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Abstract

We point out a major flaw in the so-called conformable calculus. We
demonstrate why it fails at defining a fractional order derivative and where
exactly these tempting conformability properties come from.
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1. Introduction

Khalil et al. proposed a definition for the fractional derivative in [5]
using what they called the “conformable derivative”. This concept was
quickly adopted by T. Abdeljawad in [1] where he claims to have developed
some tools of fractional calculus.

The conformable derivative is local by its very definition. Moreover,
we proved rigorously in [2] that the conformable derivative of a function
f does not exist at any point x > 0, unless f is differentiable at x. The
term “conformable” is supposedly attributed to the properties this proposed
definition provides.

We point out the flaw in Khalil et al.’s definition and uncover the real
source of this conformability through reviewing the statements and proofs
in [1, 5]. Analogous remarks apply to the statements and proofs in [3] and
[4]. It turns out that the reason behind the conformability of this derivative
is, ironically, the same reason it is not fractional.
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We would like to emphasize here that we are not reviewing the afore-
mentioned work to provide useful formulae to work with. On the contrary,
our real purpose is to discourage researchers from using it, by making it
clear from the mathematical point of view why the conformable derivative
is not fractional.

We have shown in ([2], Section 5) the disadvantages of using the con-
formable definition in solving fractional differential equations. It breaks
the fractional equation and replaces it with an ordinary equation that may
no longer properly describe the underlying fractional phenomenon. This is
probably the reason it produces a substantially larger error compared with
the Caputo fractional derivative when used to solve fractional models (see
[2], Section 6).

We discuss concrete examples that illustrate how the conformable de-
rivative is incapable of giving the fractional derivative obtainable from the
classical Riemann-Liouville or Caputo derivatives. More examples are pro-
vided to show how the conformable operator produces functions with a
much different behaviour than the classical fractional derivatives. The lat-
ter are known to be successful at describing many fractional phenomena
(see e.g. [6]).

2. The problems in the statements and proofs in [5]

The results in [5] are all based on the following definition:

Definition 2.1. ([5], Definition 2.1) Given a function f : [0,∞[→ R,
then the “ conformable fractional derivative” of f of order α is defined by

Tαf(t) := lim
ε→0

f(t+ εt1−α)− f(t)

ε
, (2.1)

for all t > 0, α ∈ ]0, 1[.

Definition 2.1 is flawed. Once we establish this, it will be immediately
seen that the proofs in [5] are unnecessarily involved. More importantly,
the results therein will be found insignificant as they follow directly from
the traditional integer-order calculus.

We proved the following theorem in [2]:

Theorem 2.1. ([2], Theorem 1) Fix 0 < α < 1 and let t > 0.
A function f : [0,∞[−→ R has a “conformable fractional derivative” of
order α at t if and only if it is differentiable at t, in which case we have the
pointwise relation

Tαf(t) = t1−αf ′(t). (2.2)
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We note here the problems with Definition 2.1 in the light of Theorem
2.1:

Remark 2.1. The limit (2.1) does not exist unless lim
ε→0

(f(t+ε)−f(t))/ε
exists. In other words, there does not exist a function differentiable in the
sense of Definition 2.1 that is not differentiable. In fact, the false claim in
[1, 3, 5, 4] that the “conformable” derivative may exist at a point where
the function is not differentiable is the only excuse for the results in these
papers.

Remark 2.2. The identity (2.2) is the reason Tαf demonstrates “con-
formability”. The conformability comes precisely from the integer-order
derivative, the factor f ′, in (2.2).

Remark 2.3. The derivative Tαf is not a fractional (order) derivative.
It is exactly the integer-order derivative times the root function t1−α.

Therefore, Definition 2.1 is to be understood as follows:

Definition 2.2. (What Definition 2.1 in [5] really suggests) Given a
function f : [0,∞[→ R, then f is α-differentiable at t > 0, if it is differen-
tiable at t, and its α-derivative Tαf(t) := t1−αf ′(t), t > 0.

Now, we show how this correct understanding of what Definition 2.1
proposes trivializes the results in [5].

Theorem 2.2. ([5], Theorem 2.1) If a function f : [0,∞[→ R is α-
differentiable at t0 > 0, α ∈ ]0, 1], then f is continuous at t0.

