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Abstract

In the paper, we discuss the regular fractional Sturm-Liouville prob-
lem in a bounded domain, subjected to the homogeneous mixed boundary
conditions. The results on exact and numerical solutions are based on
transformation of the differential fractional Sturm-Liouville problem into
the integral one. First, we prove the existence of a purely discrete, count-
able spectrum and the orthogonal system of eigenfunctions by using the
tools of Hilbert-Schmidt operators theory. Then, we construct a new vari-
ant of the numerical method which produces eigenvalues and approximate
eigenfunctions. The convergence of the procedure is controlled by using the
experimental rate of convergence approach and the orthogonality of eigen-
functions is preserved at each step of approximation. In the final part,
the illustrative examples of calculations and estimation of the experimental
rate of convergence are presented.
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1. Introduction

In the paper, we study (from a theoretical and numerical point of
view) the fractional Sturm-Liouville problem (FSLP) with the homoge-
neous mixed boundary conditions. The Sturm-Liouville problem in a frac-
tional version can be derived by using different approaches. The first one
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consists of replacing the integer order derivative in the classical Sturm-
Liouville problem by a fractional order derivative [1, 14]. However, this
approach does not lead to orthogonal systems of eigenfunctions. The sec-
ond approach is connected with the application of the calculus of variations
[16, 17]. In this case, the obtained fractional differential equations can be
interpreted as fractional Euler-Lagrange equations [2, 16, 18, 21, 22, 27].
They contain the differential operator, which is a composition of the left
and the right fractional derivative [16, 17]. This feature leads to fundamen-
tal difficulties in calculating eigenvalues and deriving the exact solutions
in a closed form, even in a simple case of a fractional oscillator problem in
a bounded domain. Explicit solutions and eigenvalues are known, so far,
only for a few FSLP, like fractional oscillator problem on unbounded do-
main [28], and for some singular cases like fractional Legendre and Jacobi
problems [17, 31, 32], and fractional Bessel equation [23].

The FSLP, along with its eigenfunction’s system and eigenvalues, is
connected to a fractional diffusion [19, 20] in a bounded domain. The
term ‘fractional diffusion’ is to be understood as the application of frac-
tional derivatives in description of processes of anomalous diffusion. Such
diffusive processes appear in many fields of science and engineering, e.g.,
heat conduction in materials, fluid pressure in porous media, human migra-
tion, movement of proteins in cells, transport of lipids on cell membranes,
transport on social networks, bacterial motility, and others. Classical re-
sults show that in order to solve diffusion equations in a bounded domain,
one needs to apply the suitable orthogonal systems of functions, usually
connected to a respective Sturm-Liouville problem. Therefore FSLPs, de-
termined in bounded domains, are an emerging meaningful area of the frac-
tional differential equations theory. The orthogonal eigenfunctions’ systems
of FSLPs are and will be a useful tool in solving partial fractional differential
equations connected to anomalous diffusion processes. Preliminary results
are given in papers [17, 18, 19, 20] and show that by applying the eigen-
functions’ systems, we can study fractional diffusion problems with variable
diffusivity and calculate the explicit solutions or establish the existence-
uniqueness results and analyze the properties of solutions. Similar to the
classical Sturm-Liouville theory, it appears that the existence of the purely
discrete spectrum and the associated orthogonal eigenfunctions’ system is
strongly connected to the singularity of FSLP, or in case of a regular FSLP,
to the choice of boundary conditions. In paper [20], the proof was given
for the regular FSLP subjected to the homogeneous Dirichlet conditions,
now we shall present the result on the regular FSLP subjected to the ho-
mogeneous mixed boundary conditions. This new result is developed by
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converting the differential FSLP to the equivalent integral one and by ap-
plying the results of the Hilbert-Schmidt operators theory.

As we have mentioned, the problem of finding analytical solutions of the
FSLP, containing both the left and right fractional derivative, is still a chal-
lenge for scientists. Therefore, numerical methods of solving the FSLP are
being simultaneously developed. During the last few years, several numer-
ical algorithms (based on direct or indirect methods) have been proposed
to obtain approximate solutions of the fractional Euler-Lagrange equations
[5, 6, 7, 8, 9, 10, 11, 30].

