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Abstract

Lipschitz stability and Mittag-LefHer stability with initial time differ-
ence for nonlinear nonautonomous Caputo fractional differential equation
are defined and studied using Lyapunov like functions. Some sufficient
conditions are obtained. The fractional order extension of comparison
principles via scalar fractional differential equations with a parameter is
employed. The relation between both types of stability is discussed theo-
retically and it is illustrated with examples.
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1. Introduction

Fractional calculus is the theory of integrals and derivatives of arbitrary
non-integer order. The subject is as old as classical calculus and goes back
to the 17-th century. It was realized that various processes with anomalous
dynamics in science and engineering can be formulated mathematically us-
ing fractional differential operators because of its memory and hereditary
properties [14], [2I]. The qualitative theory of fractional differential equa-
tions (FrDE) has received a lot of attention. One of the main problems in
the qualitative theory of differential equations is stability of the solutions.
Some stability concepts were presented and studied by applying various

(© 2018 Diogenes Co., Sofia
pp. 72-93, DOI: 10.1515/fca-2018-0005 DE GRUYTER



SOME STABILITY PROPERTIES RELATED TO INITIAL ... 73

methods such as the first and second method of Lyapunov ([1], [3], [16],
[23]). One type of stability, useful in real world problems, is the so called
Lipschitz stability. In 1986, F.M. Dannan, S. Elaydi ([13]) introduced the
concept of Lipschitz stability for nonlinear ordinary differential equations.
They mention that uniform Lipschitz stability lies somewhere between uni-
form stability on one side and the notions of asymptotic stability in vari-
ation and uniform stability in variation on the other side. Furthermore,
uniform Lipschitz stability neither implies asymptotic stability nor is it
implied by it (see also [11]).

Recently, fractional calculus was used for the stability analysis of FrDE.
However, there are several difficulties in applying Lyapunov’s technique to
stability analysis of FrDE which is connected with the type of derivative of
the Lyapunov function:

— continuously differentiable Lyapunov functions: the Caputo derivative
of Lyapunov functions of unknown solution is applied (see, for example,
[8, 19, 20]). In this case the chain rule in fractional calculus can cause
trouble in application.

— continuous Lyapunov functions: the Dini derivative of Lyapunov func-
tions in the case of ordinary derivative is extended to the fractional Dini
derivative of the Lyapunov function (see, for example, [17, [18] 22]). This
derivative does not have a memory and it is independent on the initial time
and this differs from the idea of fractional calculus.

In real life situations it may be impossible to have only a change in the
space variable and to keep the initial time unchanged. However, this situa-
tion requires introducing and studying a new generalization of the classical
concept of stability which involves a change in both the initial time and
the initial values. This type of stability generalizes known stability in the
literature (see, for example [2]). Recently Lyapunov functions are applied
to study some types of stability with respect to initial time difference for
FrDE by an application of a new type of Caputo fractional Dini derivative
of the Lyapunov function ([5] 6, [7]).

In this paper Lipschitz stability and Mittag-Leffler stability for non-
linear nonautonomous Caputo fractional differential equations are stud-
ied using the Caputo fractional Dini derivative of the Lyapunov functions
relative to initial data difference ([5l 6, [7]) along the given FrDE. The
Lipschitz, uniformly Lipschitz, globally uniformly Lipschitz stability and
Mittag-Leffler stability are appropriately defined relative to initial time
difference for fractional differential equations. Several sufficient conditions
for Lipschitz stability and Mittag-Leffler stability with initial data differ-
ence for nonlinear fractional differential equations via Lyapunov functions
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and comparison results for a scalar fractional differential equation with a
parameter are obtained.

2. Notes on Fractional Calculus

Fractional calculus generalizes the derivatives and the integrals of a
function to a non-integer order [14] 21] and there are several definitions of
fractional derivatives and fractional integrals.

In many applications in science and engineering, the fractional order ¢
is often less than 1, so we restrict ¢ € (0,1) everywhere in the paper.

The most widely used definitions for fractional derivatives are the Riemann-
Liouville (e.g., in calculus), the Caputo (e.g., in physics and numerical
integration), and the Grunwald-Letnikov (e.g., in signal processing, engi-
neering, and control) ones:

1: The Riemann-Liouville (RL) fractional derivative of order ¢ € (0,1)
is given by
1 d /
RL g _ -
to Dtm(t) = ﬁ% / (t — S) qm(s)ds, t> to,
to
where I' (.) denotes the Gamma function. The above definition of the frac-
tional differentiation of Riemann-Liouville type leads to a conflict between
the well-established mathematical theory of differential equations, such as
the initial problem of the fractional differential equation, and the nonzero

problem related to the Riemann-Liouville derivative of a constant.
2: The Caputo fractional derivative of order g € (0,1) is defined by

© Ditm(t) = ﬁ/(t—s)_qm/(s)ds, E> . (2)

to
The Caputo and Riemann-Liouville formulations coincide when the initial
conditions are zero. Also, the RL derivative is meaningful under weaker
smoothness requirements.

The properties of the Caputo derivative are more similar to those of
ordinary derivatives, such as the constant’s property. Also, the initial con-
ditions of fractional differential equations with the Caputo derivative has
a clear physical meaning and the Caputo derivative is extensively used in
real life applications.