If f is α-differentiable at t0 > 0, then it is differentiable at t0. It is well-
known that if a function is differentiable at some point, then it is continuous
thereat.

The next theorem explains why Tαf is described as conformable. We
show why the statements are trivial and how the conformability comes from
(2.2).

Theorem 2.3. ( [5], Theorem 2.2) Let α ∈ ]0, 1] and f, g be α-differen-
tiable. Then:

(1): Tα(af + bg) = aTα(f) + bTα(g) for all a, b ∈ R.

(2): Tα(t
p) = ptp−α for all p ∈ R.

(3): Tα(f) = 0 for all constant functions f .
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(4): Tα(fg) = fTα(g) + gTα(f).

(5): Tα

(
f
g

)
=
gTα(f)− fTα(g)

g2
.

(6): If, in addition, f is differentiable, then Tα(f)(t) = t1−αf ′(t).

If f, g are α-differentiable, then they are in fact differentiable, and we
have Tα(f)(t) = t1−αf ′(t), and Tα(g)(t) = t1−αg′(t).

Let us start with (1). Since f, g are differentiable, then so is af + bg.
By Theorem 2.1, af + bg is α-differentiable and we have

Tα(af + bg) = t1−α(af + bg)′ = at1−αf ′ + bt1−αg′ = aTα(f) + bTα(g).

The proofs of items (2) through (5) are as trivial as the proof of (1).

The statement (6) is inaccurate. The truth is f is α-differentiable at
t > 0 if and only if f is differentiable at t. Thus, if f is α-differentiable
at t > 0, then Tα(f)(t) = t1−αf ′(t). We do not need to require f to
be differentiable. Differentiability is already implied by assuming f is α-
differentiable.

Theorem 2.4. ([5], Theorem 2.3) Let a > 0 and f : [a, b] → R be a
given function such that:

(i): f is continuous on [a, b],
(ii): f is α-differentiable for some α ∈ ]0, 1[,
(iii): f(a) = f(b).

Then, there exists c ∈ ]0, 1[ such that f (α)(c) = 0.

The condition (ii) implies that f is differentiable on ]a, b[ and f (α)(t) =
t1−αf ′(t) for all t ∈ ]a, b[. We know from the classical Rolle’s theorem that

there exists c ∈ ]a, b[ such that f (α)(c) = c1−αf ′(c) = 0.

Theorem 2.5. ([5], Theorem 2.4) Let a > 0 and f : [a, b] → R satisfy

(i): f is continuous on [a, b],
(ii): f is α-differentiable for some α ∈ ]0, 1[.

Then, there exists c ∈ ]0, 1[ such that f (α)(c) =
f(b)− f(a)
1
αb

α − 1
αa

α
.

Once again, by Theorem 2.1, the condition (ii) implies that f is dif-

ferentiable on ]a, b[ and f (α) = t1−αf ′ on ]a, b[. Now, apply the classical
Cauchy mean value theorem to the functions f and t �→ tα

α on the interval
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]a, b[, we already know that there is c ∈ ]a, b[ such that

f (α)(c) =
f ′(c)
cα−1

=
f(b)− f(a)
1
αb

α − 1
αa

α
.

Let a > 0. Proposition 2.1 in [5] introduces absolutely no novelty

because, by (2.2), and the fact that t �→ t1−α is locally bounded, f (α) is
bounded on [a, b] if and only if f ′ is bounded on [a, b]. And if f ′ is bounded
on [a, b], then f is Lipschitz on [a, b], not only uniformly continuous.

The remark that follows Proposition 2.1 in [5] is false. If an α-differen-
tiable function f on ]a, b[ is uniformly continuous on [a, b], then its α-
derivative is not necessarily bounded therein. A counterexample is f(t) =

t
1
4 which is Lipschitz on [0, 1], but f

1
2 (t) = t−

1
4/4 is unbounded on ]0, 1[.

Take a look at:

Definition 2.3. ([5], Definition 3.1) Let a ≥ 0. The α-integral of a

function f is Iaα(f)(t) :=

∫ t

a

f(x)

x1−α
dx.

