Cattaneo equation in the form

Q (x, t) =
(
1 + RL

0+ D
α
t

)
RL
0+ I

1−β

t [xJRL (x, t)] =
(
1 + C

0+D
α
t

)
[xJC (x, t)] ,

(4.23)
whose Laplace transform is

Q̃ (x, s) =
1

2
sβ−1 (1 + sα) |x| exp

(
− |x|

√
sβ (1 + sα)

)
. (4.24)

We now claim that Q (x, t) given by (4.23) is a probability density func-
tion if α+β ≤ 1, where α, β ∈ (0, 1]. To justify this claim, we first prove the

normalisation ofQ (x, t) by integrating (4.24) over R,
∫∞
−∞ Q̃ (x, s) dx = 1/s,

namely, Q (x, t) is normalised. Secondly, we study the non-negativity of
Q (x, t) by rewriting (4.24) as

Q̃ (x, λ) =
1

2
f1 (λ) f2 (λ) f3 (λ; |x|) , λ > 0,

f1 (λ) = λβ−1,

f2 (λ) = λα+β−1,

f3 (λ; |x|) = |x| exp
[
− |x|

(
λβ

) 1
2
(1 + λα)

1
2

]
. (4.25)

Obviously, f1 (λ) is completely monotone for β ∈ (0, 1] whilst f2 (λ) is
completely monotone for α+β ∈ (0, 1], refer to definitions (A.1) and (A.3).
On the other hand, we have that λβ and 1 + λα are complete Bernstein
functions α, β ∈ (0, 1] as definition (A.4) reports, note that 1 ∈ SF ∩
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CBF . Therefore,
(
λβ

) 1
2 (1 + λα)

1
2 ∈ CBF , and f3 (λ; |x|) ∈ CMF . This

proves that Q̃ (x, λ) is completely monotone as a product of three complete
monotone functions. Hence Q (x, t) ≥ 0 if α + β ≤ 1 and α, β ∈ (0, 1],
which completes the proof of our claim. On the other hand, this result can
be reinforced by verifying that the process following the distribution-like
(4.23) is subordinated to the normal (Gaussian) diffusion provided that
α + β ≤ 1 and α, β ∈ (0, 1], using the following criterion [83], see also [5].
Firstly, equation (4.24) can be rewritten in the form:

Q̃ (x, s) = − x

2π
∂x

∫ ∞

−∞

sβ−1 (1 + sα)

sα+β + sβ + k2
e−ιkxdk

= − x

2π
∂x

∫ ∞

−∞
sβ−1 (1 + sα)

{∫ ∞

0
e−[s

β(1+sα)+k2]udu

}
e−ιkxdk

= − x

2π
∂x

∫ ∞

−∞

[∫ ∞

0
e−k2uG̃ (u, s) du

]
e−ιkxdk

=

∫ ∞

0

x2

2u
√
4πu

e−
x2

4u G̃ (u, s) du, (4.26)

where G̃ (u, s), given by

G̃ (u, s) = sβ−1 (1 + sα) e−sβ(1+sα)u, (4.27)

is the Laplace transform of the function G(u, t) providing the subordination
transformation from the time scale t to the time scale u. It remains to prove
that G (u, t) is a PDF with respect to u > 0 for any t > 0. Firstly, we note

that G (u, t) is normalised with respect to u. Indeed, since
∫∞
0 G̃ (u, s) du =

1/s, then
∫∞
0 G(u, t)du = 1. Secondly. The non-negativity of G (u, t)

can be proved by verifying that its Laplace transform (4.27) is completely

monotone. By rewriting G̃ (u, s) as

G̃ (u, λ) = f1 (λ) f2 (λ) g1 (u, λ) g2 (u, λ) , λ > 0

f1 (λ) = λβ−1,

f2 (λ) = λα+β−1,

g1 (u, λ) = e−uλβ

,

g2 (u, λ) = e−uλα+β

, (4.28)

one concludes that f1 (λ) and g1 (u, λ) are completely monotone functions
for λ > 0 and β ∈ (0, 1], whilst f2 (λ) and g2 (u, λ) require that λ > 0,
α, β ∈ (0, 1] and α + β ≤ 1 to be complete monotone functions, where
subsection A.5 of Appendix A has been invoked repeatedly. Therefore,
G̃ (u, λ), as a product of complete monotone functions, is in turn a com-
pletely monotone, which proves the non-negativity of G (u, t). In view of
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equation (4.4) and the Laplace inversion of (4.26), we can state that the
time-fractional Cattaneo equation with two fractional derivatives of differ-
ent orders α, β ∈ (0, 1] represents a mathematical model for a stochastic
process subordinated to Gaussian diffusion provided that the fractional de-
rivative orders satisfy α + β ≤ 1. It is worth mentioning that the same
criterion can be implemented for the distribution � (x, t) using the same
transformation G(u, t).

The mathematical definition of the distribution-like (4.23) enables us
to replace the time-fractional Cattaneo equation in the RL-sense (2.4) and
(4.20) by

Q (x, t) =
(
1 + χ0,1

RL
0+ D

α
t

)
RL
0+ I

1−β

t [xJRL (x, t)] , x∂2xJRL (x, t) = ∂tQ (x, t)
(4.29)

subject to the initial conditions Q (x, 0+) = −U1(x) and diffusive flux

limt→0+
RL
0+ D

α
t
RL
0+ I

1−β

t
JRL (x, t) = −u1(x), and the time-fractional Cattaneo

equation in the C-sense (2.3) by

Q (x, t) =
(
1 + χ0,1

C
0+D

α
t

)
[xJC (x, t)] , x∂2xJC (x, t) = C

0+D
β
t Q (x, t)

(4.30)
subject to the initial conditions Q (x, 0+) = −U1(x) and diffusive flux
limt→0+