3: The Grinwald-Letnikov fractional derivative of order ¢ € (0,1) is
given by
ﬂ}

1L q
GL g : r >
i Dimf(t) hh%l—i-hq TEZO (-1) <T> m(t —rh), t>1o
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and Griinwald-Letnikov fractional Dini derivative by

t—tp
]
GL . r 4
SLDYm(t) = lim sup ;o z::o (-1) <r>m(t—rh), t>ty, (2.2
where () = w and [©512] denotes the integer part of the frac-
t—to

tion .

For a wide class of functions, the definitions of Griinwald-Letnikov frac-
tional derivative and the Riemann-Liouville fractional derivative are equiv-
alent (for example, if the functions are sufficiently smooth). This allows us
to use Griinwald-Letnikov fractional derivative for the formulation of the
problem and for proving theoretical results, and then one can turn to the
Riemann-Liouville fractional derivative for applied problems.

The relation between both Caputo fractional derivative and Griinwald-
Letnikov fractional derivative is:

“DIm(t) = FEDUm(t) — m(to)] = SEDIm(t) — mlto)]. (2.3)

Using (2.2]) we define the Caputo fractional Dini derivative of a function as

. 1
gDim(t) = lim sup {m(t) — m(to)

h—0+ h
= (2.4)
_ Z (=1)r+t <i> (m(t—rh)— m(to))].

r=1

DEFINITION 1. ([I5]) We say the function m(t) € C4([to, T],R") if it
is differentiable and the Caputo derivative qum(t) exists and satisfies

(ZT) for t € [to, T).

REMARK 2.1. If m(t) € C([ty,T],R"), then { Dim(t) = § Dimi(t).

3. Statement of the problem

Let tg € Ry be an arbitrary initial time and consider the following ini-
tial value problem (IVP) for the system of fractional differential equations
(FrDE) with a Caputo derivative

qua:(t) = f(t,z(t)) fort > to, x(tg) = wo, (3.1)

where 0 < g < 1, g € R™.
Let 79 € Ry, 19 # tg, be an initial time and consider the following IVP
for FrDE
%an:(t) = f(t,z(t)) fort > 1, z(70) = Yo, (3.2)
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where yo € R™.

We will assume in the paper that the function f € C[R; x R™ R"] is
such that for any initial data (tg, o) € Ry x R™ the corresponding IVP for
FrDE (31) has a solution x(t; tg, xo) € C([to, 00), R™). Note some sufficient
conditions for global existence of solutions of (B.1]) are given in [10] @, [17].

We will make use of the following result:

Lemma 3.1. ([7]) Let the function z(t) € C4(Ry,R™), a > 0, be a
solution of the initial value problem for FrDE

CDix(t) = f(t,x(t)) fort>a, x(a)= 0. (3.3)

Then the function x(t) = x(t +n) satisfies the initial value problem for the
FrDE

“DIT(t) = f(t+n,x(t) fort>b, z(b) = 0. (3.4)
where b > 0, n =a —b.

The relation between (3.I) and (8.2)) is given by the following result:

COROLLARY 3.1. ([7]) For any solution x(t) = x(t; 70, yo) of (3.2) the
function z(t) = x(t + ) is a solution of IVP for FrDE

o DYE(t) = f(t+n,2(t) fort>to, (to) =y, (3.5)

where n = 19 — tg.

REMARK 3.1. In the autonomous case, i.e. f(t,z) = F(z), from
Corollary 1 it follows that we can study only the case of zero initial time and
zero lower bound of the fractional derivative. At the same time changing
the initial time of the IVP for nonautonomous case leads to a change of the
lower limit of the fractional derivative and to a change of the equation.

The main goal is to compare the behavior of two solutions of Caputo
fractional differential equations with different initial data, both initial time
To # to and initial points yg # . In real life situations it may not be
possible to keep measurements with the expected initial time. So, when
we study the influence of parameters, sometimes we need to consider two
solutions which have not only different initial points, but also different
initial times. The stability with respect to initial time difference (ITD)
gives us an opportunity to compare solutions of FrDE when both initial
time and position are different. We will study the Lipschitz stability with
ITD and its connection with Mittag-Leffler stability with ITD of the system
of Caputo fractional differential equations.
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DEFINITION 2. The given solution z*(t) = z(t; to, xo) of FrDE (B1]) is
called:

- Lipschitz stable with initial time difference (ITD), if there exist M >
1,0 = 6(tg) > 0 and o = o(tp) > 0 such that for any initial value
yo € R": ||yo—xo|| < & and any initial time 79 € Ry : |ro—tg| < o
the inequality |[y(t + n;70,y0) — 2" ()| < M|lyo — @ol| for t > o
holds, where n = 19 — tg and y(t; 79, yo) is a solution of (3.2]).