The same problem appears in calculating the eigenvalues of the FSLP.
The most common approach to determine eigenvalues and eigenfunctions
for Sturm-Liouville operators of integer and fractional order is to use a
numerical method. The numerical solution of the Sturm-Liouville problem
of integer order can be found in literature i.e. the Pruess, shooting and
finite difference methods [4, 26]. In paper [29], the control volume method is
used to determine the eigenvalues of the classical Sturm-Liouville problem.
However, for FSLPs involving both the left and the right derivative, the
adequate set of numerical tools still requires further and extensive work.

In our previous paper [12], we developed the numerical method for
solving a fractional eigenvalue problem - the version of the FSLP with
the homogeneous mixed boundary conditions. The proposed numerical
scheme was based on the discretization of Caputo derivatives involving
the boundary conditions. This approach allowed us to approximate the
eigenfunctions keeping their orthogonality at each step of approximation.
Moreover, the convergence was controlled by using the experimental rates
of convergence formulas both for the eigenvalues and for the eigenvectors.
The obtained rate of convergence was close to 1.

In paper [3], the FSLP with Dirichlet boundary conditions was con-
sidered. The authors analysed two approaches to the FSLP: discrete and
continuous. They investigated the numerical solution of the FSLP by using
the truncated Grunwald-Letnikov fractional derivative.

Now, we will construct a numerical scheme to calculate the approxi-
mate eigenvalues and eigenfunctions, by applying the approach presented
in papers [7, 9, 11]. First, we transform the FSLP into an intermediate in-
tegral equation and then we discretize the obtained equation by using the
numerical quadrature rule.. This method allows us to obtain the numerical
scheme for which the experimental rate of convergence in all the consid-
ered examples tends to 2α. As we study the FSLP with order α > 1/2,
we clearly see that the new numerical method gives better convergence
than the one introduced in [12], while the orthogonality of the approximate
eigenfunctions is also kept at each step of the procedure.
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The paper is organized as follows. Section 2 presents the analyzed
problem and recalls basic definitions and main properties of fractional dif-
ferential and integral operators. In Section 3 the exact solution of the FSLP
is depicted, while in Section 4 the numerical solution is given. Finally, in
Section 5, we show numerical results for two examples of the FSLP, and we
conclude the paper with a section containing brief conclusions.

2. Preliminaries

We recall the left and right Caputo fractional derivatives of order α ∈
(0, 1) (see e.g. [13, 15, 24])

cDα
a+ y (x) := I1−α

a+
y′ (x) , (2.1)

cDα
b− y (x) := −I1−α

b− y′ (x) , (2.2)

and the left and right Riemann-Liouville fractional derivatives of order
α ∈ (0, 1) ([13, 15, 24])

Dα
a+ y (x) :=

d

dx
I1−α
a+ y (x) , (2.3)

Dα
b− y (x) := − d

dx
I1−α
b− y (x) , (2.4)

where the operators Iαa+ and Iαb− are respectively the left and the right
fractional Riemann-Liouville integrals of order α > 0 defined by

Iαa+y (x) :=
1

Γ (α)

x∫
a

y (t)

(x− t)1−αdt, for x > a, (2.5)

Iαb−y (x) :=
1

Γ (α)

b∫
x

y (t)

(t− x)1−αdt, for x < b. (2.6)

We also recall the composition rules of fractional operators for the case of
order α ∈ (0, 1]

Iαa+
cDα

a+y (x) = y (x)− y (a) (2.7)

Iαb−
cDα

b−y (x) = y (x)− y (b) (2.8)

and for the Riemann-Liouville derivatives

Dα
a+I

α
a+y (x) = y (x) (2.9)

Dα
b−I

α
b−y (x) = y (x) . (2.10)

All the above rules are fulfilled for all x ∈ [a, b] when function y is a con-
tinuous one.