C
0+D

α
t JC (x, t) = −u1(x), χ0,1 ∈ {0, 1}, and both equations are sub-

ject to the boundary condition lim|x|→∞Q (x, t) = 0. When χ0,1 = 0 and

limα→0+
C
0+D

α
t = limα→0+

RL
0+ D

α
t = 1, equations (4.29) and (4.30) reduce to

(4.18) and (4.19), respectively.
Lastly, we complete this section by providing analytical solutions for

the diffusive fluxes JRL (x, t) and JC (x, t), and the distribution-like Q(x, t)
for TFCE. The diffusive fluxes in RL and C sense are given by

JRL (x, t) = −∂xϕRL (x, t) , JC (x, t) = −∂xϕC (x, t) , (4.31)

where ϕRL (x, t) and ϕC (x, t) are given by

̂̃ϕRL (k, s) =
1

sγ + χ0,1sβ + k2
, ̂̃ϕC (k, s) =

sγ−1

sγ + χ0,1sβ + k2
, (4.32)

where χ0,1 ∈ {0, 1}, and γ ≥ β such that γ = β if χ0,1 = 0 and γ > β if
χ0,1 = 1. By following the same procedures of solving Problem B.1, one
derives

ϕRL (x, t) =
tγ−1

√
4πtγ

∞∑
n=0

(−χ0,1)
n

n!
t(γ−β)nH2,0

1,2

[
x2

4tγ

∣∣∣∣ (
(γ − β)n+ γ

2 , γ
)

(0, 1) ,
(
1
2 + n, 1

) ]
.

(4.33)
Then, substituting (4.33) into (4.31) and using (A.13), we arrive at



CROSSOVER DYNAMICS FROM SUPERDIFFUSION TO . . . 81

JRL (x, t) =
tγ−1

x
√
πtγ

∞∑
n=0

(−χ0,1)
n

n!
t(γ−β)nH2,0

1,2

[
x2

4tγ

∣∣∣∣ ((γ − β)n+ γ
2 , γ

)
(1, 1) ,

(
1
2 + n, 1

) ]
,

(4.34)
where the relation Γ (z/2)Γ (1− z) /Γ (−z) = −2Γ (1 + z/2) has been ta-
citly utilised. We have two special cases included in equation (4.34): First,
when χ0,1 = 0, equation (4.34) presents the flux of time-fractional diffusion
equation (1.4) and (4.10),

JTFDE
RL (x, t) =

tβ−1

x
√
πtβ

H2,0
1,2

[
x2

4tβ

∣∣∣∣∣
(
β
2 , β

)
(1, 1) ,

(
1
2 , 1

) ]
, (4.35)

and when β = 1, we get the physical flux of the normal diffusion (1.1),

JND (x, t) =
1

x
√
πt
H2,0

1,2

[
x2

4t

∣∣∣∣ (
1
2 , 1

)
(1, 1) ,

(
1
2 , 1

) ]
=

1

x
√
πt
H1,0

0,1

[
x2

4t

∣∣∣∣ (1, 1)

]
=

x

2t
√
4πt

exp

(
−x

2

4t

)
,

which coincides with equation (4.3). Here, we have used the Mellin trans-
form with equation (A.15). Secondly, when χ0,1 = 1, then equation (4.34)
yields the flux of time-fractional Cattaneo equation (2.4) and (4.20),

JTFCE
RL (x, t) =

tα+β−1

x
√
πtα+β

∞∑
n=0

(−1)n

n!
tαn

×H2,0
1,2

[
x2

4tα+β

∣∣∣∣∣
(
αn+ α+β

2 , α+ β
)

(1, 1) ,
(
1
2 + n, 1

) ]
. (4.36)

Analogously, we can deduce an exact generic formula for JC (x, t),

JC (x, t) =
1

x
√
πtγ

∞∑
n=0

(−χ0,1)
n

n!
t(γ−β)(n+1)

×H2,0
1,2

[
x2

4tγ

∣∣∣∣ (1 + (γ − β) (n+ 1)− γ
2 , γ

)
(1, 1) ,

(
1
2 + n, 1

) ]
, (4.37)

which reduces to the flux of TFDE with time-fractality in the continuity
equation (1.3) when χ0,1 = 0,

JTFDE
C (x, t) =

1

x
√
πtβ

H2,0
1,2

[
x2

4tβ

∣∣∣∣∣
(
1− β

2 , β
)

(1, 1) ,
(
1
2 , 1

) ]
. (4.38)
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(a)

(b)

Figure 5. (a) Diffusive flux JTFCE
RL (without fractality in

the continuity equation) at dimensionless time t = 0.1,
and different fractional parameters. (b) Diffusive flux
JTFCE
C (with fractality in the continuity equation) at dimen-

sionless time t = 0.1, and different fractional parameters.

Note that JTFDE
C (x, t) = JTFDE

RL (x, t) = JND (x, t) in the case β = 1.
Conversely, when χ0,1 = 1, equation (4.37) reduces to the flux of TFCE
with time-fractality in the continuity equation (2.3),

JTFCE
C (x, t) =

tα

x
√
πtα+β

∞∑
n=0

(−tα)n
n!