- eventually Lipschitz stable with ITD, if there exist M > 1, § =
d(tg) > 0, T = T(ty) > 0 and 0 = o(tg) > 0 such that for any
initial value yo € R" : ||yo — z0|| < 6 and any initial time 79 € R :
|70 — to| < o the inequality ||y(t + 7;70,y0) — = ()|| < M||yo — zol|
for t > to + T holds, where n = 179 — to and y(¢; 70, y0) is a solution

of 3.2)

DEFINITION 3. The system of FrDE (3.1]) is called:

- uniformly Lipschitz stable with ITD, if there exist constants M > 1
and d,0 > 0 such that for any initial values xg,y9 € R"™ and any
initial times to, 70 € Ry the inequalities ||yo—zo|| < 0 and |79 —to| <
o imply [|y(t+mn; 70, y0) —2(t; to, 20)|| < M|lyo—wol| for t > to where
n =10 — to and x(t;tg,zo), y(t; 70,y0) are solution of (B1)), (B:2),
respectively;

- globally uniformly Lipschitz stable with I'TD, if there exist constants
M > 1,0 > 0 such that for any initial values zg,y9 € R"™ and
any initial times tg, 79 € R, the inequalities ||yp — xo|| < oo and
|70 —to| < o imply [|y(t +n;70,y0) — (¢ 0, 70)|| < M||yo — zo]| for
t > tg where n = 19 — tg and x(t; to, zo), y(t;70,y0) are solution of

1), (B2), respectively.

DEFINITION 4. The solution z*(t) = z(t; to, zo) of FrDE (B.)) is called
Mittag-Leffler stable with ITD, if there exist A > 0, C > 0, 0 = o(tp) > 0
and constants a, b > 0, such that for any initial time 79 € Ry : |19 —tg| < o
the inequality ||y(t + n; 70, y0) — 2*(t)]| < Cllyo — zol|* { Eg(—=A(t — to)?)}"
for t > tg holds, where n = 79 — to and y(¢; 70, y0) is a solution of (B.2]).

Note the concept of any type of stability with I'TD is meaningful only
in the case of non-autonomous systems (see Remark B.1).

REMARK 3.2. The concept of Lipschitz stability with ITD defined in
Definition 2 generalizes Lipschitz stability for the zero solution of fractional
equations in the literature [22] if 2*(¢) = 0 and 79 = to.
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REMARK 3.3. In the case when z*(t) = 0 and 79 = tp the concept
of Mittag-Leffler stability with ITD defined in Definition 4 generalizes the
definition of Mittag-Leffler stability in [20].

REMARK 3.4. In the special case of C' > 1 and a = 1 the Mittag-Leffler
stability with ITD (Definition M) implies the Lipschitz stability with ITD
of *(t) = z(t; to, xo) of FrDE (BI) (Definition 2I).

Let J € Ry, A > 0. In our further consideration we will use the
following sets:

K(J) = {a€C[J,Ri]: a(0) =0,a(r) is strictly increasing in J
and there exists a function P, € C(Ry,Ry)
such that P,(a) > 1 for a >1
and a'(ar) < rP,(a) for o >1,r > 0};
M(J) = {aeC[J,Ry]: a(0) =0,a(r) is strictly increasing in J
and a(r) < K,r for some constant K, > 0};
Sy o= {zeR": [lz] <A},
By = {uelR: |Jul <A}

REMARK 3.5. The function a(u) = Kju, K; € (0,1] is from the
class L(Ry) with P,(u) = u and from the class M(R,). The function
b(u) = Kou?, Ky > 0 is from the class M([0,1]).

We will use comparison results for the IVP for the scalar fractional
differential equation with a parameter of the type

g)un(t) =g (t,u(t),n) fort>ty, u(ty) =wuo (3.6)

where u,up € R, g : Ry x Rx By — R, ¢(¢,0,0) = 0, n € By is a
parameter and H > 0 is a given number. We denote the solution of the
IVP for the scalar FrDE @B.6]) by u(t; to, uo,n) € C4([to,00),R). In the case
of non-uniqueness of the solution we will assume the existence of a maximal
one.

DEFINITION 5. The zero solution of the scalar FrDE (B.6) with a
parameter 7 is said to be

- Lipschitz stable with respect to a parameter, if for any ty € R, there
exists M > 1, § = §(tg) > 0 and o = o(tp) > 0 such that for any
ug € R : |ug| < 0 and any |n| < o the inequality |u(t)| < M|ug| for
t > to, where u(t) = u(t; tg, ug,n) is a solution of (3.6);



SOME STABILITY PROPERTIES RELATED TO INITIAL ... 79

- eventually Lipschitz stable with respect to a parameter, if for any
to € Ry there exists M > 1, § =0(tp) >0, T =T (tp) >0 and 0 =
o(tp) > 0 such that for any up € R : |ug| < 0 and any |n| < o the
inequality |u(t)| < M|up| for t > to + T, where u(t) = u(t; to, uo,n)
is a solution of (B.6]).

DEFINITION 6. The scalar FrDE (B.6]) with a parameter 7 is said to be
— uniformly Lipschitz stable w.r.t. a parameter, if there exist con-
stants M > 1 and §,0 > 0 such that for any ¢ty € Ry and for any |n| < o
the inequality |ug| < ¢ implies |u(t)| < M|ug| for t > to;
— globally uniformly Lipschitz stable w.r.t. a parameter, if there
exist constants M > 1,0 > 0 such that for any ¢y € R, and for any |n| < o
the inequality |ug| < oo implies |u(t)| < M|ug| for ¢t > tg.

REMARK 3.6. Note that similar to Definition [2] and Definition [6 re-
spectively, we can define eventually uniform Lipschitz stability with ITD,
eventually globally uniformly Lipschitz stability with ITD for (8] and
eventually uniform Lipschitz stable w.r.t. a parameter and eventually glob-
ally uniform Lipschitz stability w.r.t. a parameter for (3.6]).

