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Abstract

Time optimal control problems governed by Riemann-Liouville frac-
tional differential system are considered in this paper. Firstly, the exis-
tence results are obtained by using the theory of semigroup and Schauder’s
fixed point. Secondly, the new approach of establishing time minimizing
sequences twice is applied to acquire the time optimal pairs without the Lip-
schitz continuity of nonlinear function. Moreover, the reflexivity of state
space is removed with the help of compact method. Finally, an example
is given to illustrate the main conclusions. Our work essentially improves
and generalizes the corresponding results in the existing literature.
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1. Introduction

In the last dozen years or so, fractional differential equations have been
served as mathematical models for describing various phenomena in the
field of physics, biology, engineering, etc. For more details, we refer to the
books [12, 15, 24], the recent papers [1, 2, 3, 4, 7, 13, 17, 21, 27, 28, 34]
and the reference therein. The advantages of fractional derivatives over
integer derivatives are the memory and genetic properties. On the other
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hand, Heymans and Podlubny [8] indicated that the initial conditions of
differential systems with Riemann-Liouville fractional derivative are more
accordant with practical circumstances in the field of viscoelasticity than
that with Caputo fractional derivative. So, lot’s of scholars have done
much research in this area, see [5, 16, 18, 19, 20, 23, 30] and the references
therein. Fan [5], Li and Peng [16] and Mei et al. [23] investigated the
Riemann-Liouville fractional differential systems by using the theory of
fractional resolvent. Liu and Li [18] established the sufficient conditions for
the approximate controllability of Riemann-Liouville fractional differential
systems by the iterative and approximate method.

Time optimal control is a classical and important topic in the theory
of optimal controls for both finite and infinite dimensional systems. To
our knowledge, the time optimal pairs have been derived provided that
the nonlinear function is Lipschitz continuous and both the state space X
and the control space Y are reflexive (see e.g. [10, 11, 14, 26, 29, 32]).
The Lipschitz continuity guarantees the existence and uniqueness of mild
solution of the corresponding differential systems, and the reflexivity of the
spaces X and Y ensure the weak convergence of solution sequences and
control sequences, respectively.

Inspired by the above mentioned papers, it is our intension to deal with
the time optimal control problems subjected to the following differential
system with the Riemann-Liouville fractional derivative

⎧⎨
⎩

LDγy(t) = Ay(t) + g(t, y(t)) +B(t)u(t), t ∈ (0, c],
I1−γy(t)|t=0 = y0 ∈ X,
u ∈ Uad,

(1.1)

where 0 < γ < 1, y(t) ∈ X and u(t) ∈ Y . The linear operator A : D(A) ⊆
X → X generates a C0 semigroup {T (t)}t≥0. B ∈ L∞([0, c],L(Y,X)).
The admissible set Uad for control functions and the nonlinear function
g : [0, c] ×X → X will be given in Section 2. The following two improve-
ments are made in this article. One is that the Lipschitz continuity of g is
removed without imposing any other conditions, and the solvability of (1.1)
is acquired in a new space C1−γ([0, c],X) using the theory of semigroup.
Inspired by Zhu and Huang [35], the new idea of setting up time minimiz-
ing sequences twice is used to compensate the lack of uniqueness of mild
solutions. The other is that the reflexivity of X is no longer required by
making full use of the compact method. So, our work essentially improves
some related results on this topic.

This paper is structured as follows. Section 2 presents the preliminaries
and basic assumptions for system (1.1). We establish the solvability of sys-
tem (1.1) in Section 3. Section 4 solves the time optimal control problems
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subjected to system (1.1). An example is proposed to illustrate our main
results in Section 5.

2. Preliminaries and Basic Assumptions

Throughout this paper, let X be a Banach space and Y be a separa-
ble reflexive Banach space. R and R

+ are the sets of real numbers and
nonnegative real numbers, respectively. The set of all continuous func-
tions from [0, c] to Banach space X with ‖y‖C = sup{‖y(t)‖, t ∈ [0, c]}
is denoted by C([0, c],X), and the Banach space C1−γ([0, c],X) = {y :
·1−γy(·) ∈ C([0, c],X), 0 < γ < 1} with ‖y‖C1−γ = sup{‖t1−γy(t)‖, t ∈
[0, c]}, where t1−γy(t)|t=0 = lim

t→0+
t1−γy(t). We also denote by Lp([0, c],X)

the space of Bochner integrable functions from [0, c] to Banach space X

with ‖f‖Lp = (
∫ c
0 ‖f(t)‖pdt)1/p, where 1 ≤ p < ∞. Let L∞([0, c],X) be

the set of all essentially bounded functions on [0, c] with values in X and
‖f‖∞ = esssup{‖f(t)‖, t ∈ [0, c]}, and L(X,Y ) be the space of all linear
and continuous operators from X to Y with the operator norm ‖ · ‖. L(X)
represents the space L(X,X) especially.