×H2,0
1,2

[
x2

4tα+β

∣∣∣∣∣
(
1 + αn+ α−β

2 , α+ β
)

(1, 1) ,
(
1
2 + n, 1

) ]
. (4.39)

The diffusive fluxes in the RL sense (without fractality in the continuity
equation) (4.36), and in the C sense (with temporal fractality in the con-
tinuity equation) (4.39) are drawn in figures 5a and 5b, respectively.
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Finally, the distribution-like can be directly derived from the unified
nondimensional relation

Q (x, t) = −x∂x� (x, t) (4.40)

together with the universal distribution (B.1), we get, upon using (A.12)
and (A.13), the Mellin transform and the known relation of the Gamma
function, Γ (z/2)Γ (1− z) /Γ (−z) = −2Γ (1 + z/2),

Q (x, t) =

∞∑
n=0

(−χ0,1)
n

n!
t(γ−β)n

[
Q1 (x, t) + χ0,1t

γ−βQ2 (x, t)
]
,

Q1 (x, t) =
1√
πtγ

H2,0
1,2

[
x2

4tγ

∣∣∣∣ (
1 + (γ − β)n− γ

2 , γ
)

(1, 1) ,
(
1
2 + n, 1

) ]
,

Q2 (x, t) =
1√
πtγ

H2,0
1,2

[
x2

4tγ

∣∣∣∣ (
1 + (γ − β) (n+ 1)− γ

2 , γ
)

(1, 1) ,
(
1
2 + n, 1

) ]
. (4.41)

Again, the last generic formula for the distribution-like contains two special
cases of interest: the first case is χ0,1 = 0, that gives the distribution-like
for TFDE (4.18) and (4.19)

QTFDE (x, t) =
1√
πtβ

H2,0
1,2

[
x2

4tβ

∣∣∣∣∣
(
1− β

2 , β
)

(1, 1) ,
(
1
2 , 1

) ]
, (4.42)

which reduces to (4.4) in the limit β = 1. Meanwhile, the second case,
χ0,1 = 1, gives the distribution-like for TFCE (4.29) and (4.30)

QTFCE (x, t) =

∞∑
n=0

(−1)n

n!
tαn [Q1 (x, t) + tαQ2 (x, t)],

Q1 (x, t) =
1√
πtα+β

H2,0
1,2

[
x2

4tα+β

∣∣∣∣∣
(
1 + αn− α+β

2 , α+ β
)

(1, 1) ,
(
1
2 + n, 1

) ]
,

Q2 (x, t) =
1√
πtα+β

H2,0
1,2

[
x2

4tα+β

∣∣∣∣∣
(
1 + αn+ α−β

2 , α+ β
)

(1, 1) ,
(
1
2 + n, 1

) ]
(4.43)

for α+β ≤ 1, see Figures 6a and 6b for the graphical representations of the
closed-form (4.43). The subordination of the process governed by TFCE
to the Gaussian process is verified whenever the distribution-like Q(x, t) is
non-negative. In the green curve of Figure 6a the non-negativity condition
has been clearly breached due to the choice 1 < α + β < 2 violating the
condition α+ β < 1 established above. It comes to our attention that the
general form of distribution-like (4.41) can be derived by using the Laplace
transform of equations (4.23), (4.34) and (4.37) and utilising the useful
relations (2.20) and (2.21) in [60]. As applied in previous sections, the
Mellin transform can be employed here to check the normalisation of (4.43)



84 E. Awad, R. Metzler

(a)

(b)

Figure 6. (a) Spatial evolution of the distribution-like
Q(x, t) of the time-fractional Cattaneo-type equation with
two fractional parameters at dimensionless time t = 0.5. (b)
Spatial distribution of Q(x, t) of TFCE subordinating to the
Gaussian process (non-negative) at different instants of time
and fractional parameters α = 0.5, β = 0.4.

and obtain the δth-order moment of QTFCE (x, t), one can obtain the most
interesting result, 〈

|xQ|δ (t)
〉
= (δ + 1)

〈
|x�|δ (t)

〉
, (4.44)

which suggests an alternative definition for the distribution of the diffus-
ing substance with alternative governing equations (4.29) and (4.30) for
time-fractional finite-speed diffusion, (4.18) and (4.19) for time-fractional
diffusion, and (4.7) for the Gaussian diffusion.

Remark 4.3. The relation between the fluxes, (4.36) and (4.39) and
the distribution-like (4.43) can be rewritten in the integral forms
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Model [resp. equations] 〈x2(t)〉 〈x2(t)〉
t→ 0+ t→ ∞

2-parameter TFCE/GCE-I [(2.3), (2.4), (4.20)] ∼ tα+β ∼ tβ

DTFCE-I [(2.8), (2.11), (2.12)] ∼ p1t
α+1 ∼ p2t

β

DTFCE-II [(2.9), (2.11), (2.12)] ∼ tβ+1/p2 ∼ tα/p1
DTFCE-III [(2.10), (2.11), (2.12)] ∼ tβ+1/p2 ∼ t

Table 1. Limiting behaviour of the MSD for the proposed
Cattaneo-like models, along with the respective equation
numbers.

JTFCE
RL (x, t) =

1

x

∫ t

0

QTFCE (x, τ)

(t− τ)2−α−β
Eα,α+β−1 [−(t− τ)α] dτ, (4.45)

JTFCE
C (x, t) =

1

x

∫ t

0

QTFCE (x, τ)

(t− τ)1−α Eα,α [−(t− τ)α] dτ, (4.46)

where Eα,β (z) is the Mittag-Leffler function defined in (A.22). In addition,
the fluxes, (4.35) and (4.38) can be given in terms of the distribution-like
(4.42) via

JTFDE
RL (x, t) =

1

x
RL
0+ D

1−β

t QTFDE (x, t) , (4.47)

JTFDE
C (x, t) =

1

x
QTFDE (x, t) . (4.48)

5. Concluding remarks

In this work we addressed four Cattaneo-type models with time fractal-
ity based on Riemann-Liouville and Caputo single-order and distributed-
order fractional derivatives. Many processes which transit from ballistic or
superdiffusive behaviour in the short-time limit to subdiffusive behaviour,
or even without transport

〈
x2 (t)

〉 ∼ 1, in the long-time limit are found
to be captured by these Cattaneo-like equations. We summarise the MSD
of the proposed models in Table 1.