DEFINITION 7. The FrDE (B.0) is called Mittag-Leffler stable with
respect to a parameter, if there exist constants \,C, H,a,b > 0, such that
for any n € By the inequality ||u(t;to, uo,n)|| < Clug|® {Eq(—A(t — to))}
for t > tg holds, where u(t; to, ug,n) is a solution of (B.6]).

ExaMpPLE 1. Consider the IVP forthe scalar FrDE with a parameter
quu(t) = (—a+en)u(t), wu(ty) = uo,

where ¢ > 0 and a > 0 are constants, n € R is a parameter, tg € Ry is an
arbitrary number.

The above IVP is a special case of [3.6) with g (t,u,n) = (—a + cn)u,
g(t,0,0) = 0 and it has a unique solution for any 1 € R defined by

u(t;to, uo,m) = uoEe((—ar+ en)(t — to)?), t = to.

Consider the positive constants H < ¢ and A = a — cH. Then for n € By
we have —a + cn < —a+ cH = — ) and the following estimate is true

|u(t; to, uo, )| = |uol Eq((—a + en)(t — t0)?) < Juo| Ey(=A(t —t0)),

i.e. the scalar FrDE (B.6]) is Mittag-Leffler stable with respect to a param-
eter witha =b=C = 1.



80 R. Agarwal, S. Hristova, D. O’Regan

We introduce the class A of Lyapunov-like functions which will be used
to investigate the stability properties with ITD for the system FrDE (B.1).

DEFINITION 8. Let I C Ry and A C R™. We will say that the function
V(t,x) : I x A — R4 belongs to the class A(I,A) if V (¢, z) is continuous
and locally Lipschitzian with respect to its second argument in I x A.

The application of Lyapunov functions for stability analysis with ITD
requires an appropriate definition of the derivative of Lyapunov like func-
tion along the given nonlinear Caputo fractional differential equation. In
[5L16] 7], based on Eq. (2.4]), we introduced the generalized Caputo fractional
Dini derivative w.r.t. ITD of the function V (t,z) € A([tg,o0), R™) along
the system of FrDE (B.1]) for t > tg, n € R: t+n >0 and z,y, z9,y0 € R"
by the equality

gD(B:D)V(tv'xvyvnvl‘O)yO)

1
= 1 - - -
b SUP g [V(t,y x) —V (to,yo — o)
t t()] (37)

_ Z 1yt < >(V(t—rh,y—m—hq(f(t+77,y)—f(tal’)))

— V(to,y0 — mo))}-

The generalized Caputo fractional Dini derivative w.r.t. ITD (3.1) was
applied to study stability ([7]), practical stability ([5]), strict stability ([6]).

ExaMPLE 2. We give some examples of Lyapunov functions and their
generalized Caputo fractional Dini derivative w.r.t. ITD.

a) Lyapunov functions which do not depend on the time variable, i.e.
V(t,z) = V(x) for x € R. Then for any z,y,zo,y0 € R, t > tg, and
ne€R: t+n >0 the generalized Caputo fractional Dini derivative w.r.t.
ITD is

(B]])V(t x y7777$07y0)

= hhm sup hlq (V(y —x) = V(y—x—hi(f(t+n,y) — f(t, x)))hq) (3.8)

(t — to)_q
Fl—q)

Special case. Let V(z) = z%. Then

+ (V(y —xz) = V(yo — mo))
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(B:D)V(t z,Y,1,%0,Y0) = 2(y — z)(f(t +n,y) — f(t,2))

) (3.9)
+ ((y —z)> = (yo — 330)2) %-

b) Let V(t,z) = V(x) for x € R. Let z(t) € C¥([tg,0),R) and y(t) €
C([19,0), R) be solutions of [BI)) and (B.2), respectively. Then for ¢ > ¢
and n =19 —tg we have t +n =t + 19 — tg > 79 > 0 and the generalized
Caputo fractional Dini derivative w.r.t. I'TD is

o Dy V(¢ 2(8), y(t + ), 1, 70, o)
= hm sup };lq (V(y(t +n) —x(t))

= V(y(t +n) = a(t) = (f(t+n,y(t +n) = F(t,2(1)))) )
(t — to)_q
F(l—q)
c) Let V(t,z) = m?(t)z? for x € R where m € C'(R,,R). Then for

any z,y,xo, Yo € R, t > tg, and n € R: t 4+ n > 0 the generalized Caputo
fractional Dini derivative w.r.t. ITD is

(3.10)

+ (Vy(t +m) = 2(t) = V(o —20))

tCoD((lBj:bv(t? x,Y,1,%0, yO)
=2y — 2mAOF(E+my) - f(t,2) + (v — 2)*( GEDImA (1))

R PN (et
(o — @0)*m*(to) T =g (3.11)
= 2y — )3 (W) (f(t +n.y) — [(t,2) + (y — 2)* ( {FDfmA(t))
R PN (et
(yo — o) ™m”(to) T(i—gq)
Special case. Let m(t) = t3, q € (0,1),tp = 0. Applying %Lthk =
F(Fk(ﬁi;i)l)tk_q, k> —1,t>0 we get

Dy V (2,1, 70, 90) = 2(y—2)t(f (¢4, y)— f (£, 2))+(y=2)*T(1+q).

