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Abstract

Time optimal control problems governed by Riemann-Liouville frac-
tional differential system are considered in this paper. Firstly, the exis-
tence results are obtained by using the theory of semigroup and Schauder’s
fixed point. Secondly, the new approach of establishing time minimizing
sequences twice is applied to acquire the time optimal pairs without the Lip-
schitz continuity of nonlinear function. Moreover, the reflexivity of state
space is removed with the help of compact method. Finally, an example
is given to illustrate the main conclusions. Our work essentially improves
and generalizes the corresponding results in the existing literature.
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1. Introduction

In the last dozen years or so, fractional differential equations have been
served as mathematical models for describing various phenomena in the
field of physics, biology, engineering, etc. For more details, we refer to the
books [12] [15] 24], the recent papers [1} 2 Bl [4] [7, 13, 17, 211, 27, 28 34]
and the reference therein. The advantages of fractional derivatives over
integer derivatives are the memory and genetic properties. On the other
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hand, Heymans and Podlubny [§] indicated that the initial conditions of
differential systems with Riemann-Liouville fractional derivative are more
accordant with practical circumstances in the field of viscoelasticity than
that with Caputo fractional derivative. So, lot’s of scholars have done
much research in this area, see [5] [16], 18], 19] 20] 23, 30] and the references
therein. Fan [5], Li and Peng [16] and Mei et al. [23] investigated the
Riemann-Liouville fractional differential systems by using the theory of
fractional resolvent. Liu and Li [I8] established the sufficient conditions for
the approximate controllability of Riemann-Liouville fractional differential
systems by the iterative and approximate method.

Time optimal control is a classical and important topic in the theory
of optimal controls for both finite and infinite dimensional systems. To
our knowledge, the time optimal pairs have been derived provided that
the nonlinear function is Lipschitz continuous and both the state space X
and the control space Y are reflexive (see e.g. [10, [I1], 14} 26, 29 [32]).
The Lipschitz continuity guarantees the existence and uniqueness of mild
solution of the corresponding differential systems, and the reflexivity of the
spaces X and Y ensure the weak convergence of solution sequences and
control sequences, respectively.

Inspired by the above mentioned papers, it is our intension to deal with
the time optimal control problems subjected to the following differential
system with the Riemann-Liouville fractional derivative

LDy(t) = Ay(t) + gt () + B)u(t), ¢ € (0.,
Il_’yy(t)‘tzo =1 € X, (1.1)
u € Uad7

where 0 < v < 1, y(t) € X and u(t) € Y. The linear operator A : D(A) C
X — X generates a Cy semigroup {T(t)}+>0. B € L*¥([0,¢], L(Y, X)).
The admissible set U,y for control functions and the nonlinear function
g:[0,¢] x X — X will be given in Section 2. The following two improve-
ments are made in this article. One is that the Lipschitz continuity of g is
removed without imposing any other conditions, and the solvability of (I.1))
is acquired in a new space C1_~([0, ], X) using the theory of semigroup.
Inspired by Zhu and Huang [35], the new idea of setting up time minimiz-
ing sequences twice is used to compensate the lack of uniqueness of mild
solutions. The other is that the reflexivity of X is no longer required by
making full use of the compact method. So, our work essentially improves
some related results on this topic.

This paper is structured as follows. Section 2] presents the preliminaries
and basic assumptions for system (LI]). We establish the solvability of sys-
tem (1)) in Section Bl Section [ solves the time optimal control problems
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subjected to system (LI]). An example is proposed to illustrate our main
results in Section [Bl

2. Preliminaries and Basic Assumptions

Throughout this paper, let X be a Banach space and Y be a separa-
ble reflexive Banach space. R and RT are the sets of real numbers and
nonnegative real numbers, respectively. The set of all continuous func-
tions from [0,¢] to Banach space X with ||y|lc = sup{|ly(¢)|.t € [0,]}
is denoted by C([0,¢],X), and the Banach space C1_+([0,¢],X) = {y :
A7y() € C((0,¢], X),0 < v < 1} with [lylle,_, = sup{[[t" y(t)l|.t €
[0,c]}, where 17y (t)|i=0 = tlir(r)1+ t1=7y(t). We also denote by LP([0,c], X)