The example given in [5], right after Definition 3.1, seems to try to
sell Iaα as the antiderivative of Tα. Of course, T 1

2
(sin t) =

√
t cos t, and

I01
2

(√
t cos t

)
=
∫ t
0 cosxdx = sin t. The truth is

∫ t
a

f(α)(x)
x1−α dx =

∫ t
a f

′(x)dx =

f(t) − f(a). For example, I01
2

(√
t sin t

)
= I01

2

(
T 1

2
(− cos t)

)
=
∫ t
0 sinxdx =

1− cos t.

3. The problems in the statements and proofs in [1]

We proceed to demonstrate the flaws in the definitions suggested in [1].
We prove that the tools of calculus proposed there lack the novelty, as they
are trivial consequences of the traditional calculus. The ideas in [1] are all
based on the following definition:

Definition 3.1. ([1], Definition 2.1) The (left) fractional derivative
starting from a of a function f : [a,∞[→ ∞ of order 0 < α ≤ 1 is defined
by

T a
αf(t) := lim

ε→0

f(t+ ε(t− a)1−α)− f(t)

ε
, t > a. (3.3)

The (right) fractional derivative of order 0 < α ≤ 1 of a function f :
]−∞, b] → ∞ is defined by

b
αTf(t) := − lim

ε→0

f(t+ ε(b− t)1−α)− f(t)

ε
, t < b. (3.4)
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If T a
αf(t) exists on ]a, b[ then T a

αf(a) := limt→a+ Tαf(t). If b
αTf(t) exists

on ]a, b[ then b
αTf(b) := limt→b−

b
αTf(t).

It is also noted in [1] that if f is differentiable, then

T a
αf(t) = (t− a)1−αf ′(t) and b

αTf(t) = −(b− t)1−αf ′(t).

The following theorem is given in [2]:

Theorem 3.1. ([2], Theorem 3) Suppose h : ]− 1, 1[×R −→ R is such
that limε→0 h(ε, t0) 
= 0 for some t0 ∈ R. Then a function ψ : R −→ R is
differentiable at t0 if and only if the limit

ψ̃(t0) := lim
ε→0

ψ (t0 + εh(ε, t0))− ψ(t0)

ε

exists, in which case ψ̃(t0) = ψ(t0)ψ
′(t0), ψ(t) = lim

ε→0
h(ε, t).

Let us see the problems in Definition 3.1:

Remark 3.1. According to Theorem 3.1, the limit in (3.3) exists at
t > a if and only if lim

ε→0
(f(t+ ε)− f(t))/ε exists. Similarly, the limit in

(3.4) exists at t < b if and only if f ′(t) exits. This means that neither
T a
αf(t) nor

b
αTf(t) exits unless f is differentiable at t. In fact, by Theorem

3.1, Definition 3.1 reads:

T a
αf(t) := (t− a)1−αf ′(t), t > a

b
αTf(t) := (b− t)1−αf ′(t), t < b,

(3.5)

provided f ′(t) exists.

Remark 3.2. Unlike with the classical fractional derivatives of Rie-
mann-Liouville and Caputo, Definition 3.1 does not work for functions
defined on R. Indeed, by Remark 3.1, if f is defined on R, then both
derivatives T−∞

α f(t) and ∞
α Tf(t) are ill-defined at every t ∈ R, which is

unacceptable.

Remark 3.3. There is no geometric or physical motivation that jus-
tifies the negative sign in the definition of the operator b

αT . Furthermore,
the case α = 1 is supposed to give the left first order integer derivative, but
Remark 3.1 implies

b
1Tf(t) = −f ′(t), t < b,

which is neither the left nor the right derivative of f at t.
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Remark 3.4. There is an obvious inconsistency in Definition 3.1 when
it comes to defining T a

αf(a) and b
αTf(b). Let a < b. We have clarified in

Remark 3.1 that if a function is not differentiable at some point t ∈ ]a, b[,
then the pointwise criterion of Definition 3.1 does not allow it to be α-
differentiable at t. This, however, excludes the endpoints a and b. We are
going to discuss T a

αf(a) and the analogue applies to b
αTf(b). Unjustifiably,

Definition 3.1 allows the derivative T a
αf(a) to exist regardless of the exis-

tence of the right derivative of f at a. Precisely, by Remark 3.1, if T a
αf

exists on ]a, a+ δ[, for some δ > 0, then

T a
αf(a) = lim

t→a+
T a
αf(t) = lim

t→a+
(t− a)1−αf ′(t).