Now, we shall quote the general formulation of the fractional eigenvalue
problem, introduced and investigated in papers [16, 17].
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Definition 2.1. Let α ∈ (0, 1). With the notation

Lq :=
cDα

b−p(x) Dα
a+ + q(x), (2.11)

consider the fractional Sturm-Liouville equation (FSLE)

Lqyλ(x) = λw(x)yλ(x), (2.12)

where p(x) �= 0, w(x) > 0 ∀x ∈ [a, b] and p, q, w are real-valued continuous
functions in [a, b] and boundary conditions are:

c1I
1−α
a+ yλ(x) |x=a +c2p(x)D

α
a+yλ(x) |x=a= 0, (2.13)

d1I
1−α
a+ yλ(x) |x=b +d2p(x)D

α
a+yλ(x) |x=b= 0 (2.14)

with c21 + c22 �= 0 and d21 + d22 �= 0. The problem of finding number λ
such that the BVP has a non-trivial solution will be called the regular
fractional Sturm-Liouville eigenvalue problem (FSLP). When p(a) = p(b) =
0, the above eigenvalue problem will be called the singular fractional Sturm-
Liouville problem. The parameter λ in Eq. (2.12), called an eigenvalue,
exists for a non-trivial solution of the above FSLP, whereas the solution is
called an eigenfunction associated to λ.

Let us observe that in the case α = 1 we have: cD1
a+ y = y′ and

cD1
b− y = −y′, hence Eq. (2.12) takes the classical form

− (p (x) y′ (x))′ + q (x) y (x) = λw (x) y (x) (2.15)

with the boundary conditions:

c1yλ(a) + c2p(a)y
′
λ(a) = 0,

d1yλ(b) + d2p(a)y
′
λ(b) = 0.

The aim of this paper is to study FSLP subjected to a such a set of
boundary conditions that leads to a purely discrete countable spectrum
and to the orthogonal eigenfunctions’ system constituting the basis in the
respective weighted Hilbert space.

3. Exact solutions

In this section, we shall formulate the FSLP with an equation containing
the fractional differential operator (2.11). We investigate the eigenvalues
and eigenfunctions’ system connected to the FSLE in the case of order α
fulfilling condition: 1 ≥ α > 1/2

Lqf(x) = λw(x)f(x) (3.1)

subject to the mixed boundary conditions in the fractional version and on
the space of continuous functions

f(a) = 0 Dα
a+f(b) =

cDα
a+f(b) = 0 f ∈ C[a, b]. (3.2)
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Let us observe that the above regular FSLP is a special case of the general
FSLP given in Definition 2.1 when constants c2 = d1 = 0.

We propose a transformation of the introduced differential Sturm-Liou-
ville problem to the integral one on the subspace of continuous functions
defined below:

CB [a, b] := {f ∈ C[a, b]; f(a) = 0 Dα
a+f(b) =

cDα
a+f(b) = 0}. (3.3)

We start by introducing the following integral operator

Twf(x) := Iαa+
1

p(x)
Iαb−w(x)f(x) (3.4)

and we note that on the CB[a, b], subspace of continuous functions, the
following relation is valid

Tw
1

w(x)
Lqf(x) =

(
1 + Tw

q(x)

w(x)

)
f(x). (3.5)

In addition, it is easy to check that

Tw
q(x)

w(x)
f(x) = Tqf(x), (3.6)

therefore the intermediate integral form of the equation (2.12) looks as
follows

(1 + Tq) f(x) = λTwf(x) f ∈ CB [a, b]. (3.7)

In order to invert the integral operator on the left-hand side, we estimate
the norm of the Tq operator in the C[a, b] space with the supremum norm
|| · || and obtain

||Tq|| = sup
||f ||≤1

||Tqf ||
||f || = sup

||f ||≤1

||Iαa+ 1
pI

α
b−qf ||

||f || (3.8)

≤ ||Iαa+
1

p(x)
Iαb−q||

≤ ||q|| · ||1
p
|| · ||Iαa+Iαb−1|| ≤ ||q|| · ||1

p
|| · (b− a)2α

(2α − 1)(Γ(α))2
.

Let us denote the parameter ξ as follows:

ξ := ||q|| · ||1
p
|| · (b− a)2α

(2α − 1)(Γ(α))2
, (3.9)

then the above calculations lead to the following lemma.

Lemma 3.1. Let 1 ≥ α > 1/2 and q,
1

p
∈ C[a, b] and ξ < 1. Then, on

the C[a, b]-space we have: ||Tq|| < 1.
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When the norm of the Tq-operator is smaller than 1, we can invert
operator 1 + Tq.