Let f : [0,∞) → X be an appropriate abstract function. The Riemann-
Liouville fractional integral and fractional derivative of order 0 < γ < 1 are
defined by

Iγf(t) =

∫ t

0
gγ(t− τ)f(τ)dτ,

and LDγf(t) =
d

dt

∫ t

0
g1−γ(t− τ)f(τ)dτ,

respectively, provided the right sides exist, where gγ(t) :=
tγ−1

Γ(γ) , t > 0.

Now, we give the mild solution of system (1.1) in the space C1−γ([0, c],X)
using the Laplace transformation, some proper density function as well as
the definition of Riemann-Liouville fractional derivatives. For details, see
the recent paper [18].

Definition 2.1. A function y ∈ C1−γ([0, c],X) is called the mild
solution of (1.1) if

y(t) = tγ−1Sγ(t)y0 +

∫ t

0
(t− τ)γ−1Sγ(t− τ)[g(τ, y(τ)) +B(τ)u(τ)]dτ,

for each t ∈ (0, c] and u ∈ Uad, where

Sγ(t) = γ

∫ ∞

0
θhγ(θ)T (t

γθ)dθ,

hγ(θ) =
1

γ
θ
−1− 1

γ ωγ(θ
− 1

γ ) ≥ 0, θ ∈ (0,∞),
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ωγ(θ) =
1

π

∞∑
n=1

(−1)n−1θ−nγ−1Γ(nγ + 1)

n!
sin(πnγ), θ ∈ (0,∞).

Remark 2.1. The function ωγ(·) is an one-side stable probability
density defined on (0,∞) (see [22]), whose Laplace transformation satisfies∫ ∞

0
e−λθωγ(θ)dθ = e−λγ

, γ ∈ (0, 1).

The function hγ is a probability density function defined on (0,∞) satisfying∫ ∞

0
hγ(θ)dθ = 1,

∫ ∞

0
θvhγ(θ)dθ =

Γ(1 + v)

Γ(1 + γv)
, v ∈ [0, 1].

We now list all the assumptions which will be applied in the whole
paper.

(HA) The linear closed and densely defined operator A on X generates
a compact C0 semigroup {T (t)}t>0, and set M := sup

t∈[0,c]
‖T (t)‖ < +∞.

(Hg) (1) g(t, y) is measurable in t on [0, c] for all y ∈ X, and continuous
in y on X for a.e. t ∈ [0, c].

(2) For all y ∈ X and a.e. t ∈ [0, c], there exist a function η ∈
Lp([0, c],R+) and a constant ρ with p > 1

γ and 0 < ρ < Γ(1+γ)
cM such that

‖g(t, y)‖ ≤ η(t) + ρt1−γ‖y‖. (2.1)

(HB) B ∈ L∞([0, c],L(Y,X)).
The set Uad for control functions is defined as

Uad = {u ∈ Lp([0, c], Y ) : u(t) ∈ U(t), a.e. t ∈ [0, c]},
where p > 1

γ , and the multivalued map U : [0, c] → Pf (Y ) (the set of all

nonempty closed and convex subset of Y ) satisfies the following condition
(HU).

(HU) (1) U(·) is graph measurable.
(2) For a.e. t ∈ [0, c], there exists a function m ∈ Lp([0, c],R+) with

p > 1
γ such that

‖U(t)‖ = sup{‖μ‖ : μ ∈ U(t)} ≤ m(t).

A noteworthy fact in [9] is that (HU) implies that Uad 
= ∅, and obvi-
ously Uad is bounded, closed and convex. Moreover, ‖u‖Lp ≤ ‖m‖Lp and
Bu ∈ Lp([0, c],X) for p > 1

γ and u ∈ Uad.

The following properties play an important role in this paper.

Lemma 2.1. Let 0 < γ < 1 and (HA) be satisfied. Then, the operator
Sγ(t) (t ≥ 0) defined in Definition 2.1 satisfies:
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(1) {Sγ(t)}t≥0 ⊆ L(X), and for each x ∈ X and t ≥ 0, there holds:

‖Sγ(t)x‖ ≤ γM

Γ(1 + γ)
‖x‖. (2.2)

(2) for each x ∈ X, Sγ(·)x ∈ C([0, c],X).
(3) for each t > 0, Sγ(t) is a compact operator on X.
(4) the operator Sγ(t) is continuous in the uniform operator topology

for t > 0.
(5) lim

h→0+
‖ 1
Γ(γ)Sγ(t+ h)− Sγ(t)Sγ(h)‖ = 0, t > 0,

lim
h→0+

‖ 1
Γ(γ)Sγ(t)− Sγ(h)Sγ(t− h)‖ = 0, t > 0.