Conditional closed-form solutions for the proposed models were derived
in terms of the Fox H-function. Alternative formulations for the Green’s
function of normal, time-fractional, time-fractional finite-speed diffusion
were provided. For the generalised Cattaneo equation of type I with two
fractional parameters, this modified Green’s function can be viewed as
a gauge for the subordination to the Gaussian process, where the non-
negativity of the modified Green’s function is broken in the transition from
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Gaussian to non-Gaussian. It is worth mentioning that we have disreg-
arded the space-fractality which submits a generic crossover from super-
ballistic/subdiffusion to subdiffusion/superballistic. Such space-fractional
kinetic models can be found in the double-order space-fractional diffusion
equation in the natural/modified forms [82, 15], the focus of a separate
future work.

Appendix A. Mathematical preliminaries

In this appendix we give a short brief for the mathematical preliminaries
needed throughout the paper.

A.1. Fractional derivatives and transform techniques. We start with
the left-sided Caputo (C) fractional derivative of order α ∈ (0, 1], defined
for any well-behaved function f (t) by [66, 35]

C
a+D

α
t f (t) =

{
RL
a+ I

1−α

t
∂tf (t) , 0 < α < 1,

∂tf (t) , α = 1,
(A.1)

∀ a ∈ R, where RL
a+ I

α

t
is the left-sided Riemann-Liouville fractional integral

given as

RL
a+ I

α
t f (t) =

{
1

Γ (α)

∫ t
a

f(τ)

(t−τ)1−α dτ, α > 0,

f (t) , α = 0.
(A.2)

The left-sided Riemann-Liouville (RL) fractional derivative of order α ∈
(0, 1] is defined as

RL
a+ D

α
t f (t) =

{
∂t

RL
a+ I

1−α

t
f (t) , 0 < α < 1,

∂tf (t) , α = 1.
(A.3)

The regularised Prabhakar fractional derivative is defined by [67, 22]

P
a+D

δ,β
α,−λ,tf (t) =

∫ t

a
(t− τ)n−1−βE−δ

α,n−β (−λ(t− τ)α) ∂nτ f (τ) dτ,

(A.4)
where n − 1 < β < n, and Eδ

α,β(z) is the Prabhakar generalisation of

Mittag-Leffler function, see equation (A.16).

The Laplace transform L{f(t); s} =
∫∞
0 e−stf(t)dt = f̃(s) any generic

function f(t) is given for the RL and C fractional derivatives of f(t) by

L
{
RL
0+ D

α

t f (t) ; s
}
= sαf̃ (s) , L

{
C
0+D

α

t f (t) ; s
}
= sαf̃ (s)− sα−1f

(
0+

)
,

(A.5)
where α ∈ (0, 1]. The Fourier transform of any generic function g(x) is
defined by
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F {g (x) ; k} =

∫ ∞

−∞
e−ıkxg (x) dx = ĝ (k) ,

F−1 {ĝ (k) ;x} =
1

2π

∫ ∞

−∞
eıkxĝ (k) dx = g (x) . (A.6)

A.2. Fox H-function. The Fox H-function is defined in terms of the
Mellin-Barnes integral [60]

Hm,n
p,q

[
x

∣∣∣∣ (a1, A1) , · · · , (ap, Ap)
(b1, B1) , · · · , (bq, Bq)

]
=

1

2πı

∫
Ω
Θ (s)xs ds, (A.7)

where m, n, p, and q are integers satisfying 0 ≤ n ≤ p, 1 ≤ m ≤ q,
ai, bj ∈ C, Ai, Bj ∈ R+, i = 1, · · · , p, j = 1, · · · , q, and the function Θ (s)
is given by

Θ (s) =

∏m
j=1 Γ (bj − Bjs)

∏n
j=1 Γ (1− aj + Ajs)∏q

j=m+1 Γ (1− bj + Bjs)
∏p

j=n+1 Γ (aj − Ajs)
, (A.8)

where Γ (·) is the Gamma function. The contour Ω in the right side of
equation (1) separates the poles of Γ (bj + Bjs), j = 1, · · · ,m from the
poles of Γ (1− ai − Ais), i = 1, · · · , n.

The Mellin transform, defined for any generic function asM{f (x)} (z) =∫∞
0 xz−1f(x)dx, of the H -function is given by∫ ∞

0
xz−1Hm,n

p,q

[
ax

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
dx = a−zΘ (−z) , (A.9)

where Θ (z) is given by (A.8).

The inverse Fourier transform of the H-function H1,1
1,2

[
a|k|δ

]
is given

by

F−1

{
|k|λH1,1

1,2

[
a|k|δ

∣∣∣∣ (−n, 1)
(0, 1) ; (β, γ)

]}
(x)

=
1√

4πa
λ+1
δ

H2,1
2,3

[
|x|δ
2δa

∣∣∣∣ (
1− λ+1

δ , 1
)
;
(
1− β − λ+1

δ γ, γ
)(

0, δ2
)
,
(
1 + n− λ+1

δ , 1
)
;
(
1
2 ,

δ
2

) ]
, (A.10)

where k is the Fourier variable, a, γ, δ ∈ R+, β, n ∈ C, and λ ∈ R+ ∪ {0}.
Remark A.1.Ṫhe proof of relation (A.10) has been omitted for brevity.

For more details about the method, the reader may consult [20, 56, 36].