d) Let V(t,x) = m?(t)x? for x € R where m € C}(R,,R). Let (t) €
C([tg,o0),R) and y(t) € CY([r9,00),R) be solutions of [B.I) and (B.2),
respectively. Then for ¢t >ty and n =19 —tg we have t +n =t + 19 —tg >
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7o > 0 and the generalized Caputo fractional Dini derivative w.r.t. ITD is
(B]])V(t z(t), y(t +n),m, %o, Yo)
= 2(y(t + 1) — 2())m> () (F (¢ + 0. (t + 7)) — F(t.2(2))) (312

+ (y(t +n) — 2(t))? ( gLng%)) — (30— xo)QmQ(to)i(lé(_l t_O)q_)q.

e) Let V(t,21,29) = m3(t)x? + m3(t)z3 for x1, 22 € R where my, msy €
CY(R4,R). Then for any z,y,x9,y0 € R?, t > tg,and n € R: t+n >0 the
generalized Caputo fractional Dini derivative w.r.t. I'TD is

(B:D)V(t z,Yy, 7]7'7:07y0)

=2(y1 — z1)mi () (f1(t + 0,91, 92) — fi(t, 21, 22))
+2(y2 — 22)m3 () (fa(t + n,y1,y2) — folt, 1, 22))

(3.13)
o) ( ﬁLngl(t)) +(y2 — x2)2< fLD??ﬂ%(ﬂ)
- (m?(to)(?ﬁo) — 22 L m2(t0) (Y — 202 )%
O

REMARK 3.7. Note in some papers (see, for example [I7, [18]) the
derivative of Lyapunov functions with respect to system (B.1]) is defined by

‘DWW (t,z)= hlinoa sup hi V(t,z) =V (t—h,x—hif(t,z))|. (3.14)
This derivative is called a fractional derivative of Lyapunov functions in
Caputo’s sense of order q with respect to system (B.I]). This operator
has no memory, which is different than the fractional derivative and it
is independent on the initial time and it is not equivalent to the Caputo
fractional derivative. In the general case if x(¢) is a solution of (81]) then
the inequality

‘DIV(t,x(t)) # 4 D{V(t z(t)) (3.15)
holds, where the operator ¢D? is defined by (B.14]) and the operator " Df
is defined by (2.4).

4. Main Results

First we recall the following comparison results giving us the relation-
ship between Lyapunov functions, system FrDE (3.1]) and the scalar FrDE

B.9).
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LEMMA 4.1. ([7]) Assume the following conditions are satisfied:

1. The functions x*(t) = x(t;to,x0) and y(t) = y(t;70,y0) are so-
lutions of systems of FrDE (31]) and (3.2) respectively, x*(t) €
Cl([to, to+0],R™), y(t) € CU([r0, 0 +0], R") and y(t+n*) — 2*(t) €
A for [to,to —1—9] where tg, 79 E Ry : n*=719—t9, ACR" 0 >0is
a given number.

2. The function G € C{[ty, to+0] x R, R] be such that for any € € [0, H|
and vy € R the scalar FrDE

quu =G(t,u)+e fort>0, u(ty) =g (4.1)

has a solution u(t; to, vo,€) € C4([to,to + 0], R) where H,© > 0 are
given constants.

3. The function V € A([tg,to + 0],A) and for t € (tg,to + 0] the
inequality

gD((lBj:bV(tv x*(t),y(t + 77*)777*,9007110) < G(tv V(t7y(t +77*) - l‘*(t)))

holds.

Then V (to,yo — ®o) < wg implies V(t,y(t +n*) — x*(t)) < u*(t) for t €
[to, to + 0] where u*(t) = u(t;to,up,0) is the maximal solution of IVP for
the scalar FrDE (4.1]) with vy = ug and € = 0.

COROLLARY 4.1. ([7]) Let the conditions of Lemma be satisfied
for 6 = oo.

Then V (to,yo — x0) < wg implies V(t,y(t +n*) — x*(t)) < u*(t) for
t > to where u*(t) = u(t; to, up,0) is the maximal solution of IVP for scalar
FrDE (2.4) with vo = ugp and € = 0.

COROLLARY 4.2. Let condition 1 of Lemma [4.1] be satisfied and the
inequality

WDy V (82" (6).y(t+n") 0", w0, 50) <AV (Ey(t+n)— " (£)+Cn'*, t > to
holds where C,~v € R are constants.

Then V (t,y(t+n*)— *(t)) < [V (to, yo—w0+5Cn* 1 Ey(v(t—t0)?) =2 C*
for t > ty.

P r o o f. Consider the IVP for the scalar FrDE tCOun = ~yu + Cn*,
u(to) = V(to,yo0 — xo). Denote v = u + %C’n*. Then quv = v, v(ty) =
V(to,yo — xo) + %C’n*. Then v(t) = [V (to,yo — x0) + %C’n*]Eq(fy(t — 19)9)
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for ¢ > to. Therefore, u(t) = [V (to,yo — zo) + %C’n*]Eq(’y(t —t0)?) — %C’n*
for ¢t > ty. Applying Corollary [4.1] we obtain the claim in Corollary O

We will obtain sufficient conditions for several types of stability such as
Lipschitz (uniform Lipschitz) stability, globally uniformly Lipschitz stabil-
ity, Mittag-Leffler stability with (ITD) by using continuous Lyapunov-like
functions from the A class and the generalized Caputo fractional Dini deriv-
ative defined by ([B.1). Lipshitz stability for fractional equations is studied
in [22] using the derivative defined by (B.14]) derivative and applying (B.15])
as an equality instead of an inequality (see Remark B.7]).