P r o o f. For the properties (1)(2) and (3), we refer to [33] for details.
We now verify property (4). For 0 < t1 < t2, there exist positive

numbers 	 and N such that
‖Sγ(t2)− Sγ(t1)‖

≤ γ

∫ ∞

0
θhγ(θ)‖T (tγ2θ)− T (tγ1θ)‖dθ

≤ γ

∫ �

0
θhγ(θ)‖T (tγ2θ)− T (tγ1θ)‖dθ + γ

∫ N

�
θhγ(θ)‖T (tγ2θ)− T (tγ1θ)‖dθ

+γ

∫ ∞

N
θhγ(θ)‖T (tγ2θ)− T (tγ1θ)‖dθ

≤ 2Mγ

∫ �

0
θhγ(θ)dθ +

1

Γ(γ)
sup

θ∈[�,N ]
‖T (tγ2θ)− T (tγ1θ)‖

+2Mγ

∫ ∞

N
θhγ(θ)dθ.

The compactness of T (t) (t > 0) yields ‖T (tγ2θ)− T (tγ1θ)‖ → 0 as t1 → t2
and θ ∈ [	,N ]. This together with the arbitrariness of 	 and N as well as
the fact

∫∞
0 θhγ(θ)dθ = 1

Γ(1+γ) gives that ‖Sγ(t2)−Sγ(t1)‖ → 0 as t1 → t2.

For property (5), a similar manner as did in [6] gives the conclusion.
This completes the proof. �

Lemma 2.2. If (HA) holds, then the operator F : Lp([0, c],X) →
C1−γ([0, c],X) given by

(Fh)(·) =
∫ ·

0
(· − τ)γ−1Sγ(· − τ)h(τ)dτ

is compact for p > 1
γ .

P r o o f. For fixed r > 0, let BLp(r) = {h ∈ Lp([0, c],X) : ‖h‖Lp ≤
r}. We will show that the set {Fh : h ∈ BLp(r)} ⊆ C1−γ([0, c],X) is
precompact, that is {·1−γFh(·) : h ∈ BLp(r)} ⊆ C([0, c],X) is precompact.
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Firstly, we verify that {·1−γFh(·) : h ∈ BLp(r)} is equicontinuous. Let
0 ≤ t1 < t2 ≤ c and h ∈ BLp(r). If t1 = 0,

‖t1−γ
2 Fh(t2)− t1−γ

1 Fh(t1)‖

≤ γM

Γ(1 + γ)
t1−γ
2 ‖h‖Lp([0,t2])‖(t2 − ·)γ−1‖

L
p

p−1 ([0,t2])

≤ γrM

Γ(1 + γ)
(
p− 1

pγ − 1
)
1− 1

p t
1− 1

p

2 → 0,

as t2 → 0. If t1 > 0, for 	 > 0 small enough with t1 − 	 > 0, one has

‖t1−γ
2 Fh(t2)− t1−γ

1 Fh(t1)‖

≤ t1−γ
2

∫ t1−�

0
(t2 − τ)γ−1‖Sγ(t2 − τ)− Sγ(t1 − τ)‖‖h(τ)‖dτ

+t1−γ
2

∫ t1

t1−�
(t2 − τ)γ−1‖Sγ(t2 − τ)− Sγ(t1 − τ)‖‖h(τ)‖dτ

+t1−γ
2

∫ t2

t1

(t2 − τ)γ−1‖Sγ(t2 − τ)h(τ)‖dτ

+t1−γ
2

∫ t1

0
|(t2 − τ)γ−1 − (t1 − τ)γ−1|‖Sγ(t1 − τ)h(τ)‖dτ

+[t1−γ
2 − t1−γ

1 ]

∫ t1

0
(t1 − τ)γ−1‖Sγ(t1 − τ)h(τ)‖dτ

≤ c1−γ(
p− 1

pγ − 1
)1−

1
p r[t

pγ−1
p−1

2 − (t2 − t1 + 	)
pγ−1
p−1 ]1−

1
p

sup
τ∈[0,t1−�]