Lemma 3.2. Let 1 ≥ α > 1/2 , q,
1

p
∈ C[a, b] and function f ∈ CB [a, b]

fulfill equation (2.12). Then, the following equality is valid

f(x) = λ(1 + Tq)
−1Twf(x) = λ

∞∑
k=0

(−1)k(Tq)
kTwf(x), (3.10)

and the function (1+Tq)
−1Twf ∈ CB [a, b], i.e. it obeys boundary conditions

(3.2).

P r o o f. Let us denote

T := (1 + Tq)
−1Tw =

∞∑
k=0

(−1)k(Tq)
kTw (3.11)

and observe that for any function f ∈ C[a, b] and k ∈ N

||(Tq)
kTwf || ≤ ||Tq||k · ||Twf || ≤ ξk · ||Twf ||.

Thus, series
∑∞

k=0(−1)k(Tq)
kTwf is uniformly convergent on interval [a, b]

and its sum Tf is a continuous function obeying boundary condition Tf(a)
= 0. Now, we shall check the second boundary condition (the right-sided).
Applying the theorem on integrating the series term by term w obtain the
equality

Dα
a+Tf(x) = Dα

a+I
α
a+

1

p
Iαb−q(x)

(
w(x)

q(x)
f(x) +

∞∑
k=1

(−1)k(Tq)
k−1Twf(x)

)
(3.12)

=
1

p(x)
Iαb−q(x)

(
w(x)

q(x)
f(x) +

∞∑
k=1

(−1)k(Tq)
k−1Twf(x)

)
,

and we recall that for any f ∈ C[a, b] we have Iαb−y(x)|x=b = 0. Thence, at
the boundary we have for k ∈ N

Iαb−w(x)f(x)|x=b = 0, Iαb−
(
q(x)(Tq)

k−1Twf(x)
)
|x=b = 0, (3.13)

and we conclude that

Dα
a+Tf(b) = 0.

�
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For functions f ∈ CB [a, b] we can prove the equivalence of the dif-
ferential and the integral form of the fractional Sturm-Liouville problem.
Namely, the following lemma is valid.

Lemma 3.3. Let 1 ≥ α > 1/2, q,
1

p
∈ C[a, b] and ξ < 1. Then, the

following equivalence is valid on the CB [a, b]-space

Lqf(x) = λw(x)f(x) ⇐⇒ Tf(x) =
1

λ
f(x). (3.14)

P r o o f. First, assuming that f ∈ CB [a, b] is an eigenfunction corre-
sponding to eigenvalue λ

1

w(x)
Lqf(x) = λf(x)

we obtain the equality

Tw
1

w(x)
Lqf(x) = λTwf(x) (3.15)

which leads to the integral equation

(1 + Tq)f(x) = λTwf(x). (3.16)

Because ξ < 1 by assumption we can apply Lemma 3.2 which means we
can invert the (1 + Tq)-operator on the CB[a, b]-space

1

λ
f(x) = (1 + Tq)

−1Twf(x) = Tf(x). (3.17)

It proves the first part of the equivalence statement.

Now, we assume that the continuous function f ∈ CB[a, b] is an eigen-
function of the integral FSLP corresponding to eigenvalue 1

λ :

Tf(x) =
1

λ
f(x). (3.18)

We calculate the composition LqT applying the theorem on integrating of
series term by term

LqTf(x) = w(x)f(x) + q(x)Twf(x) (3.19)

+LqI
α
a+

1

p
Iαb−q(x)

( ∞∑
k=1

(−1)kq(x)
[
(Tq)

k−1 + (Tq)
k
]
Twf(x)

)

= w(x)f(x) + q(x)Twf(x) +

∞∑
k=0

(−1)k+1q(x)(Tq)
kTwf(x)

+
∞∑
k=1

(−1)kq(x)(Tq)
kTwf(x)

= w(x)f(x) + q(x)Twf(x)− q(x)Twf(x) = w(x)f(x).

From the above result and from equation (3.18) we obtain the implication
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LqTf(x) = w(x)f(x) =
1

λ
Lqf(x) =⇒ Lqf(x) = λw(x)f(x).

Therefore, we conclude that on the CB[a, b] space the equivalence of the
differential and integral FSLP (3.14) is valid. �

Next, we extend the T -operator to the L2
w(a, b) - space and note that

if order α fulfills 1 ≥ α > 1/2, then

u ∈ L2
w(a, b) =⇒ Twu ∈ C[a, b]. (3.20)

The following lemma is a straightforward corollary from Lemma 3.2.