THEOREM 4.1. Let the following conditions be satisfied:

1. The function z*(t) = z(t;to, x0) € C4([to,o0),R™) is a solution of
system of FrDE (31)), where tg € Ry, o € R™ are given points.

2. The function g € C|[[tg,0) X R x B, R], ¢(¢,0,0) = 0 and for any
parameter n € By the IVP for the scalar FrDE (10) has a solution
u(t; to, up,n) € C([tg,0),R) where H > 0 is a given number.

3. The zero solution of the scalar FrDE (3.6) is Lipschitz stable w.r.t.
a parameter.

4. There exists a function V' € A([to, 00),R™) with Lipschitz constant
L in S, such that V (ty,0) = 0 and

(1) b(Jjz|)) < V(t,x) for (t,z) € Ry x R™, where p > 0 is a given
number, b € K(R4);
(ii) for any y,yo € R™ and n € By the inequality

t(’;D‘(lBj:bV(t, z*(t),y,m,x0,y0) < g(t,V(t,y —x*(t)),n) fort >ty (4.2)
holds.

Then the solution x*(t) of the system of FrDE (31)) is Lipschitz
stable with ITD.

P roof. From condition 3 it follows that there exist M > 1, §; = 6;(to),
o = o(tg) such that for any ug € R: |up| < d; and || < o the inequality
lu(t; to, up,m)| < M |ug| for t >t (4.3)

holds, where wu(¢;tg,up,n) is a solution of FrDE (B.6]). Without loss of
generality we assume o0 < H.
Since V' (tp,0) = 0 there exists a dy = d2(tg,01) < p such that
V(to,z) < 61 for |z| < da.
Without loss of generalization we can assume dy < d;. The function V (¢, z)
is Lipschitz on S, and

[V (to, )| = [V (to, x) =V (to,0)] < Lff| for [[zf| <p.  (4.5)
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From b € (R, ) it follows there exists a function P, € C(R4, Ry ) such
that

b ar) < rPy(a) for a>1. (4.6)

Choose My > 1 such that My > ML and let My = P,(M;) > 1.

Now let yg € R™ and 19 € R, be such that ||yo — zo|| < d2 and |n*| < o
where n* = 79 —ty. Consider a solution y(t) = y(t; 79, yo) of system of FrDE
(32) with the chosen initial data (79,y0). Let uy = V(to,yo — o). Then
from the choice of yy and Eq. ([@.4)) it follows that uf = V' (to, yo — z0) < 1.
Therefore, applying (43]) and (4.5]) we obtain the inequality

[u*(t)] < Mlug| = MV (to,yo — x0) < M L||lyo — xo|| for ¢t > tg (4.7)

holds where u*(t) = u(t;to, us, n*) € C([ty,0),R) is a solution of FrDE
B.9).

Using condition 4 (i7) and applying Lemma 2 with G(¢,u) = g(t,u,n"),
A =R" 0 =00 we get

V(t,y(t+n%) — x*(t)) <u*(t) for t > to. (4.8)

From inequalities (4.7)), (4.8]), condition 4 (i) and the Lipschitz property

of V(t,x) we get
b(lly(t +n") =" @) < V(& y(t+0") — 27(1) < u'(?)

4.9
< MLllyo - wol < Millgo—zoll. Y

From the monotonicity property of the function b(r) and inequalities

(4.6), ([4.9) we have
ly(t+n") =" ()] < b~ (Mallyo — ol|)

< lyo — zol|Po(M1) = Ma||yo — xol|, t > to.
0

COROLLARY 4.3. Let the conditions of Theorem 1 be satisfied with
b(u) = Kiu, K1 > 0.

Then the solution x*(t) of the system of FrDE (3.1)) is Lipschitz stable
with ITD.

P r o o f. The proof is similar to the one in Theorem 1 with M; > 1:
My > M and My = M;. m

THEOREM 4.2. Let the conditions 1,2,4 (i) be satisfied, the zero solu-
tion of the scalar FrDE (3.0) is eventually Lipschitz stable w.r.t. a param-
eter and there exists T' = T'(ty) > such that (4.2) is satisfied for t > to+T.
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Then the solution x*(t) of the system of FrDE (31)) is eventually Lips-
chitz stable with ITD.

The proof of Theorem is similar to the one in Theorem 1] so we
omit it.

THEOREM 4.3. Let the following conditions be satisfied:

1. The function g € C[[tg,o0) x R x By, R], g(¢,0,0) = 0 and for any
parameter 1 € By the IVP for the scalar FrDE (3.6) has a solution
u(t; to, uo,m) € C([tg,00),R) where H > 0 is a given number.

2. There exists a function V- € A(R4, S(\)) such that

(@) b([lz]l) < V(t,2) < a((lz]]) for (¢, ) € Ry x S(A),

where b € ([0, A]), a € M([0,]), A > 0 is a given number;
(i7) for any to € Ry, x,y,20,y0 € R" : y—2 € S(N), yo — 10 €
S(A) and n € By the inequality

qu@:[bV(ta x7y7n7m07y0) < g(t,V(t,y - :1:)777) for t >ty

holds.
3. The scalar FrDE (3.6) is uniformly Lipschitz stable w.r.t. a param-
eter (globally uniformly Lipschitz stable w.r.t. a parameter).