‖Sγ(t2 − τ)− Sγ(t1 − τ)‖

+c1−γ 2γMr

Γ(1 + γ)
(
p− 1

pγ − 1
)1−

1
p [(t2 − t1 + 	)

pγ−1
p−1 − (t2 − t1)

pγ−1
p−1 ]1−

1
p

+c1−γ γMr

Γ(1 + γ)
(
p− 1

pγ − 1
)1−

1
p (t2 − t1)

γ− 1
p

+c1−γ γMr

Γ(1 + γ)
(
p− 1

pγ − 1
)1−

1
p [t

pγ−1
p−1

1 + (t2 − t1)
pγ−1
p−1 − t

pγ−1
p−1

2 ]1−
1
p

+[t1−γ
2 − t1−γ

1 ]
γMr

Γ(1 + γ)
(
p− 1

pγ − 1
)1−

1
p t

γ− 1
p

1 → 0,

as t2 → t1, due to the uniform continuity of Sγ(t), t > 0 and the arbitrari-
ness of 	.

Secondly, for each t ∈ [0, c], we prove that {t1−γFh(t) : h ∈ BLp(r)} is
precompact in X. If t = 0, the conclusion is obvious. If t ∈ (0, c], for each
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ε > 0 with t−2ε > 0, define the set {t1−γF εh(t) : h ∈ BLp(r)} in X, where

F εh(t) = Γ(γ)Sγ(ε)

∫ t−ε

0
(t− τ)γ−1Sγ(t− τ − ε)h(τ)dτ.

Taking into account the compactness of Sγ(ε), we obtain that the set
{t1−γF εh(t) : h ∈ BLp(r)} is precompact in X. Moreover, for each h ∈
BLp(r), we have

‖t1−γFh(t)− t1−γF εh(t)‖

≤ c1−γ

∫ t−2ε

0
(t− τ)γ−1‖[Sγ(t− τ)− Γ(γ)Sγ(ε)Sγ(t− τ − ε)]h(τ)‖dτ

+c1−γ

∫ t

t−2ε
‖(t− τ)γ−1Sγ(t− τ)h(τ)dτ‖

+c1−γΓ(γ)

∫ t−ε

t−2ε
‖(t− τ)γ−1Sγ(ε)Sγ(t− τ − ε)h(τ)‖dτ

≤ c1−γ(
p− 1

pγ − 1
)
1− 1

p r[t
pγ−1
p−1 − (2ε)

pγ−1
p−1 ]

1− 1
p

sup
τ∈[0,t−2ε]

‖Sγ(t− τ)− Γ(γ)Sγ(ε)Sγ(t− τ − ε)‖

+c1−γ(
p− 1

pγ − 1
)
1− 1

p
γMr

Γ(1 + γ)
(2ε)

γ− 1
p

+c1−γ(
p− 1

pγ − 1
)1−

1
p
M2r

Γ(γ)
[(2ε)

pγ−1
p−1 − ε

pγ−1
p−1 ]1−

1
p → 0,

as ε → 0 by using the property (5) of Lemma 2.1. Then, the set {t1−γFh(t) :
h ∈ BLp(r)} is precompact in X owning to the fact that the precompact
set {t1−γF εh(t) : h ∈ BLp(r)} in X is close arbitrarily to it.

Finally, applying Ascoli-Arzela theorem, one gets that {·1−γFh(·) :
h ∈ BLp(r)} is precompact in C([0, c],X), which means that {Fh(·) : h ∈
BLp(r)} is precompact in C1−γ([0, c],X). Then, we can come to the con-
clusion that F is compact. This completes the proof. �

3. The solvability of fractional differential system (1.1)

In this section, we derive the solvability of system (1.1) in the space
C1−γ([0, c],X) by Schauder’s fixed point theorem.

Theorem 3.1. Let all the hypotheses listed in Section 2 be fulfilled.
Then, for each u ∈ Uad, system (1.1) possesses at least one mild solution in
C1−γ([0, c],X).
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P r o o f. For each y0 ∈ X and u ∈ Uad, consider the operator Q :
C1−γ([0, c],X) → C1−γ([0, c],X) as follows:

Qy(t) = tγ−1Sγ(t)y0 +

∫ t

0
(t− τ)γ−1Sγ(t− τ)[g(τ, y(τ)) +B(τ)u(τ)]dτ.

It is not difficult to verify that Q is well defined. Then, the solvability
of system (1.1) will be transformed into a fixed point problem of Q. For
clarity, we proceed into the following steps.

Step 1. Let r > 0 and BC1−γ (r) = {y ∈ C1−γ([0, c],X) : ‖y‖C1−γ ≤ r}.
We show that QBC1−γ (r) ⊆ BC1−γ (r) provided that

r >
Mγ‖y0‖+Mγ[

( (p−1)c
pγ−1

)1− 1
p (‖η‖Lp + ‖Bu‖Lp)]

Γ(1 + γ)−Mρc
.