Therefore, according to Definition 3.1, T a
αf(a) exists if and only if f ′ ex-

ists on ]a, a + δ[, and limt→a+(t − a)1−αf ′(t) exists. This is evidently a
weaker condition than the existence of f ′ on ]a, a + δ[ and limt→a+ f

′(t).
It is also independent of the existence of the right derivative f ′+(a) of f
at a. Many examples are given in [1] for functions differentiable on ]a, b[
such that T a

αf(a) exists, but f ′+(a) does not. This may lead to the false
intuition that the operator T a

α is well-defined on a larger class of func-
tions than the derivative. The reality is there exist smooth functions on
]a, b[ such that f ′(a) exists but T a

αf(a) does not. Consider for instance

g(t) :=

{
x2 sin 1

x3 , x 
= 0;
0, x=0.

. We have g ∈ C∞(R \ {0}) and g′(0) = 0, yet

limx→0+ x
1−αg′(x) does not exist for any 0 ≤ α ≤ 1.

Another issue with T a
αf(a) is that its existence depends on the domain.

For example, h(x) := sin
√
t− t0 is not differentiable at t = t0, and conse-

quently, by Remark 3.1, T c
αh(t0) does not exist. But this is true only if h is

considered on the domain [c,∞[ with any c < t0. If c = t0, however, then
T c
αh(t0) magically exists and equals 0, for every 0 < α ≤ 1

2 .

Remark 3.5. The identities (3.5) prove that the derivative in Def-
inition 3.1 is not fractional and that the conformability comes from the
integer-order derivative factor. What is worse is that the derivative in Def-
inition 3.1 fails to give the fractional derivative for some functions whose
fractional derivative exist and can be easily calculated using the Riemann-
Liouville or Caputo definition.

See the following examples:

Example 3.1. Consider the function f1(t) :=

{
1, 0 ≤ t ≤ 1;
0, 1 < t ≤ 2.

It is

easily verifiable that (T 0
αf1)(1) does not exist. But the Riemann-Liouville

fractional derivative Dα
0+f1 exists at t = 1, and
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Dα
0+f1(1) =

1

Γ(1− α)

∫ 1

0

dξ

(1− ξ)α
=

1

(1− α)Γ(1 − α)
.

Example 3.2. Consider the function f2(t) := |t− 1| on [0, 2]. Again,
(T 0

αf2)(1) does not exist. Nevertheless, the Caputo fractional derivative
CDα

0+f2 exists at t = 1, and

CDα
0+f2(1) =

−1

Γ(1− α)

∫ 1

0

dξ

(1− ξ)α
=

−1

(1− α)Γ(1− α)
.

Remark 3.6. Pointwise multiplication of the derivative f ′ of a func-
tion f defined on [a,∞[ by the function (t−a)1−α does not give the physical
properties we hope from a fractional derivative. We show this by compar-
ing T a

αf(t) = (t− a)1−αf ′ to the Riemann-Liouville and Caputo fractional
derivatives for the sine and hyperbolic sine functions. Similar differences
show up with the cosine and hyperbolic cosine functions. Notice here that
the Riemann-Liouville fractional derivative coincides with the Caputo de-
rivative for each of these functions. We see the great difference in behaviour
between T a

α and the classical fractional operators:

Example 3.3. Let g1(t) = sin t. Then
(
T 0
αg1
)
(t) = t1−α cos t. We can

calculate

(Dα
0+g1) (t) =

(
CDα

0+g1
)
(t) =

1

Γ(1− α)

∫ t

0

cos (t− ξ)

ξα
dξ.

Notice that
(
T 0
αg1
)
(t) grows unboundedly with t. Contrarily, the fractional

derivatives Dα
0+g1 and

CDα
0+g1 are bounded. To see this, let t > 1. We have∣∣∣∣

∫ 1

0

cos (t− ξ)

ξα
dξ

∣∣∣∣ ≤
∫ 1

0

1

ξα
dξ =

1

1− α
. (3.6)

Also, integrating by parts,∫ t

1

cos (t− ξ)

ξα
dξ = sin(t− 1)− α

∫ t

1

sin (t− ξ)

ξ1+α
dξ, (3.7)

and we have∣∣∣∣
∫ t

1

sin (t− ξ)

ξ1+α
dξ

∣∣∣∣ ≤
∫ t

1

1

ξ1+α
dξ =

1

α

(
1− 1

tα

)
<

1

α
. (3.8)

The boundedness of Dα
0+g1,

CDα
0+g1 follows from (3.6), (3.7), and (3.8).