Then the system of FrDE (31) is uniformly Lipschitz stable (globally
uniformly Lipschitz stable) with ITD.

P roof. Let the scalar FrDE (8.6) be uniformly Lipschitz stable w.r.t.

a parameter. According to Definition [6]there exist constants M > 1, §; > 0,

o > 0 such that for any top € R4 and any || < o the inequality |Up| < 01
implies

|u(t; to, Up,m)| < M|Uy| for t > to, (4.10)

where u(t;tg, Up,n) is a solution of FrDE (10) with initial data (tg, Up).
From condition 2 (i) there exist a function P, € C(R;,R;) and a positive
constant K, such that b= (ar) < aP,(r) and a(r) < K,r for r > 0,]ga > 1.

Choose M; > 1 such that M; > P,(M)K,. Now let § = min{&l, Mll, [5{—1(1}

and initial points xg, yo € R"™ and 79,ty € Ry be such that

lyo — zo|| < & and |n*| < & (4.11)
where n* = 79 — ty. Consider any solutions z(t) = x(¢;to,xo) and y(t) =
y(t; 70, yo) of system of FrDE (B.1]) and (3.2]) correspondingly with the cho-
sen initial data (79,y0) and (tg,xo) respectively. From the choices of the
constants ([AI1)) we have |lyo — zo|| < ¢ < ﬁ <\, Le yo—x9 € S(N).
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Let uf = V(to,yo — o). Then from Condition 2 (i) and the choice of
xg, Yo it follows that uf = V(to,yo — x0) < a(||yo — zol|) < Kq |Jyo — ol <
K, < 41. Then according to inequality (£I0) it follows that

lu*(t)] < Mlug| for t > tg (4.12)
where u*(t) = u(t;to, uy,n*) € C¥([to,00),R) is a solution of FrDE (3.6]).
We will prove that if inequalities (4.I1]) holds then
ly(t +1%) =z ()] < My [lyo — woll  for ¢ > to. (4.13)
Assume the opposite, i.e. there exists t; > tg such that
ly(t +n") — 2" ()] < My [lyo — wol| for ¢ € [to, t1]
ly(t +n") — 2" ()] = M [lyo — ol
ly(t +n7) — 2" ()] > My [lyo — wol| for ¢ € (t1, 11 + €]
where € > 0 is a small enough number. Then for ¢ € [to,?;] the inequality
ot +7%) — 2 ()] < My lyo — ol < M6 < Aholds, ie. y(t+n)—z (t) €
S(A) for tg <t < t;. Then from Lemmald. Tlapplied for § = ¢; —tg, A = S(N)
and G(t,u) = g(t,u,n*) we get
V(t,y(t+n*) —x(t)) <u*(t) for t € [to, 1] (4.14)
From the choice of t*, Condition 2 (i) and inequalities (4.12]), (4.14) we
obtain
M [lyo — zoll = ly(tr + %) — 2 (1)) < 071Vt y(t +07) — 2 (t1)))
<M (7)) < bHM fug))
= b"H(MV (to,yo — x0)) < Po(M)V (o, yo — o)
< By(M)a((lyo — zol|) < Po(M)Kallyo — o]
< Milyo — o|-
(4.15)

The obtained contradiction proves the validity of (£I3]). Therefore,
according to Definition [ the system of FrDE (B is uniformly Lipschitz
stable with ITD.

The proof of globally uniformly Lipschitz stable with ITD is analogous,
so we omit it. O

THEOREM 4.4. Let the following conditions be satisfied:

1. The condition 1 of Theorem is satisfied.
2. There exists a function V- € A(R4, S(\)) such that

(@) M@®]z]? < V(tz) < Xa(t)l|=]* for (t,2) € Ry x S(N),

where \1(t) > Ay > 1,\o(t) < Ay for t > 0, where Ay, Ay > 1 are
given constants;
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(ii) for any tg € Ry, x,y, 20,50 € R" :y—x € S(N), yo— o €
S(A) and n € By the inequality

tc(;DqB:[bV(t, x,y,1,0,Y0) < (—a+Cn)V(t,y —x) fort >ty (4.16)

holds, where \, H,C, « are given positive numbers.

Then the system of FrDE (31) is uniformly globally Lipschitz stable
with ITD.

Proof Letg(tumn) = (—a+Cnu. Let o = & and choose the
initial times tg, 79 € Ry : |n*| < o where n* = 79 — t9. Let the initial
points zg,y0 € R"™ : |lzg — wo|| < oo and ug = V(tg,yo — wg). Ac-
cording to Example 1 the solution of the comparison scalar FrDE (3.0])
is u(t;to, uo,m) = uoEy((—av + Cn)(t —to)?). Therefore, |u(t;to, uo,n)| =
[ug| Eg((—a + Cn)(t — t9)?) < Juo|, ie. (B8] is globally Lippshitz stable
w.r.t. a parameter with M = 1. Also, Condition 2i of Theorem T3 is sat-
isfied with b(r) = Ay € K([0, A]), Py(r) = 47 and a(r) = Aar € M([0, A]).
According to Theorem 3 the system of FrDE (B.]) is uniformly globally
Lipschitz stable with I'TD. O

COROLLARY 4.4. In the case when nn = 0, i.e. the inequality
g)D((]B:D)V(ta Z,Y, 2o, ZUO) < _a[V(t7 Y- ‘T)]

holds, the result of Theorem is reduced to the uniformly globally Lips-
chitz stability of the system of FrDE (3.1)).