In fact, for each y ∈ BC1−γ (r), one has

t1−γ‖Qy(t)‖

≤ Mγ

Γ(1 + γ)
‖y0‖+

Mγ

Γ(1 + γ)
[
((p− 1)c

pγ − 1

)1− 1
p (‖η‖Lp + ‖Bu‖Lp) +

ρrc

γ
]

≤ r,

that is,

‖|Qy‖C1−γ = sup
t∈[0,c]

t1−γ‖Qy(t)‖ ≤ r.

Step 2. We show that Q is continuous on BC1−γ (r). To this end, let
{yn}n≥1 ⊆ BC1−γ (r) with lim

n→∞ yn = y ∈ BC1−γ (r), that is,

‖yn − y‖C1−γ = sup
t∈[0,c]

t1−γ‖yn(t)− y(t)‖ → 0

as n → ∞. This yields t1−γyn(t) → t1−γy(t) as n → ∞ uniformly for
t ∈ [0, c]. Note that, for a.e. τ ∈ [0, t],

g(τ, yn(τ)) = g(τ, τγ−1τ1−γyn(τ)) → g(τ, τγ−1τ1−γy(τ)) = g(τ, y(τ))

as n → ∞, and

‖g(τ, yn(τ))− g(τ, y(τ))‖ ≤ 2(η(τ) + ρr),

where η(·) ∈ Lp([0, c],R+). Then, by applying the Lebesgue dominated
convergence theorem, one has

t1−γ‖Qyn(t)−Qy(t)‖

≤ t1−γ

∫ t

0
(t− τ)γ−1‖Sγ(t− τ)[g(τ, yn(τ))− g(τ, y(τ))]‖dτ
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≤ Mγ

Γ(1 + γ)

((p − 1)c

pγ − 1

)1− 1
p (

∫ c

0
‖g(τ, yn(τ))− g(τ, y(τ))‖pdτ)

1
p → 0,

as n → ∞ uniformly for each t ∈ [0, c], which means that

‖Qyn −Qy‖C1−γ = sup
t∈[0,c]

t1−γ‖Qyn(t)−Qy(t)‖ → 0, n → ∞.

Step 3. We check the compactness of Q on C1−γ([0, c],X). The defi-
nition of Q yields that the compactness of Q is reduced to the compactness
of Q̃ on C1−γ([0, c],X), where

Q̃y(t) =

∫ t

0
(t− τ)γ−1Sγ(t− τ)g(τ, y(τ))dτ, t ∈ [0, c]

for each y ∈ C1−γ([0, c],X). It should be point out that (Hg)(2) implies
that g(·, y(·)) ∈ Lp([0, c],X). A similar manner utilized in Lemma 2.2 gives

the compactness of Q̃.
Now, it is obvious that the conclusion of Theorem 3.1 holds by using

the Schauder’s fixed point theorem. �

Remark 3.1. By virtue of Theorem 3.1, for each u ∈ Uad, let yu ∈
C1−γ([0, c],X) be any one of the corresponding mild solutions of system
(1.1). Then, ‖yu‖C1−γ ≤ R, where

R :=
Mγ

Γ(1 + γ)
[‖y0‖+

((p − 1)c

pγ − 1

)1− 1
p (‖η‖Lp + ‖B‖∞‖m‖Lp)]Eγ(Mcρ),

which is independent of u, and Eγ(z) =
∞∑
n=0

zn

Γ(nγ+1) is the Mittag-Leffler

function. In fact, for each t ∈ [0, c], one has

t1−γ‖yu(t)‖

≤ ‖Sγ(t)y0‖+ t1−γ

∫ t

0
(t− τ)γ−1‖Sγ(t− τ)[g(τ, yu(τ)) +B(τ)u(τ)]‖dτ

≤ Mγ

Γ(1 + γ)
[‖y0‖+

((p− 1)c

pγ − 1

)1− 1
p (‖η‖Lp + ‖Bu‖Lp)]

+
Mγ

Γ(1 + γ)
c1−γ

∫ t

0
(t− τ)γ−1ρ‖τ1−γyu(τ)‖dτ.

By using Corollary 2 of [31], one can obtain that

t1−γ‖yu(t)‖ ≤ Mγ

Γ(1 + γ)
[‖y0‖+

((p − 1)c

pγ − 1

)1− 1
p (‖η‖Lp+‖B‖∞‖m‖Lp)]Eγ(Mcρ).