Lemma 3.4. Let 1 ≥ α > 1/2 and ξ < 1. Then, for any function
u ∈ L2

w(a, b) the image Tu ∈ C[a, b] and it obeys the boundary conditions:

Tu(a) = 0 Dα
a+Tu(b) = 0, (3.21)

i.e. Tu ∈ CB [a, b].

P r o o f. Under assumptions of the lemma, we have Twu ∈ C[a, b] and
series

∑∞
k=0(−1)k(Tq)

kTwf(x) is uniformly convergent on interval [a, b],
thus its sum is also a continuous function, i.e.

Tu ∈ C[a, b], Tu(a) = 0. (3.22)

Similar to the proof of Lemma 3.2, we obtain the expression for the left
Riemann-Liouville derivative

Dα
a+Tu(x) (3.23)

=
∞∑
k=1

(−1)k
1

p(x)
Iαb−

(
q(x)(Tq)

k−1Twu(x)
)
+

1

p(x)
Iαb−w(x)u(x)

and the following useful inequality is valid for any function u ∈ L2
w(a, b) on

interval [a, b]

|Iαb−u(x)w(x)| ≤
1

Γ(α)

(∫ b

x
(s − x)2α−2ds

)1/2(∫ b

x
(u(s)w(s))2ds

)1/2

≤ 1

Γ(α)

(
(b− x)2α−1

2α− 1

)1/2

·
√
||w|| · ||u||L2

w
.

Thence, for k ∈ N we have

Iαb−w(x)u(x)|x=b = 0, Iαb−
(
q(x)(Tq)

k−1Twu(x)
)
|x=b = 0, (3.24)

and we recover the second boundary condition

Dα
a+Tu(b) =

cDα
a+Tu(b) = 0.

�



54 M. Klimek, M. Ciesielski, T. Blaszczyk

In order to consider the spectral properties of the integral operator T ,
we shall convert it to the integral Hilbert-Schmidt operator. To this aim
we explicitly calculate its kernel. First, we express operators Tq and Tw as
integral operators with the corresponding kernels. We obtain the following
formula for the kernel Kq of the Tq operator defined by Eq. (3.6)

Tqu(x) =

∫ b

a
Kq(x, s)u(s)ds (3.25)

and

Kq(x, s) = q(s)K1(x, s) (3.26)

with symmetric part

K1(x, s) =

∫ min{x,s}

a

(x− t)α−1

Γ(α)
· (s− t)α−1

Γ(α)

1

p(t)
dt . (3.27)

For the Tw operator defined by Eq. (3.4):

Twu(x) =

∫ b

a
Kw(x, s)u(s)ds, (3.28)

we calculate kernel Kw:

Kw(x, s) = w(s)K1(x, s). (3.29)

We now estimate the norms and values of the above kernels.

Lemma 3.5. Let 1 ≥ α > 1/2 , q,
1

p
∈ C[a, b]. Then, kernel Kq ∈

L2
1⊗1([a, b] × [a, b]) and the following inequalities are valid:

|Kq(x, s)| ≤ ξ/(b− a), (3.30)

||Kq||L2
1⊗1

≤ ξ/(b− a)1/2. (3.31)

P r o o f. Let us start with the estimation of the absolute values of the
Kq-kernel on square [a, b]× [a, b]:

|Kq(x, s)| =
∣∣∣∣∣
∫ min{x,s}

a

(x− t)α−1

Γ(α)
· (s − t)α−1

Γ(α)

q(s)

p(t)
dt

∣∣∣∣∣ (3.32)

≤ |q(s)|
∫ min{x,s}

a

(min{x, s} − t)2α−2

(Γ(α))2|p(t)| dt

≤ ||1
p
|| · |q(s)| · (−1)(min{x, s} − t)2α−1

(Γ(α))2(2α− 1)
|min{x,s}
t=a

≤ ||1
p
|| · |q(s)| · (b− a)2α−1

(Γ(α))2(2α − 1)
≤ ξ/(b− a).

From the above inequality we infer that estimation (3.31) is also valid. �
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From the above lemma we obtain |Kw(x, s)| ≤ ξw/(b − a) and Kw ∈
L2
1⊗1([a, b] × [a, b]) by assuming q = w and denoting:

ξw = ||w|| · ||1
p
|| · (b− a)2α/(2α − 1)(Γ(α))2.