If the poles of
∏m

j=1 Γ (bj − Bjs) are simple, the following series expan-
sion holds true
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Hm,n
p,q

[
x

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
=

m∑
h=1

∞∑
ν=0

(−1)νx
bh+ν

Bh

ν!Bh

×
∏m

j=1,j �=h Γ
(
bj − Bj

bh+ν
Bh

)∏n
j=1 Γ

(
1− aj + Aj

bh+ν
Bh

)
∏q

j=m+1 Γ
(
1− bj + Bj

bh+ν
Bh

)∏p
j=n+1 Γ

(
aj − Aj

bh+ν
Bh

) . (A.11)

The following properties are used throughout the paper,

Hm,n
p,q

[
xδ

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
=

1

δ
Hm,n

p,q

⎡⎣x
∣∣∣∣∣∣
(
ap,

Ap

δ

)(
bq,

Bq

δ

) ⎤⎦ , δ > 0, (A.12)

dr

dxr

{
xλHm,n

p,q

[
axδ

∣∣∣∣ (ap, Ap)
(bq, Bq)

]}
= xλ−rHm,n+1

p+1,q+1

[
axδ

∣∣∣∣ (−λ, δ) (ap, Ap)
(bq, Bq) , (r − λ, δ)

]
, (A.13)

where a, δ ∈ R+, and r ∈ N ∪ {0},

Hm,n
p,q

[
x

∣∣∣∣ (a1, A1) , · · · , (ap, Ap)
(b1, B1) , · · · , (bq−1, Bq−1) , (a1, A1)

]
= Hm,n−1

p−1,q−1

[
x

∣∣∣∣ (a2, A2) , · · · , (ap, Ap)
(b1, B1) , · · · , (bq−1, Bq−1)

]
, n ≥ 1, q > m, (A.14)

and

H1,0
0,1

[
x

∣∣∣∣ —
(b,B)

]
=

1

B
x

b
B exp

(
−x 1

B

)
. (A.15)

A.3. Generalised Mittag-Leffler functions. The Prabhakar generalisa-
tion of Mittag-Leffler function (PML) is defined in the series form [24]

Eγ
α,β (z) =

∞∑
n=0

(γ)n
Γ (αn+ β)

zn

n!
, α, β, γ, z ∈ C, Re {α} > 0, (A.16)

where (γ)nis the ascending Pochhammer symbol defined by (γ)0 = 1,

(γ)n = γ (γ + 1) · · · (γ + n− 1) = Γ (γ+n)
Γ (γ) . The PML function, Eγ

α,β (−λtα)
is a completely monotone function for t ≥ 0, λ is positive constant, 0 <
α, β ≤ 1, and 0 < γ ≤ β/α, has the asymptotic representation

Eγ
α,β(−λtα) ∼

{
1

Γ (β) − λγtα

Γ (α+β) , t→ 0+,
(λtα)−γ

Γ (β−αγ) , t→ ∞,
(A.17)
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where the short-time behaviour is deduced from the series representation
(A.16) and the long-time behaviour can be obtained from the series

Eγ
α,β (−z) =

z−γ

Γ (γ)

∞∑
n=0

Γ (n + γ)

Γ [β − α (n+ γ)]

(−z)−n

n!
, |z| > 1. (A.18)

The most important properties of PML are its Laplace transform

L
{
tβ−1Eγ

α,β (−λtα) ; s
}
=

sαγ−β

(sα + λ)γ
, (A.19)

where s is the Laplace variable, and its relation to the Fox H-function,

Eγ
α,β (−z) =

1

Γ (γ)
H1,1

1,2

[
z

∣∣∣∣ (1− γ, 1)
(0, 1) , (1 − β, α)

]
. (A.20)

The following recurrence relation can be validated by definition (A.16)

Eγ+1
α,β (−tα) + tαEγ+1

α,β+α (−tα) = Eγ
α,β (−tα) . (A.21)

When γ = 1, the PML reduces to the generalised Mittag-Leffler function
with two parameters,

E1
α,β (z) = Eα,β (z) =

∞∑
n=0

zn

Γ (αn + β)
, α, β, z ∈ C, Re {α} > 0, (A.22)

and when γ = β = 1, the classical Mittag-Leffler function is recovered,

Eα,1 (z) = Eα (z) =

∞∑
n=0

zn

Γ (αn + 1)
, α, z ∈ C, Re {α} > 0. (A.23)

A.4. Unit doublet function. The unit doublet function (differentiator)
[64] is defined as the first derivative of the Dirac delta function,

u1 (x) = ∂xδ (x) , (A.24)
with the operational properties

F {u1 (x) ; k} = ık,

∫ ∞

−∞
f (x− ξ) u1 (ξ) dξ = ∂xf (x) . (A.25)

It can be generalised to the nth differentiator function

un (x) = ∂nx δ (x) , (A.26)
where n ∈ N ∪ {0}. When n is negative integers, equation (A.26) defines
then the nth integrator function, whereas n = 0 recovers the conventional
Dirac delta function (unit impulse function).

Let us introduce the “modified unit doublet” function as a product of
the spatial variable x and the unit doublet function,

U1 (x) = xu1 (x) , (A.27)
whose Fourier transform is given by

F {U1 (x) ; k} = −1 = −F {δ (x) ; k} . (A.28)
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Similar to the classical definition of the unit impulse function we consider
the following forms for the unit doublet and its modification,

δ (x) = lim
a→0+

1

|a|√π exp
(
−x

2

a2

)
,

u1 (x) = − lim
a→0+

2x

a2 |a| √π exp
(
−x

2

a2

)
,

U1 (x) = − lim
a→0+

2x2

a2 |a| √π exp
(
−x

2

a2

)
. (A.29)

A.5. Bernstein functions [78].

Definition A.1. The function f : (0,∞) → [0,∞) is a completely
monotone function if f ∈ C∞and f satisfies the Bernstein–Hausdorff–
Widder condition; (−1)nf (n)(t) ≥ 0 for all n ∈ N. The family of all com-
pletely monotone functions is denoted by CMF . The functions λα and
exp(−aλ), a, λ > 0, α < 0, are typical examples of CMF . The product of
two complete monotone functions and the linear combination of complete
monotone functions are also a complete monotone function. The func-
tion ϕ ∈ CMF if, and only if, there exists a function f ≥ 0 such that
ϕ (λ) =

∫∞
0 exp (−λt) f (t) dt, λ > 0.