See Figure 1.
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Figure 1. The behavior of T 0
αg1 is very different from that

of Dα
0+g1,

CDα
0+g1

Example 3.4. Let g2(t) = sinh t. Then
(
T 0
αg2
)
(t) = t1−α cosh t. On

the other hand,

(Dα
0+g2) (t) =

(
CDα

0+g1
)
(t) =

1

Γ(1− α)

∫ t

0

cosh (t− ξ)

ξα
dξ.

The function T 0
αg2 grows much faster than the fractional derivative. To

prove this, we compute

lim
t→∞

(
Dα

0+g2
)
(t)

(T 0
αg2) (t)

= lim
t→∞

∫ t
0

cosh (t−ξ)
ξα dξ

t1−α cosh t
= lim

t→∞

∫ t
0

1
ξα (cosh ξ − tanh t sinh ξ)dξ

t1−α

=
1

1− α

(
lim
t→∞

1

cosh t
− lim

t→∞

∫ t
0

sinh ξ
ξα dξ

t−α cosh2 t

)
=

−1

1− α
lim
t→∞

∫ t
0

sinh ξ
ξα dξ

t−α cosh2 t

=
−1

1− α
lim
t→∞

1

−α cosh2 t
t sinh t + 2cosh t

= 0.

See Figure 2.
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Figure 2. The behavior of T 0
αg2 is very different from that

of Dα
0+g2,

CDα
0+g2

Remarks 3.1 through 3.6 show the insignificance of the results in [1].
We illustrate how the proofs presented in [1] reduce to trivial exercises of
calculus. For example:

Theorem 3.2. ([1], Theorem 2.11) Assume f, g :]a,∞[→ R are (left)
α-differentiable functions, where 0 < α ≤ 1. Let h(t) = f(g(t). Then h is
(left) α-differentiable, and for all t > a such that g(t) 
= 0 we have

(T a
αh)(t) = (T a

αf)(g(t)).(T
a
αg)(t).g(t)

α−1. (3.9)

First of all, the conclusion (3.9) of Theorem 3.2 is incorrect. It is correct
if a = 0. We consider this case.

As noted in Remark 3.1, if f , g are (left) α-differentiable on ]a,∞[, then
they are actually differentiable on ]a,∞[. Moreover, by the identities (3.5),

(T 0
αf)(g(t)).(T

0
αg)(t).g(t)

α−1 = g(t)1−α.f ′(g(t)).t1−αg′(t).g(t)α−1

= t1−αf ′(g(t)).g′(t)

= t1−α(f(g(t)))′ = (T 0
αh)(t).
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Both the statement and proof of the next theorem ([1], Theorem 4.1) we
investigate are incorrect. This implies that Proposition 4.2 and Examples
4.1 through 4.3 in [1] are also incorrect.

Theorem 3.3. ([1], Theorem 4.1) Assume f is an infinitely α-differen-
tiable function, for some 0 < α < 1 at a neighborhood of a point t0. Then
f has the fractional power series expansion:

f(t) =
∞∑
k=0

(T t0
α f)

(k)(t0)(t− t0)
kα

αkk!
, t0 < t < t0 +R

1
α , R > 0, (3.10)

where (T t0
α f)

(k) means the application of T t0
α k times.

The proof in [1] begins with writing

f(t) = c0 + c1(t− t0)
α + c2(t− t0)

2α + c3(t− t0)
3α + ..., (3.11)

and proceeds by applying T t0
α to both sides of (3.11), then evaluating both

sides at t0, and repeating the process k times. The coefficients ck are
inaccurately calculated:

ck =
(T t0

α f)
(k)(t0)

αkk!
.

By Remark 3.1, the assumption that f is an infinitely α-differentiable
is equivalent to assuming f is infinitely differentiable.