Now, we reformulate the T operator given by Eq. (3.11) in the form of
Hilbert-Schmidt operator with kernel K:

Tu(x) =

∫ b

a
K(x, s)u(s)ds. (3.33)

The next step is the explicit calculation of the kernel K and examine its
properties. It appears that it can be expressed as a series of convolutions
described in the lemma below.

Lemma 3.6. Let 1 ≥ α > 1/2 , q,
1

p
∈ C[a, b], kernels Kq,Kw

be defined by formulas (3.31) and (3.30) respectively and ξ < 1, where
parameter ξ is defined in (3.9). Then, kernel K is given by the formula

K := Kw +
∞∑
n=1

(−1)n(Kq)
∗n ∗Kw (3.34)

and it fulfills condition K ∈ L2
w⊗w([a, b]× [a, b]).

P r o o f. First, by using the convolution properties we prove formulas
for operators (Tq)

nTw. For n = 1 we obtain

TqTwu(x) =

∫ b

a
Kq(x, s)Twu(s)ds (3.35)

=

∫ b

a
Kq(x, s)

(∫ b

a
Kw(s, t)u(t)dt

)
ds

=

∫ b

a
u(t)

(∫ b

a
Kq(x, s)Kw(s, t)ds

)
dt

=

∫ b

a
Kq ∗Kw(x, t)u(t)dt,

thus it is an integral operator with the kernel given as the convolution of the
Kq and Kw kernels. Terms (Tq)

nTwu, n > 1 can be expressed analogously:

(Tq)
nTwu(x) =

∫ b

a
Kq(x, s)(Tq)

n−1Twu(s)ds (3.36)

=

∫ b

a
Kq(x, s)

(∫ b

a
[(Kq)

∗(n−1) ∗Kw](s, t)u(t)dt

)
ds

=

∫ b

a
u(t)

(∫ b

a
Kq(x, s)[(Kq)

∗(n−1) ∗Kw](s, t)ds

)
dt
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=

∫ b

a
(Kq)

∗n ∗Kw(x, t)u(t)dt,

where we applied the mathematical induction principle with its assumption

(Tq)
n−1Twu(x) =

∫ b
a (Kq)

∗(n−1) ∗Kw(x, s)u(s)ds. From the above calcula-
tions we infer that operator T defined by formula (3.33) can be rewritten
as the Hilbert-Schmidt operator with the integral kernel K (3.34) provided
this series is convergent on square [a, b] × [a, b]. We apply Lemma 3.5 and
estimate the absolute value of the series terms

|Kq ∗Kw(x, s)| ≤
(∫ b

a
(Kq(x, t))

2dt

)1/2(∫ b

a
(Kw(x, t

′))2dt′
)1/2

≤ ξ · ξw
b− a

,

and by means of the mathematical induction we have

|(Kq)
∗n ∗Kw(x, s)| ≤

(∫ b

a
((Kq)

∗n(x, t))2dt
)1/2(∫ b

a
(Kw(x, t

′))2dt′
)1/2

≤ ξn · ξw
b− a

.

We observe that at any point (x, s) ∈ [a, b] × [a, b] we have the following
estimation valid

|Kw(x, s) +

∞∑
n=1

(−1)n(Kq)
∗n ∗Kw(x, s)|

≤ |Kw(x, s)|+
∞∑
n=1

|(Kq)
∗n ∗Kw(x, s)|

≤ ξw
b− a

+

∞∑
n=1

ξn · ξw
b− a

=
ξw

(b− a)(1 − ξ)
.

Thence, we infer that series K is absolutely and uniformly convergent on
square [a, b] × [a, b]. This fact implies that it also is convergent in the
L2
w⊗w ([a, b]× [a, b]) space and K ∈ L2

w⊗w ([a, b]× [a, b]). �

Now, we are ready to formulate the main theorem on the integral op-
erator T .

Theorem 3.1. Let 1 ≥ α > 1
2 , q,

1

p
∈ C[a, b] and ξ < 1. Then,

the Hilbert-Schmidt operator T : L2
w(a, b) → L2

w(a, b) defined by formulas
(3.33), (3.34) is a compact and self-adjoint operator.