Definition A.2. The function f : (0,∞) → [0,∞) is a Bernstein

function if f ∈ C∞and f satisfies the condition: (−1)n−1f (n)(t) ≥ 0 for all
n ∈ N. The set of all Bernstein functions is denoted by BF .

Definition A.3. The function ϕ : (0,∞) → [0,∞) is said to be a
Stieltjes function if there exists f ∈ CMF such that ϕ (λ) =

∫∞
0 exp (−λt)

f (t) dt, for λ > 0. Denoting by SF to the family of all Stieltjes functions,
it is obvious that SF ⊂ CMF since f ≥ 0. The functions λ−α, λα−1 and
1

u+λ , where α ∈ [0, 1], λ > 0 and u > 0 , are typical examples of Stieltjes
function. The linear combination of Stieltjes functions are also a Stieltjes
function.

Definition A.4. The Bernstein function ϕ (λ) is said to be a com-
plete Bernstein function if, and only if, ϕ (λ) /λ ∈ SF . Denoting by CBF
to the set of all complete Bernstein functions, thus CBF ⊂ BF . The func-
tions λα and λ1−α, where α ∈ [0, 1]and λ > 0, are typical examples of
complete Bernstein functions. The linear combination of complete Bern-
stein functions are also a complete Bernstein function. The set of complete
Bernstein functions is not in general closed under multiplication, however,

if ϕ,ψ ∈ CBF , then [ϕ (λ)]α[ψ (λ)]β ∈ CBF provided that α, β ∈ (0, 1) and
α+ β ≤ 1. If ϕ(λ) ∈ CBF , then exp(−aϕ(λ)) ∈ CMF for a, λ > 0.
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Appendix B. Derivation of the solutions

Here, we consider four different problems of inverting the Laplace-
Fourier transform, which are applied in the derivation of our solutions.

B.1. Problem B.1. Let us consider the inversion of the Laplace-Fourier
transform of the following equation̂̃� (k, s) = sγ−1 + χ0,1s

β−1

sγ + χ0,1sβ + k2
,

where χ0,1 ∈ {0, 1} and γ ≥ β such that γ = β if χ0,1 = 0 and γ > β if
χ0,1 = 1. Rearranging the above equation, we havễ� (k, s) = sγ−1 + χ0,1s

β−1

sγ + k2
[1 + f0 (k, s)]

−1,

where f0 (k, s) =
χ0,1sβ

sγ+k2 . When χ0,1 = 1, we note that f0 (k, s) < 1 for γ =

α+ β, 0 < α, β ≤ 1, Re {s} > 0, and |k| > 0.7. These conditions provide a
strong solution for Problem B.1. The long-space behaviours (|k| ≤ 0.7) are
not of interest in our investigation. Using the condition that f0 (k, s) < 1,
then we havễ� (k, s) = ∞∑

n=0

(−χ0,1)
n

[
sβn+γ−1 + χ0,1s

β(n+1)−1

(sγ + k2)n+1

]
,

which can be converted to the physical domain by means of (A.10), (A.19)
and (A.20), and we obtain

� (x, t) =

∞∑
n=0

(−χ0,1)
n

n!
t(γ−β)n

[
�1 (x, t) + χ0,1t

(γ−β)�2 (x, t)
]
,

�1 (x, t) =
1√
4πtγ

H2,0
1,2

[
x2

4tγ

∣∣∣∣ (
1 + (γ − β)n− γ

2 , γ
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�2 (x, t) =
1√
4πtγ

H2,0
1,2

[
x2

4tγ

∣∣∣∣ (
1 + (γ − β) (n+ 1)− γ

2 , γ
)

(0, 1) ,
(
1
2 + n, 1

) ]
. (B.1)

Remark B.1. When χ0,1 = 0 in (B.1), namely the only non-vanishing
term is the first one n = 0,

∑∞
n=0 (−χ0,1)

n = 1, and γ = β then we have
the classical solution of the time-fractional diffusion equation (TFDE) [48],

�TFDE (x, t) =
1√
4πtβ

H2,0
1,2

[
x2

4tβ

∣∣∣∣∣
(
1− β

2 , β
)

(0, 1) ,
(
1
2 , 1

) ]
.

B.2. Problem B.2. If the well-behaved function � (x, t) has the Laplace-
Fourier transformed form̂̃� (k, s) = sγ−1 + χ0,1s

α−1

sγ + χ0,1sα + k2 (p1 + p2sα−β)
,
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where χ0,1 ∈ {0, 1}, γ ≥ α such that γ = α if χ0,1 = 0 and γ > α if χ0,1 = 1,
0 < α < β ≤ 1 and p1 + p2 = 1, then

� (x, t) =

∞∑
n=0

(−tγ−α)
n

n!

n∑
m=0

(
n
m

)
χn−m
0,1

[
p2
p1
tβ−γ

]m
× [

�1 (x, t) + χ0,1t
γ−α�2 (x, t)

]
,

�1 (x, t) =
1√

4πp1tγ

×H2,1
2,3

[
x2

4p1tγ

∣∣∣∣ (
1
2 −m, 1

)
;
(
1 + (γ − α)n+ (β − γ)m− γ

2 , γ
)

(0, 1) ,
(
1
2 + n−m, 1

)
;
(
1
2 , 1

) ]
,

�2 (x, t) =
1√

4πp1tγ

×H2,1
2,3

[
x2

4p1tγ

∣∣∣∣ (
1
2 −m, 1

)
;
(
1 + (γ − α) (n+ 1) + (β − γ)m− γ

2 , γ
)