—

the space of Bochner integrable functions from [0, ¢] to Banach space X
with [|f]lzr = (foc||f(t)||pdt)1/p, where 1 < p < oo. Let L*([0,c], X) be
the set of all essentially bounded functions on [0, ¢] with values in X and
Ifllco = esssup{||f(t)||,t € [0,¢]}, and L(X,Y) be the space of all linear
and continuous operators from X to Y with the operator norm || -||. £(X)
represents the space £(X, X) especially.

Let f :[0,00) — X be an appropriate abstract function. The Riemann-
Liouville fractional integral and fractional derivative of order 0 < v < 1 are
defined by

If(t) = /0 gy (t — ) f(r)dr,

d

D) = 5 [ (= s

and

7t

respectively, provided the right sides exist, where g,(t) := oyt > 0.

Now, we give the mild solution of system (1)) in the space C_- ([0, ¢], X)
using the Laplace transformation, some proper density function as well as
the definition of Riemann-Liouville fractional derivatives. For details, see
the recent paper [1§].

DEFINITION 2.1. A function y € C1_,([0,¢],X) is called the mild
solution of (LIJ) if

y(t) = 7718, (t)yo + /0 (t = 7)71S,(t = 7)g(7,y(7)) + B(r)u(r)]dr,
for each t € (0, ¢| and u € Uyy, where

S,(t) =~ /0 " on, (0)T(£0)do,

1 .1 _1
o (6) = 0 =30, (077) > 0, 0 € (0,00),
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_! Z ) 19_"7_1M sin(mnvy), 6 € (0,00).

n.

:]

REMARK 2.1. The function w,(-) is an one-side stable probability
density defined on (0, 00) (see [22]), whose Laplace transformation satisfies

/ e Mw.,(0)d = e, v € (0,1).
0

The function h. is a probability density function defined on (0, co) satisfying

> _ " _ I +v)
/0 7 (6)d6 = 1, / o°h s vell

We now list all the assumptions which will be applied in the whole
paper.

(HA) The linear closed and densely defined operator A on X generates
a compact Cy semigroup {7'(t)}+>0, and set M := sup ||T(t)]| < +oo.

te[0,c]

(Hg) (1) g(t,y) is measurable in ¢ on [0, ¢] for all y € X, and continuous
in y on X for a.e. t €[0,].

(2) For all y € X and ae. t € [0 c|, there exist a function n €

LP([0,¢],R") and a constant p with p >3 Land 0 < p< (1+V) such that

lg(t, 9l < n(t )+pt1 "Iyl (2.1)

(HB) B € L=(10,d], £(Y, X)),
The set U,y for control functions is defined as

Uga = {u € LP([0,c],Y) : u(t) € U(t), a.e. t €10,c]},

where p > %, and the multivalued map U : [0,c] — P¢(Y) (the set of all
nonempty closed and convex subset of Y') satisfies the following condition
(HU).
(HU) (1) U(:) is graph measurable.
(2) For a.e. t € [0,c], there exists a function m € LP([0,¢],R") with
p > % such that
JU@] = sup{lall : 11 € U®)} < m(2).

A noteworthy fact in [9] is that (HU) implies that U,y # 0, and obvi-
ously U,q is bounded, closed and convex. Moreover, |u|zr < ||m|rr and
Bu € LP([0,¢], X) for p > % and u € Ugg.

The following properties play an important role in this paper.

LEMMA 2.1. Let 0 <y < 1 and (HA) be satisfied. Then, the operator
S,(t) (t > 0) defined in Definition 2] satisfies:
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(1) {S,(t)}i>0 € L(X), and for each x € X and t > 0, there holds:
I, (0l < F5 el (2.2

(2) for each v € X, S, (-)z € C([0, ], X).
(3) for each t > 0, S,(t) is a compact operator on X.
(4) the operator S,(t) is continuous in the uniform operator topology
for t > 0.
(5) lim [l g755S(t + ) = S4(6)S, (k)] = 0, £ > 0,
hlgél Ity S+ (1) = S5(h)S,(t = h)| =0, t > 0.
P r oo f. For the properties (1)(2) and (3), we refer to [33] for details.