Using (3.5), we get

(T t0
α f)

(1)(t) = (t− t0)
1−αf ′(t),

(T t0
α f)

(2)(t) = (1− α)(t− t0)
1−2αf ′(t) + (t− t0)

2−2αf ′′(t),

(T t0
α f)

(3)(t) = (1− α)(1− 2α)(t − t0)
1−3αf ′(t)+3(1 − α)(t− t0)

2−3αf ′′(t)
+(t− t0)

3−3αf ′′′(t),

(T t0
α f)

(4)(t) = (1− α)(1− 2α)(1 − 3α)(t− t0)
1−4αf ′(t)

+(1− α)(3(1 − α) + 4(1− 2α))(t − t0)
2−4αf ′′(t)

+6(1− α)(t− t0)
3−4αf ′′′(t) + +(t− t0)

4−4αf (4)(t),

.

.

.

(T t0
α f)

(k)(t) =
k−1∑
j=1

aj,k(α)
f (j)(t)

(t− t0)kα−j
+

f (k)(t)

(t− t0)kα−k
, k ≥ 2, (3.12)

where a1,k =
∏k−1

j=1(1− jα), and aj,k(α), 2 ≤ j ≤ k − 1, are also constants
that depend only on α. At first glance we observe the following.
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Remark 3.7. Since limt→t0+(t − t0)
1−αf ′ = 0, for any f continu-

ously differentiable and every α < 1, then, the coefficient of (t − t0)
α in

the series (3.10) is zero for any smooth function. Similarly, if α < 1
2 , then

limt→t0+(T
t0
α f)

(1)(t) = limt→t0+(T
t0
α f)

(2)(t) = 0. Consequently, the coef-

ficient of (t − t0)
α and that of (t − t0)

2α are both zero for any smooth
f . Generally, given α ∈ ]0, 1[, there exists n > 1 such that α < 1

n , and,

strangely enough, the coefficients of (t − t0)
kα, 1 ≤ k ≤ n are all zero,

regardless of the function f .

We prove in Proposition 3.1 below that the proof presented in [1] is
incorrect and the series (3.10) does not make sense.

We immediately realize from (3.12) that the infinite differentiability of
f does not guarantee that the series (3.10) makes sense. We need infinitely
many more smallness restrictions on the derivatives of f near t0. Precisely,
we have the following proposition.

Proposition 3.1. Given a function f and α ∈ ]0, 1[, the expansion
(3.10) does not make sense, unless the infinitely many limits

lim
t→t0+

∑k−1
j=1 aj,k(α)(t− t0)

j−1f (j)(t)

(t− t0)kα−1
, k >

1

α
, (3.13)

exist.

Examples 4.1 through 4.3, in [1] that apply the generally incorrect ex-
pansion (3.11) are conveniently for functions of the form f(t) = g

((
t−t0
α

)α)
.

They seem to work because (T t0
α f)

(k)(t) = g(k)((t− t0)α). In fact, the series

(3.11) that works for the function t �→ e
(t−t0)

α

α of Example 4.1 in [1] fails,

for any α ∈ ]0, 1[, for the infinitely differentiable function t �→ e
(t−s)α

α on

]s,∞[, with s 
= t0. Verifiably, if α > 1
2 , then (T t0

α h)
(2)(t0) does not exit

because

lim
t→t0+

h′(t)
(t− t0)2α−1

= lim
t→t0+

(t− s)α−1e
(t−s)α

α

(t− t0)2α−1
= +∞.

If α > 1
3 , then (T t0

α h)
(3)(t0) does not exit since

lim
t→t0+

(1− α)(1 − 2α)h′(t) + 3(1 − α)(t− t0)h
′′(t)

(t− t0)3α−1
= (1− 2α)∞.

In fact, if α > 1
n for some n ≥ 2, one can show that (T t0

α h)
(k)(t0) does not

exist for any k ≥ n. Hence, for the smooth function h, the coefficients, ck,
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of (t − t0)
kα in the expansion (3.11) are ck =

{
0, k < 1/α;
±∞, k > 1/α.

, k ≥ 2.

Even more, the series (3.11) fails for the simplest analytic function et. An
analogous argument applies to Examples 4.2 and 4.3 in [1].
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