(0, 1) ,
(
1
2 + n−m, 1

)
;
(
1
2 , 1

) ]
,

(B.2)

provided that p1 ≥ p2. The proof of the above claim can be accomplished

by firstly rewriting ̂̃� (k, s) in the following form

̂̃� (k, s) = sγ−1 + χ0,1s
α−1

sγ + p1k2
[1 + f1 (k, s; p1, p2)]

−1,

where f1 (k, s; p1, p2) =
χ0,1sα+p2sα−βk2

sγ+p1k2
. By examining the properties of

f1 (k, λ; p1, p2) for λ = Re (s) ∈ R+, we have the following cases: If χ0,1 =

0 and γ = α, we have f1 (k, λ; p1, p2) = p2λα−βk2

λα+p1k2
which satisfies that

f1 (k, λ; p1, p2) < 1 for λ > 1, |k| ∈ R, provided that p1 ≥ p2. From these
conditions, one can anticipate that the derived solution works well for the
small and intermediate values of time, but it diverges for large values of time
(for example t = 10). Secondly, if χ0,1 = 1, and γ = α + 1, we have then

f1 (k, λ; p1, p2) =
λα+p2λα−βk2

λα+1+p1k2
, which also satisfies that f1 (k, λ; p1, p2) < 1

for λ > 1, |k| ∈ R, provided that p1 ≥ p2. Following arguments not dissim-
ilar to those in [77] and the solution of Problem B.1 lead us to (B.2).

Remark B.2. If χ0,1 = 0 and γ = α, then χn−m
0,1 indicates that the

only nonvanishing term of the second series of (B.2) is the term m = n,
namely,

� (x, t) =
1√

4πp1tα

∞∑
n=0

(−1)n

n!

[
p2
p1
tβ−α

]n
×H2,1

2,3

[
x2

4p1tα

∣∣∣∣ (
1
2 − n, 1

)
;
(
1 + (β − α)n− α

2 , α
)

(0, 1) ,
(
1
2 , 1

)
;
(
1
2 , 1

) ]
,
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where p1 ≥ p2, which coincides the solution of the double-order time-
fractional diffusion equation of the modified form derived in [36].

B.3. Problem B.3. If the well-behaved function � (x, t) has the form̂̃� (k, s) = p1s
γ1−1 + p2s

γ2−1 + χ0,1

(
p1s

α−1 + p2s
β−1

)
p1sγ1 + p2sγ2 + χ0,1 (p1sα + p2sβ) + k2

,

in Laplace-Fourier space, where 0 < α < β ≤ 1, p1 + p2 = 1, γ1 ≥ α and
γ2 ≥ β are given by

γ1 =

{
α, if χ0,1 = 0,
α+ 1, if χ0,1 = 1,

γ2 =

{
β, if χ0,1 = 0,
β + 1, if χ0,1 = 1,

then

� (x, t) =

∞∑
n=0

(−tγ2−γ1)
n

n!

n∑
m=0

(
n
m

)
χm
0,1

(
p1
p2

)n−m

× t(γ1−β)m
m∑
�=0

(
m
�

)[
p1
p2
tβ−α

]�
×

{
p1
p2
tγ2−γ1�1 (x, t) + �2 (x, t) + χ0,1t

γ2−β

[
p1
p2
tβ−α�3 (x, t) + �4 (x, t)

]}
,

�1 (x, t) =
1√
4πtγ2
p2

×H2,0
1,2

[
p2x

2

4tγ2

∣∣∣∣ (
1 + γ21(n+ 1) + (γ1 − β)m+ (β − α) �− γ2

2 , γ2
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�2 (x, t) =
1√
4πtγ2
p2

×H2,0
1,2

[
p2x

2

4tγ2

∣∣∣∣ (
1 + γ21n+ (γ1 − β)m+ (β − α) �− γ2

2 , γ2
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�3 (x, t) =
1√

4πtγ2
p2

×H2,0
1,2

[
p2x

2

4tγ2

∣∣∣∣ (
1 + γ21(n+ 1) + (γ1 − β)m+ (β − α) �+ γα − γ2

2 , γ2
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�4 (x, t) =
1√
4πtγ2
p2

×H2,0
1,2

[
p2x

2

4tγ2

∣∣∣∣ (
1 + γ21n+ (γ1 − β)m+ (β − α) �+ γβ − γ2

2 , γ2
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

(B.3)
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provided that p1 ≤ p2 for χ0,1 = 0, and p1 < p2 for χ0,1 = 1. Here, we used
γ21 = γ2 − γ1, γα = γ1 − α, and γβ = γ2 − β.

In order to validate equation (B.3) we first rehash ̂̃� (k, s) to take the
form

̂̃� (k, s) = p1s
γ1−1 + p2s

γ2−1 + χ0,1

(
p1s

α−1 + p2s
β−1

)
p2sγ2 + k2

[1 + f2 (k, s; p1, p2)]
−1,

where

f2 (k, s; p1, p2) =
p1s

γ1 + χ0,1

(
p1s

α + p2s
β
)

p2sγ2 + k2
.

Upon investigating the properties of f2 (k, λ; p1, p2), λ = Re (s) > 0, we
have two special cases of interest: When χ0,1 = 0, we get the characteristic

function for DTFDE-II, given by f2 (k, λ; p1, p2) =
p1λα

p2λβ+k2
, with a graphical

representation reports that for p1 ≤ p2, λ > 0, |k| ≥ 0.6 and 0 < α < β ≤ 1,
then f2 (k, λ; p1, p2) < 1, otherwise, the resulting solution diverges. While,

when χ0,1 = 1, we have f2 (k, λ; p1, p2) =
p1λα+1+p1λα+p2λβ

p2λβ+1+k2
, which satisfies

f2 (k, λ; p1, p2) < 1 provided that p1 < p2, λ > 0, |k| ≥ 1 and 0 < α < β ≤
1. We second apply the same method of proving Problem B.2, we arrive at
(B.3).