We now verify property (4). For 0 < t; < to, there exist positive
numbers Q and N such that

18y (t2) — Sy (t1) |

< / 61, (9)[|T(36) — T(£16)]|d6
N
< 7/ 9hw(9)||T(t39)—T(t19)||d9+7/ Oh- (O)||T(t360) — T(t]6)]|dO
0 4
4y [ o O7(630) - T(10)]0
N
o
< oMy / 6l (0)d6+ —— sup |T(£J6) — T(£16)]
0 INGD 0€[o,N]
+2Moy / 6, (6)d6.
N

The compactness of T'(t) (t > 0) yields | T(t360) — T(t]0)|| — 0 as t1 — 2
and 6 € [p, N]. This together with the arbitrariness of o and N as well as
the fact [ 0h(0)df = ﬁ gives that ||S,(t2) — Sy (t1)|| — 0 as t; — ta.

For property (5), a similar manner as did in [6] gives the conclusion.
This completes the proof. O

LEMMA 2.2. If (HA) holds, then the operator F : LP([0,c],X) —
Ci1—~([0,¢], X) given by

is compact for p > %

Proof. For fixed r > 0, let Brr(r) = {h
r}. We will show that the set {Fh : h € Bp,
precompact, that is {-'=7Fh(:) : h € Br»(r)} C

€ LP([0,c], X) : [Allr <
(7“)} - Cl_—«,([o,c],X) is
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Firstly, we verify that {-!=7Fh(-) : h € Br»(r)} is equicontinuous. Let
0<ti<ty<cand h e Bpp(r). If t; =0,
lt27 Fhts) =t Fh(t)]
'YM 1—v -1
< p - )7 P
S Taxyz Wleqoepllte =" ey s

_ _1
< M p=lafle
Fl+v) py-1

as to — 0. If t; > 0, for o > 0 small enough with t; — o > 0, one has

[ty Fh(ts) — t; Y Fh(t1)]|

ti—o
< 87 [ = S e = 1) = S, = )
0

t1
7 [ (=S, b2 = ) = 1 - ) IH()dr
t

1—0

to
o / (b2 — 7)1, (t2 — 7)h(r)dr

t1

t1
#5777t = 777 = (0= S, 1 = R
0

ity =] /Ot1 (t1 = 7)Y HISy (t = 7)h(7)lldT

R T Pti-1
< T (E—— |tk —(ta—t1+p) P! p
(E=) el )5
sup |8y (ta — 7) = Sy(ts = 7)|
T€[0,t1—0]
29M -1 4.1 py=1 =l 1
+ (B Sy — 1 4 0) T — (ta—t0) T

F(l+v) py—1

cl—ﬂ/ ’YMT (p_l)l_%(tg—tl)ﬂ/_%

_|_
F(1+v) ' py—1
Mr -1 g1, 2t py=1 Pl
+CI_WF(’Y1+7)(]9]?Y—1)1 Pt "‘(t2—t1)p’j‘1 _tzp_l]l 4

yMr (p— 1 )1_1 s
p
F(l+v) py—1

as tg — t1, due to the uniform continuity of S,(t),t > 0 and the arbitrari-
ness of p.