THEOREM 4.5. Let the following conditions be satisfied:

1. The function z*(t) = z(t;to, x0) € C4([to,o0),R™) is a solution of
system of FrDE (31)), where tg € Ry, g € R™ are given points.

2. The function g € C|[[ty,0) x R x By, R], g(¢,0,0) = 0 and for any
parameter 11 € By the IVP for the scalar FrDE (3.6) has a solution
u(t; to, uo,m) € C([tg,00),R) where H > 0 is a given number.

3. There exists a function V € A([tg,o0),R™) such that V(ty,0) = 0
and

(1) Kipl|lz||* < V(t,z) < Ka||z||? for (t,z) € Ry x R™, where

K1, K5, a and b are positive constants;
(79) for any y,yo € R™ and n € By the inequality
WDV (¢ 2 (1), y.m.20,90) < (—a+ Cn)V (ty — a7 (1)) for t > to
(4.17)
holds.
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Then the solution x*(t) of the system of FrDE (3.1) is Mittag-Leffler stable
with ITD.

Proof Letg(tumn) = (—a+ Cnu. Let o = & and choose the
initial time 7o € Ry @ |n*| < & where n* = 79 — to. Let the initial point
yo € R" and ug = V(to, yo—w0). According to Example 1 the solution of the
comparison scalar FrDE ([B.0)) is u(t; to, uo,n) = uoEq((—a+ Cn)(t — tp)9).

Consider a solution y(t) = y(t;70,y0) of system of FrDE (3.2 with
initial data (79,y0). Using condition 3i and due to Corollary 2 it follows
that

Ki|ly(t+n*) =2 @[ < V(t,y(t +n") — z(t) < ult;to, wo,n")
< V(to,yo — w0) Eg((—a+ Cn")(t —t0)?)  (4.18)
< Kollyo — ol | Eg((—o 4+ Cn*) (t — t0)?).

Thus we get

o+ = 2 ()] < (52)% o — ol {Bl(—a+ Co)(e = 1))

for t >ty where C' = (II;) A =a—Cn* >0 with [p*| < & which implies
that the solution x*(¢) of the system of FrDE (B.]) is Mittag-Leffler stable

with ITD. O
5. Applications

ExampLE 3. Consider the following scalar system of FrDE
SDYMx(t) = f(t,z(t)) fort >0, z(0) = xo (5.1)

where g € R and the function fit,x) = g(t)x, t > 0,z € R with g(¢t) =

0.0(1) F(Ol)t_09+025 oD (¢ )01 9F1(1,1.9,1.1, —t) and m*(t) = 1+

(tH)Og € (1,2) is a decreasing function (see Figure 1), 2Fi(a,b;c;2) is the
hypergeometric function.

The equation (5.I)) has a zero solution with zy = 0.

The functions g(¢) and respectively f(¢,x) are changing their signs for
t > 0 (see Figure 2 for the graph of g(t¢)). It does not allow us to use the
quadratic Lyapunov function for obtaining stability properties of the zero

solution.
Define the function V (¢,7) = m?(t)z%. According to Case d) of Exam-

ple 1 and Eq.([8.12]) the generalized Caputo fractional Dini derivative w.r.t.
ITD is

6 DV (t,0, 9, 0,1, 90)

= 2ym?(1) ¢+ m,y) + (w(e)? ( F“DPm*(1)) t> 0.
For the fractional derivative we get

(5.2)
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Figure 1. Graph of m?(t). Figure 2. Graph of g(t).

1
(t+ 1)0~9) - T(0.1)
= §D%(t+1)"%0 + FEpiq

9

2
= 91, (1,1.9,1.1, —t) + =——t %9,
ro1n 11,19, 1.1, =) + r(0.1)

t—0.9+ ORLDg_'g(t—i-l)_o'g

Dy (1+

Then using the functions F(t) = %to'l 9Fy(1,1.9,1.1, —¢) and ¢t~
are positive decreasing (see Figure 3 for the graph of F(t)), the inequalities
m?2(t+n) < m?(t) < 2and ﬁt_o'g—m%t)ﬁ(t%—n)_o‘l < F(g.l) (t—0.9_

(t+ 0.1)_0'1) <0forn<0.1andt>T = 0.8 (see Figure 4) we get

gDﬁV(t, 07 y+7 07 07 yO)

o/ 0.02m2(t)
( - m2(t + )

+0.5m>(t) (t+n)" 9F(1,1.9,1.1,—t — )

T(0.1)
9
1)

0
§y2<—0.02+
9

191 5 F (1,19, 1.1, ) + 709 _ m2(¢) (t+m)™")

I'(1—q)
) 5 Fy(1,1.9,1.1, —t)

r(0.1)

r(0.1)

2 —0.
T(0.1) T(0.1) ron T 09)
< —0.02y% = —0.01(2)y? < —0.01m?(t)y? = —0.01V (t,y(t)), t>0.8.

91y F(1,1.9,1.1, 1) + t709 —m?2(t)

The solution of the comparison FrDE § D%u(t) = —0.01u(t) for t >
0, u(0) =wup > 0is u(t) = ugLy(—0.01t?) < ug. Therefore, from Theorem
2 the zero solution of FrDE (5.0]) is eventually Lipschitz stable with ITD.

a
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