This means that

‖yu‖C1−γ ≤ Mγ

Γ(1 + γ)
[‖y0‖+

((p− 1)c

pγ − 1

)1− 1
p (‖η‖Lp([0,c])
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+ ‖B‖∞‖m‖Lp([0,c]))]Eγ(Mcρ).

Remark 3.2. For simplicity, we denote by

S(u) = {yu ∈ BC1−γ (R) : yu is mild solution of (1.1) corresponding to

the control u ∈ Uad},

Ad = {(yu, u) : u ∈ Uad, yu ∈ S(u)}.

Remark 3.3. A pair (yu, u) is said to be feasible for the system (1.1)
if and only if (yu, u) ∈ Ad.

4. Time optimal control problems subjected to system (1.1)

Let WT be a bounded, closed and convex subset in X. Define the
subsets as follows:

AWT
d = {(yu, u) ∈ Ad : t

1−γyu(t) ∈ WT for some t ∈ [0, c]};

U0 = {u ∈ Uad : (yu, u) ∈ AWT
d for some yu ∈ S(u)};

SWT
u = {yu ∈ S(u) : u ∈ U0, (yu, u) ∈ AWT

d }.
Suppose that AWT

d 
= ∅. For each (yu, u) ∈ AWT
d , we define the transi-

tion time t(yu,u) as the first time such that t1−γ
(yu,u)y

u(t(yu,u)) ∈ WT . The set

WT is called the target set.

Remark 4.1. In general case, the subset AWT
d is defined as:

AWT
d = {(yu, u) ∈ Ad : y

u(t) ∈ WT for some t ∈ [0, c]}.
However, since the solution is obtained in the space C1−γ([0, c],X) and
yu(t) is indeed unbounded near the zero, a rescaling technique is necessary

and a reasonable definition of AWT
d in case of Riemann-Liouville derivatives

is given as above.

Remark 4.2. For each (yu, u) ∈ AWT
d , the definition of transition time

gives

t(yu,u) = minT (yu, u),

where T (yu, u) := {t : t ∈ [0, c], t1−γyu(t) ∈ WT }. We claim that t(yu,u) is
well defined. In fact, if the set T (yu, u) contains finite elements, the proof
is trivial. Otherwise, let t̃ = inf T (yu, u). This gives that

lim
n→∞ tn = t̃
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for some decreasing {tn}n≥1 ⊆ T (yu, u), that is, t1−γ
n yu(tn) ∈ WT . The

fact ·1−γyu(·) ∈ C([0, c],X) yields

lim
n→∞ t1−γ

n yu(tn) = t̃1−γyu(t̃).

This together with the closeness of WT gives

t̃1−γyu(t̃) ∈ WT .

This means that t̃ = minT (yu, u), and t(yu,u) = t̃.

Based on the above definitions and notations, now we consider the time

optimal control problem (P): Find (y∗, u∗) ∈ AWT
d such that

t(y∗,u∗) = min
(yu,u)∈AWT

d

t(yu,u).

If the control u∗, the time t(y∗,u∗) and the pair (y∗, u∗) exist solving problem
(P), we call them time optimal control, optimal time and time optimal pair,
respectively.

Theorem 4.1. Assume that all the hypotheses given in Section 2 are
satisfied. Then, problem (P) possesses at least one time optimal pair.

P r o o f. In view of Theorem 3.1, there exists at least one yu ∈ BC1−γ (R)
such that (yu, u) ∈ Ad for each u ∈ Uad. We will proceed in the following
two steps to derive the main result.

Step 1. For each u ∈ U0, set tu = inf
yu∈SWT

u

t(yu,u). We now need to

check that t1−γ
u ŷu(tu) ∈ WT for some ŷu ∈ SWT

u . It is trivial in situation
in which the set SWT

u has finite elements. Otherwise, there is a monotone
decreasing sequence {t(yun,u)}n≥1 such that

lim
n→∞ t(yun,u) = tu, (4.1)

where (yun, u) ∈ AWT
d for each n ≥ 1. Moreover, the definition of t(yun,u)

gives

t1−γ
(yun,u)

yun(t(yun,u)) ∈ WT . (4.2)

The fact yun ∈ S(u) yields

yun(t) = tγ−1Sγ(t)y0 +

∫ t

0
(t− τ)γ−1Sγ(t− τ)[g(τ, yun(τ)) +B(τ)u(τ)]dτ

(4.3)

for each n ≥ 1 and t ∈ (0, c]. Exploiting the compactness of Sγ(t), t > 0, a
similar method used in Lemma 2.2, we can infer that {yun}n≥1 is precompact
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in C1−γ([0, c],X). Then, there is a subsequence of {yun}n≥1, still relabled
by it, and a function ŷu ∈ BC1−γ (R), such that