Secondly, for each t € [0, c], we prove that {t!=7Fh(t) : h € Brs(r)} is
precompact in X. If ¢ = 0, the conclusion is obvious. If t € (0, ¢], for each

1— 1—
[ty T =t 7]
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e > 0 with ¢ —2¢ > 0, define the set {t! Y F®h(t) : h € Brs(r)} in X, where

Feh(t) = T(7)S,(e) /O = IS, (= 7 — )h(r)dr,

Taking into account the compactness of Sy(g), we obtain that the set
{t'=7F¢h(t) : h € Brs(r)} is precompact in X. Moreover, for each h €
Brr(r), we have

|17 Fh(t) — ' T FeR(t)|

t—2e
< [ = IS (= 1) TS, @S, (- 7 - k(e
0
t
et [ =71, i
t—2e
t—e
+el700) [ 7S @8, (- 7 - 2)h(r)dr
t—2e
e b -
sup ISy (t = 7) =T (7)S,(e)Sy(t — 7 — ¢
T€[0,t—2¢]
.o p—1 41 ~yMr 1
+Cl v P 25 v p
%y—ﬁ m1+w()
_ 1 2 py—1 py—1 1
T O )

py—1 I'(v)

as ¢ — 0 by using the property (5) of LemmaR.1l Then, the set {7 Fh(t) :
h € Brr(r)} is precompact in X owning to the fact that the precompact
set {t!=YF¢h(t) : h € Bry(r)} in X is close arbitrarily to it.

Finally, applying Ascoli-Arzela theorem, one gets that {-!=7Fh(-) :
h € Brr(r)} is precompact in C([0, c], X), which means that {Fh(-) : h €
Bry(r)} is precompact in C1—+([0, ¢}, X). Then, we can come to the con-
clusion that F' is compact. This completes the proof. O

3. The solvability of fractional differential system (LTI

In this section, we derive the solvability of system (] in the space
C1-~([0, ¢], X') by Schauder’s fixed point theorem.

THEOREM 3.1. Let all the hypotheses listed in Section 2 be fulfilled.
Then, for each u € Uy,g, system ([[L1]) possesses at least one mild solution in
Cl—’Y([[)? C], X)
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Proof. For each yg € X and u € Uy, consider the operator Q :
Ci1—~([0,¢], X) = C1-~([0,¢], X) as follows:

Qy(t) = 118, (B)yo + /0 (t = 7)Y718, (t — 7)lg(ry(r) + B(r)u(r)dr.

It is not difficult to verify that Q is well defined. Then, the solvability
of system (LI)) will be transformed into a fixed point problem of Q. For
clarity, we proceed into the following steps.

Step 1. Let r > 0 and Be,_ (r) = {y € C1+([0,¢c}, X) : |lyllc,_, <7}
We show that QB¢,_,(r) € Be,_, (r) provided that

1__
_ Maloll + MA(GZE) " (lallee + |Buller)]
I'(1+~)—Mpc

In fact, for each y € Be,_,(r), one has

tQu(o)]
M~ (p—1)c 1-1 ore
< raaiwl+ sy G ) Ml + IBules) + )
<

that is,

11Qullc,, = sup '~7[[Qu(t)]| <.
te[0,c]

Step 2. We show that Q is continuous on Bg,__ (r). To this end, let
{Un}n>1 € Bey_, (r) with lim y, =y € Be,_ (r), that is,
- n—o0
lyn = yller, = sup £ lyn(t) = y(®)] = 0
te[0,c]

as n — oo. This yields 'y, (t) — t'77y(t) as n — oo uniformly for
t € [0,¢|. Note that, for a.e. 7 € [0,¢],
)=

[0,
9(r,yn () = g(r, 771 V(1)

as n — oo, and

g(r, 71 y(1) = g(7,y(7))

lg(m,yn (7)) —g(ry(T)I < 2(n(r) + pr),

where 7(-) € LP([0,¢],RT). Then, by applying the Lebesgue dominated
convergence theorem, one has

1771 Qyn(t) — Qu(1)]|
< 071 [ =S (= Dlatrn(r) = sl ()] o
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M~ (p—1ecy1-1, [€ 1
s (=0 ([ ot = gt a0,

as n — oo uniformly for each t € [0, ¢], which means that
1Qun = Qulle,, = sup £77[Qun(t) = Qu(B)]| = 0, .~ co.
te|0,c
Step 3. We check the compactness of Q on C1—~([0,¢], X). The defi-

nition of Q yields that the compactness of Q is reduced to the compactness
of @ on C1—+([0,¢], X), where
t

Qy(t) = /0 (t— T)V_lSV(t —1)g(1,y(r))dr, t € [0,

for each y € Ci1_([0,¢], X). It should be point out that (Hg)(2) implies
that g(-,y(-)) € LP([0, ], X). A similar manner utilized in Lemma 2.2] gives
the compactness of Q.