Remark B.3. The solution of the double-order time-fractional diffu-
sion equation of the natural form obtained by [72] can be derived from (B.3)
by setting χ0,1 = 0, and thus the only non-vanishing term of the second
series is the first term, m = 0, namely,

� (x, t) =
∞∑
n=0

(−1)n

n!

[
p1
p2
tβ−α

]n{p1
p2
tβ−α�1 (x, t) + �2 (x, t)

}
,

�1 (x, t) =
1√

4πtβ/p2
H2,0

1,2

[
x2

4tβ/p2

∣∣∣∣∣
(
1 + (β − α) (n+ 1)− β

2 , β
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�1 (x, t) =
1√

4πtβ/p2
H2,0

1,2

[
x2

4tβ/p2

∣∣∣∣∣
(
1 + (β − α)n− β

2 , β
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

where p1 ≤ p2.

B.4. Problem B.4. If the well-behaved function � (x, t) is given by

̂̃� (k, s) = χ0,1 + p1s
γ1−1 + p2s

γ2−1

p1sγ1 + p2sγ2 + χ0,1s+ k2
,

in Laplace-Fourier space, where p1 + p2 = 1, γ1 and γ2 are given through

γ1 =

{
α, if χ0,1 = 0,
α+ 1, if χ0,1 = 1,

γ2 =

{
β, if χ0,1 = 0,
β + 1, if χ0,1 = 1,
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and 0 < α < β ≤ 1, then

� (x, t) =

∞∑
n=0

(−1)n

n!

[
tγ2−1

p2

]n n∑
m=0

(
n
m

)
χn−m
0,1

[ p1
tγ1−1

]m
×
{
χ0,1

tγ2−1

p2
�1 (x, t) +

p1
p2
tγ2−γ1�2 (x, t) + �3 (x, t)

}
,

�1 (x, t) =
1√

4πtγ2/p2

×H2,0
1,2

[
x2

4tγ2/p2

∣∣∣∣ (
1 + (γ2 − 1) (n+ 1)− (γ1 − 1)m− γ2

2 , γ2
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�2 (x, t) =
1√

4πtγ2/p2

×H2,0
1,2

[
x2

4tγ2/p2

∣∣∣∣ (
1 + (γ2 − 1) (n+ 1)− (γ1 − 1) (m+ 1)− γ2

2 , γ2
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

�3 (x, t) =
1√

4πtγ2/p2

×H2,0
1,2

[
x2

4tγ2/p2

∣∣∣∣ (
1 + (γ2 − 1)n− (γ1 − 1)m− γ2

2 , γ2
)

(0, 1) ,
(
1
2 + n, 1

) ]
,

(B.4)

provided that p1 ≤ p2 for χ0,1 = 0, and p1 ∈ [0, 0.3], p2 ∈ [0.7, 1], p1+p2 = 1,
and β ∈ [0.4, 1] for χ0,1 = 1.

Remark B.4. We have written off the solution of Problem B.4. Setting
χ0,1 = 0 in (B.4) results in again the solution of double-order time-fractional
diffusion equation of the natural form [72].
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distributed order time-fractional diffusion-wave equation as probabil-
ity density. Fract. Calc. Appl. Anal. 16, No 2 (2013), 297-316; DOI:
10.2478/s13540-013-0019-6;
https://www.degruyter.com/view/j/fca.2013.16.issue-2/

issue-files/fca.2013.16.issue-2.xml.
[24] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler

Functions, Related Topics and Applications. Springer, Berlin (2014).
[25] R.A. Guyer, J.A. Krumhansl, Solution of the linearized phonon

Boltzmann equation. Phys. Rev. 148, No 2 (1966), 766–778.
[26] S. Havlin and G. H. Weiss, A new class of long-tailed pausing time

densities. J. Stat. Phys. 58, No 5-6 (1990), 1267–1273.
[27] R. Hilfer, Mathematical and physical interpretations of fractional de-

rivatives and integrals. In: Handbook of Fractional Calculus with Ap-
plications, Vol. 1, Basic Theory, Ed. by A. Kochubei, Y. Luchko, Berlin,
De Gruyter (2019).

[28] R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional
derivatives. J. Phys. Chem. B 104, No 16 (2000), 3914–3917.
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[38] Y.B. Lev, D.M. Kennes, C. Klöckner, D.R. Reichman, C. Karrasch,
Transport in quasiperiodic interacting systems: From superdiffusion to
subdiffusion. Europhys. Lett. 119, No 3 (2017), Art. 37003.

[39] Y. Luchko, Initial-boundary-value problems for the generalized multi-
term time-fractional diffusion equation. J. Math. Anal. Appl. 374, No
2 (2011), 538–548.

[40] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-
wave phenomena. Chaos, Solitons & Fractals 7, No 9 (1996), 1461–
1477.

[41] F. Mainardi, The fundamental solutions for the fractional diffusion-
wave equation. Appl. Math. Lett. 9, No 6 (1996), 23–28.

[42] R. Gorenflo, F. Mainardi, Fractional calculus. In: Fractals and Frac-
tional Calculus in Continuum Mechanics, Springer, Berlin (1997), 223-
276.

[43] F. Mainardi, G. Pagnini, R. Gorenflo, Some aspects of fractional dif-
fusion equations of single and distributed order. Applied Mathematics
and Computation 187, No 1 (2007), 295–305.

[44] R.N. Mantegna, H.E. Stanley, Stochastic process with ultraslow con-
vergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73,
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