‖yun − ŷu‖C1−γ = sup
t∈[0,c]

t1−γ‖yun(t)− ŷu(t)‖ → 0 (4.4)

as n → ∞. This together with (Hg) gives that

g(τ, yun(τ)) → g(τ, ŷu(τ)) and ‖g(τ, yun(τ))‖ ≤ η(τ) + ρR

for a.e. τ ∈ [0, t], where η(·) ∈ Lp([0, c],R+). Now, taking n → ∞ to both
sides of (4.3) and using Lebesgue dominated convergence theorem yield

ŷu(t) = tγ−1Sγ(t)y0 +

∫ t

0
(t− τ)γ−1Sγ(t− τ)[g(τ, ŷu(τ)) +B(τ)u(τ)]dτ

(4.5)

for each t ∈ (0, c]. This gives that

ŷu ∈ S(u). (4.6)

It is worth noticing that (4.1) and (4.4) lead to

t1−γ
(yun,u)

yun(t(yun,u)) → t1−γ
u ŷu(tu) (4.7)

as n → ∞. In fact,

‖t1−γ
(yun,u)

yun(t(yun,u))− t1−γ
u ŷu(tu)‖ ≤ ‖t1−γ

(yun,u)
yun(t(yun,u))− t1−γ

(yun,u)
ŷu(t(yun,u))‖

+‖t1−γ
(yun,u)

ŷu(t(yun,u))− t1−γ
u ŷu(tu)‖.

It follows from (4.4) that ‖t1−γ
(yun,u)

yun(t(yun,u))− t1−γ
(yun,u)

ŷu(t(yun,u))‖ → 0 as n →
∞. The fact ·1−γ ŷu(·) ∈ C([0, c],X) and (4.1) give ‖t1−γ

(yun,u)
ŷu(t(yun,u)) −

t1−γ
u ŷu(tu)‖ → 0 as n → ∞. (4.2) and (4.7), together with the closeness of
WT give rise to the fact that

t1−γ
u ŷu(tu) ∈ WT . (4.8)

Combining this with (4.6) yields ŷu ∈ SWT
u .

Step 2. Put t∗ = inf
u∈U0

tu, where tu is the optimal time for fixed u

in Step 1. Our task now is to seek an u∗ ∈ U0 and y∗ ∈ SWT
u∗ such that

t1−γ
∗ y∗(t∗) ∈ WT . The proof is trivial provided that U0 contains finite
elements, or there exists a monotone decreasing sequence {tun}n≥1 such
that

lim
n→∞ tun = t∗. (4.9)

According to Step 1, for each n ≥ 1, we can deduce that there is a function
ŷun ∈ SWT

un
such that
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t1−γ
un

ŷun(tun) ∈ WT , (4.10)

and

ŷun(t) = tγ−1Sγ(t)y0

+

∫ t

0
(t− τ)γ−1Sγ(t− τ)[g(τ, ŷun(τ)) +B(τ)un(τ)]dτ(4.11)

for each n ≥ 1 and t ∈ (0, c]. Note that B(·)un(·) ∈ Lp([0, c],X). So,
an argument similar with the one employed in Lemma 2.2 gives rise to
the precompactness of {ŷun}n≥1 in C1−γ([0, c],X). Then, a subsequence of
{ŷun}n≥1 can be extracted, and still denoted by it, which satisfies

lim
n→∞ ŷun = y∗ (4.12)

for some y∗ ∈ C1−γ([0, c],X). It is notable that {un}n≥1 ⊆ Uad ⊆ Lp([0, c], Y )
and ‖un‖Lp ≤ ‖m‖Lp . The reflexivity of Y and the boundedness of {un}n≥1

imply that a subsequence of {un}n≥1, still relabled by it, satisfies

un ⇀ u∗ (4.13)

as n → ∞ for some u∗ ∈ Lp([0, c], Y ). Owing to the fact that Uad is convex
and closed, we can infer that u∗ ∈ Uad by using Mazur’s lemma. Thanks
to Lemma 2.2, it is easy to deduce that∫ t