Now, it is obvious that the conclusion of Theorem [3.I] holds by using
the Schauder’s fixed point theorem. O

REMARK 3.1. By virtue of Theorem Bl for each u € Uy, let y* €
C1—~([0,¢], X) be any one of the corresponding mild solutions of system
(LI). Then, [|y*|c,_, < R, where

M-~y (p—1)c

R:= mmyo\\ + ( =1

which is independent of u, and E,(z) = )
n=0

1—-1
) nllze + 1Bllcllmllze) Ey (Mep),

Wnﬂ) is the Mittag-Leffler

function. In fact, for each t € [0, ¢|, one has

Yy ()|
< S @)yoll + tl_V/O (t — )8y (t = 1)lg(r, 4" (7)) + B(m)u(r)]||d7
< M

[Mﬂ+«%fikfﬁmmmAWmen

I'(1+7) -1
My oy /t -1 -1—-
+—-c 7 t—1)"" pllm Ty (7)||dT.
o Tl R R L]
By using Corollary 2 of [31], one can obtain that
_ M~ (p—1ecy1-1
)y ()] < —L— +(—=") 7 +|B|oo||m E.(Mcp).
1901 < gy o+ () 8 Ul Bl ()
This means that
M~ (p—1)ecy1-1
u < S
ly“lley, < F(IJF,Y)[HZJOH + ( 1 )2l e o,0)
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+ [1Blloollmll e o)) By (Mep).

REMARK 3.2. For simplicity, we denote by
S(u) = {y" € Bo,_,(R) : y" is mild solution of (LIl corresponding to
the control u € Uy},

Ag={(y" u):u € Uy, y* € S(u)}.

REMARK 3.3. A pair (y*, u) is said to be feasible for the system (L.I))
if and only if (y*,u) € Ay.

4. Time optimal control problems subjected to system (L)

Let Wp be a bounded, closed and convex subset in X. Define the
subsets as follows:

.ASVT = {(y",u) € Ag: t'y*(t) € Wy for some t € [0, c]};
Up={u €Uy : (y*,u) € .ASVT for some y* € S(u)};
ST — Ly e S(u) s ue Uy, (y* u) € ASVT}.
Suppose that .AZVT # (). For each (y*,u) € .AZVT, we define the transi-
tion time ¢(,u ,, as the first time such that t%@;ﬁu)y“(t(yu,u)) € Wrp. The set
W is called the target set.

REMARK 4.1. In general case, the subset AZVT is defined as:
ASVT ={(y*,u) € Ag: y“(t) € Wr for some t € [0, c]}.
However, since the solution is obtained in the space Ci—+([0,c],X) and
y"(t) is indeed unbounded near the zero, a rescaling technique is necessary

and a reasonable definition of A; " in case of Riemann-Liouville derivatives
is given as above.

REMARK 4.2. For each (y*,u) € AZVT, the definition of transition time
gives
t(yu’u) = min T(y“, ’LL),
where T (y*, u) :={t: t € [0,¢], t'77y"(t) € Wr}. We claim that tu ) is
well defined. In fact, if the set 7 (y*,u) contains finite elements, the proof
is trivial. Otherwise, let £ = inf T (y%,u). This gives that

lim t, =t
n—oo
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for some decreasing {t,}n>1 C T(y% u), that is, t "y“(t,) € Wy. The
fact -177y%(-) € C([0, ], X) yields
lim 177y (t,) = £y (F).
n—o0
This together with the closeness of Wt gives
Ty (t) € Wr.
This means that ¢ = min 7 (y*, u), and t(u ) = 1.

Based on the above definitions and notations, now we consider the time
optimal control problem (P): Find (y, ux) € AZVT such that
by =MDt ).
(e, T
If the control w., the time £y, ,,,) and the pair (Y, ux) exist solving problem

(P), we call them time optimal control, optimal time and time optimal pair,
respectively.

THEOREM 4.1. Assume that all the hypotheses given in Section 2 are
satisfied. Then, problem (P) possesses at least one time optimal pair.

P r oo f. Inview of Theorem[3.T], there exists at least one y* € B¢, (R)
such that (y*,u) € Ay for each u € Uyy. We will proceed in the following
two steps to derive the main result.

Step 1. For each u € Uy, set t, = inf"}v t(yu,u)- We now need to
yu esu T
check that ¢, "§%(t,) € Wy for some §* € ST, It is trivial in situation
in which the set S/'” has finite elements. Otherwise, there is a monotone
decreasing sequence {t(yu 4 }n>1 such that

lim t(y%’u) = ty, (4.1)

n— o0

where (y, u) € AZVT for each n > 1. Moreover, the definition of #(u ,)
gives

gty () € W (4.2)
The fact y; € S(u) yields

un(t) = 0718, (t)yo +/0 (t =778y (t = 7)g(r, yn (7)) + B(r)u(r))dr

(4.3)

for each n > 1 and ¢ € (0, c]. Exploiting the compactness of S,(t),t > 0, a
similar method used in Lemmal[2.2] we can infer that {y:},,>1 is precompact
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in C1—([0,¢], X). Then, there is a subsequence of {y}},>1, still relabled
by it, and a function §* € Be,_, (R), such that

Iy = 9"lley_, = sup £ |lys(t) — g(1)]] = 0 (4.4)
te(0,c]

as n — oo. This together with (Hg) gives that
91y, (7)) = 9(1,9"(7)) and |lg(7, y, (M| < n(7) + pR

for a.e. T € [0,t], where n(-) € LP([0,¢],R"). Now, taking n — oo to both
sides of (43]) and using Lebesgue dominated convergence theorem yield

7't = 78 (o +/0 (t =778, (t = 7)g(r, 9" (7)) + B(r)u(r))dr

(4.5)
for each t € (0,c]. This gives that
g* e S(u). (4.6)
It is worth noticing that (@1 and (£.4]) lead to
o yet) = 8750 (47)

as n — oo. In fact,
e ) — 78 < T 0 ) — " ()]
5 ) — 575 (1

It follows from (4.4]) that ||tzz;ﬂu)yg(t(y%,u)) - tzy WY 9" (tuuw)ll — 0asn —
o0. The fact -1779%(-) € C([0,¢c], X) and @I) give Ht(y%’u)g“(t(y%,u)) —
tu Y9%(ty)|| — 0 as n — oo. ([@2) and (@), together with the closeness of
W give rise to the fact that

ty 79" (tu) € Wr. (4.8)

Combining this with (&8) yields g* € SV,

Step 2. Put t, = 1n§ ty, where t, is the optimal time for fixed
ueUp

in Step 1. Our task now is to seek an u, € Uy and y, € SXZT such that
i_yy*(t*) € Wyp. The proof is trivial provided that Uy contains finite
elements, or there exists a monotone decreasing sequence {t,, }n>1 such
that

lim t,, = t.. (4.9)

n—o0

According to Step 1, for each n > 1, we can deduce that there is a function
yir € SZZT such that
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te 19" (ty,) € Wr, (4.10)
and

gunt) = 7S, (o
+ /0 (t— T)’y_lS,y(t —7)[g(T, 5" (7)) + B(7)uy,(7)]dr(4.11)

for each n > 1 and t € (0,c]. Note that B(-)u,(-) € LP([0,c], X). So,
an argument similar with the one employed in Lemma gives rise to
the precompactness of {§*"},>1 in C1_,([0,¢], X). Then, a subsequence of
{y""}n>1 can be extracted, and still denoted by it, which satisfies

lim §“" = y. (4.12)

n—oo

for some y, € C1_([0, c], X). It is notable that {u, }n>1 € Usq € LP([0,¢],Y)
and [|uy||zr < ||m||z». The reflexivity of Y and the boundedness of {uy, },>1
imply that a subsequence of {uy}n>1, still relabled by it, satisfies