0
(t− τ)γ−1Sγ(t− τ)B(τ)un(τ)dτ

→
∫ t

0
(t− τ)γ−1Sγ(t− τ)B(τ)u∗(τ)dτ (4.14)

as n → ∞ since (4.13) holds. Now, making n → ∞ to both sides of (4.11)
gives

y∗(t) = tγ−1Sγ(t)y0 +

∫ t

0
(t− τ)γ−1Sγ(t− τ)[g(τ, y∗(τ)) +B(τ)u∗(τ)]dτ

(4.15)

for t ∈ (0, c], which implies that y∗ ∈ S(u∗). We now turn back to (4.12).
Together with (4.9), we have

t1−γ
un

ŷun(tun) → t1−γ
∗ y∗(t∗) (4.16)

as n → ∞, which means that t1−γ
∗ y∗(t∗) ∈ WT due to the closeness of WT

and (4.10), and it is straight forward to see that y∗ ∈ SWT
u∗ . This completes

the proof. �
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Remark 4.3. The new approach of constructing time minimizing
sequences twice is applied to make up the lack of uniqueness of the mild
solution. Thus, we can remove the Lipschitz continuity of nonlinear terms
without any additional conditions. What is more, since the reflexivity of the
state space X is no longer satisfied, we take full advantage of the compact
method, and thus the time optimal pairs are still acquired. Therefore, the
results here essentially generalize those in [10, 11, 14, 26, 29, 32], and the
references therein, where the Lipschitz continuity of nonlinear function and
the reflexivity of X are all required.

5. Applications

The following system concerned with the fractional Riemann-Liouville
derivative will be considered here to illustrate our main results.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂
3
4 ω(t,θ)

∂t
3
4

= ∂2

∂θ2
ω(t, θ) + 1

4t
1
4 sin(ω(t, θ)) +

∫ π
0 ζ(θ, τ)u(t, τ)dτ,

t ∈ (0, 1], θ ∈ [0, π],
ω(t, 0) = ω(t, π) = 0,

I
1
4ω(t, θ)|t=0 = ω0(θ).

(5.1)

Let X = Y = L2([0, π],R). Define the operator A : D(A) ⊆ X → X as

Ax = x′′

with the domain

D(A) = {x ∈ X;x, x′ are absolutely continuous, x′′ ∈ X,x(0) = x(π) = 0}.
Then,

Ax =

∞∑
n=1

−n2(x, ξn)ξn, x ∈ D(A),

where ξn(θ) =
√

2
π sin(nθ), n = 1, 2, · · · is an orthonormal basis of X. By

virtue of [25], we infer that A generates a compact and analytic semigroup
{T (t)}t>0 in X, and

T (t)x =

∞∑
n=1

e−n2t(x, ξn)ξn, x ∈ X.

Obviously, ‖T (t)‖ ≤ 1.
Now, for every t ∈ (0, 1], θ ∈ [0, π], let y(t)(θ) = ω(t, θ), g(t, y(t))(θ) =

1
4t

1
4 sin(y(t)(θ)), u ∈ L2([0, 1] × [0, π],R), u(t)(θ) = u(t, θ). ζ ∈ C([0, π] ×

[0, π],R), and B(t)u(t)(θ) =
∫ π
0 ζ(θ, τ)u(t, τ)dτ .

Define admissible control set

U(t) = {u(t)(·) ∈ Y : ‖u(t)(·)‖Y ≤ N1},
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with N1 > 0. Then, fractional system (5.1) can be reformulated as the
abstract fractional system (1.1), and we can prove that all the conditions
listed in Section 2 are satisfied. In fact, c = 1 and M = sup

t∈[0,1]
‖T (t)‖ = 1.

Moreover,

‖g(t, y(t))(·)‖X = (

∫ π

0
‖1
4
t
1
4 sin(y(t)(θ))‖2dθ) 1

2 ≤ 1

4
t
1
4 (

∫ π

0
‖y(t)(θ)‖2dθ) 1

2

=
1

4
t
1
4‖y(t)(·)‖X ,

with η(t) = 0 and ρ = 1
4 <

Γ( 7
4
)

Mc , and

‖B(t)u(t)(·)‖X ≤
√
π sup

0≤θ≤π
|
∫ π

0
ζ(θ, τ)u(t, τ)dτ |

≤
√
π sup

0≤θ≤π
|(
∫ π

0
|ζ(θ, τ)|2dτ) 1

2 (

∫ π

0
|u(t, τ)|2dτ) 1

2 ≤ a‖u(t)(·)‖Y

for each t ∈ [0, 1], where a = π sup
0≤θ,τ≤π

|ζ(θ, τ)|. Define the target set

WT = {x ∈ X : ‖x‖X ≤ N2}
with N2 > 0. If the set AWT

d 
= ∅, then it follows from Theorem 4.1 that
there exists a time optimal pair (y∗, u∗) such that the transition time t(y,u)
attains its minimum.
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