Up — Us (4.13)

as n — oo for some u, € LP([0,¢c]|,Y). Owing to the fact that U,y is convex
and closed, we can infer that u, € U,q by using Mazur’s lemma. Thanks
to Lemma [2.2] it is easy to deduce that

/0 (t — 7)7718, (t — 7)B(r)un(r)dr
N /0 (t— 7)7_187(15 — 7)B(7)us(7)dT (4.14)

as n — oo since (4.I3]) holds. Now, making n — oo to both sides of (4.11)
gives
t
) = 078 Owt [ (=778 = Dol () + B (r)ldr
(4.15)

for t € (0, ¢, which implies that y, € S(u.). We now turn back to (£.12).
Together with (4.9]), we have

a5 (b)) = 67y (t) (4.16)

as n — oo, which means that t; "y, (t.) € Wr due to the closeness of Wr
and ([AI0)), and it is straight forward to see that y, € SE: T, This completes
the proof. O
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REMARK 4.3. The new approach of constructing time minimizing
sequences twice is applied to make up the lack of uniqueness of the mild
solution. Thus, we can remove the Lipschitz continuity of nonlinear terms
without any additional conditions. What is more, since the reflexivity of the
state space X is no longer satisfied, we take full advantage of the compact
method, and thus the time optimal pairs are still acquired. Therefore, the
results here essentially generalize those in [10} 11} 14} 26l 29, 32], and the
references therein, where the Lipschitz continuity of nonlinear function and
the reflexivity of X are all required.

5. Applications

The following system concerned with the fractional Riemann-Liouville
derivative will be considered here to illustrate our main results.

oti
w(t,0) =w(t,7) =0,
Iiw(t,0)]i—o = wo(0).
Let X =Y = L?([0,7],R). Define the operator A: D(A) C X — X as
Az = 2"

392&)@ 0) + t4 sin(w(t, d)) —|—f0 Yu(t, 7)dr,
(07 1]79 €07, (5.1)

with the domain
D(A) = {x € X;z,2’ are absolutely continuous, z” € X, z(0) = x(r) = 0}.
Then,

Z (, &), = € D(A),

where £,(0) = \/gsin(nﬁ),n = 1,2, - is an orthonormal basis of X. By

virtue of [25], we infer that A generates a compact and analytic semigroup
{T(t)} 0 in X, and

:E—Ze a:{nﬁn,acEX
Obviously, ||T'(¢)| < 1.
Now, for every ¢t € (0,1], 0 € [0, 7], let y(t)(0) = w(t, ), g(t,y(t)
Li sin(y(t)(0)), u 6 L2([0 1] x [0 W] R) u(t)(0) = u(t,0).
[0,7],R), and B(¢ fo u(t, 7)dr.
Define admlss1ble control set

Ut) ={u®)() €Y : lu@)()lly < N1},
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with N3 > 0. Then, fractional system (5.I) can be reformulated as the
abstract fractional system (LII), and we can prove that all the conditions

listed in Section 2 are satisfied. In fact, ¢ =1 and M = sup ||T(¢)| = 1.
t€[0,1]
Moreover,

™

lotts@Olx = ([ 15t snoE) 0 < 48[ loo)Pa?

_ itilly(t)(')IIXa

7
with n(t) =0 and p = § < FA(/[4C), and

IBE)ut)()x <V sup | C(9 T)u(t, 7)d7|

0<0<m

1 1

<V sup |(/ <O, 7)[Pdr)2( / Jut, 7)*dr)2 < allu(t)()ly

0<0<7

for each t € [0,1], where a =7 sup [((f,7)|. Define the target set
0<0,7<m

WT:{I‘EX:H:L‘HX SNQ}

with Ny > 0. If the set A # (), then it follows from Theorem [Z1] that
there exists a time optlmal pair (Y., u,) such that the transition time t(yu)
attains its minimum.
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