P r o o f. The compactness of the operator T results from Lemma 3.6,
i.e. the fact that K ∈ L2

w⊗w ([a, b]× [a, b]). Next, the following equalities
are valid for any pair of functions f, g ∈ L2

w(a, b):

〈f, Twg〉w = 〈Twf, g〉w 〈f, Tqg〉w = 〈 q
w
Twf, g〉w. (3.37)
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It is easy to check that

〈f, TqTwg〉w = 〈TqTwf, g〉w.
Let us now assume that 〈f, (Tq)

n−1Twg〉w = 〈(Tq)
n−1Twf, g〉w. We ob-

tain for n ∈ N, by applying the mathematical induction assumption and
principle, that the following equality is fulfilled

〈f, (Tq)
nTwg〉w = 〈f, Tq(Tq)

n−1g〉w = 〈 q
w
Twf, (Tq)

n−1Twg〉w

= 〈(Tq)
n−1Tw

q

w
Twf, g〉w = 〈(Tq)

nTwf, g〉w.
As the series K is uniformly convergent on square [a, b]× [a, b] we infer that
the partial sums sequence

∑m
n=0(−1)n(Tq)

nTwf is uniformly convergent on
interval [a, b] for any function f ∈ L2

w(a, b). Thus, from the limit theorem
for integrals we get

〈g, Tf〉w = lim
m→∞

m∑
n=0

(−1)n〈g, (Tq)
nTwf〉w

= lim
m→∞

m∑
n=0

(−1)n〈(Tq)
nTwg, f〉w

= 〈 lim
m→∞

m∑
n=0

(−1)n(Tq)
nTwg, f〉w = 〈Tg, f〉w.

We note that for any functions f, g ∈ L2
w(a, b) we have 〈g, Tf〉w = 〈Tg, f〉w

which means that operator T is a self-adjoint operator on L2
w(a, b). �

The above theorem on the Hilbert-Schmidt operator T implies the fol-
lowing result on its spectrum and eigenfunctions.

Corollary 3.1. Let 1 ≥ α > 1
2 , q,

1

p
∈ C[a, b] and ξ < 1. Then, the

operator T has a purely discrete (countable spectrum) enclosed in interval
(−1, 1) with 0 being its only limit point. Eigenfunctions yn corresponding
to the respective eigenvalues are continuous, obey the boundary conditions
(3.2), i.e. belong to the CB [a, b]-space and form a basis in the L2

w(a, b)-
space.

As the eigenfunctions of the operator T belong to the CB[a, b]-space,
we can apply Lemma 3.3 on the equivalence of the differential and integral
eigenvalue problem to obtain a principal result on the discrete spectrum of
the studied FSLP.

Theorem 3.2. Let 1 ≥ α > 1
2 , q,

1

p
∈ C[a, b] and ξ < 1. Then,

operator Lq has a purely discrete (countable spectrum) with |λn| → ∞.
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Eigenfunctions yn corresponding to the respective eigenvalues are continu-
ous, obey the boundary conditions (3.2), i.e. belong to the CB [a, b]-space
and form a basis in the L2

w(a, b)-space. Moreover, the following number
series is convergent: ∞∑

n=−∞

1

(λn)2
< ∞. (3.38)

P r o o f. We can assume that eigenfunctions’ basis is orthonormal in
the L2

w(a, b) space, then functions yk ⊗ yj produce an orthonormal basis
in the L2

w⊗w ([a, b]× [a, b]) function space. Thus, the kernel K can de ex-
pressed as follows

K(x, s) = w(s)
∞∑

k,j=−∞
akjyk(x)yj(s).

Assuming ym is an eigenfunction corresponding to eigenvalue λm and ap-
plying the orthonormality property of eigenfunctions, we get the relation
below

1

λm
ym(x) = Tym(x) =

∫ b

a
K(x, s)ym(s)ds =

∞∑
k=−∞

akmyk(x).

We use the orthonormality of eigenfunctions once again and obtain the
explicit formula for coefficients alm:

δlm
1

λm
= alm.

Now, we can write the kernel K as the series

K(x, s) = w(s)
∞∑

k=−∞

1

λk
yk(x)yk(s).

We know that K ∈ L2
w⊗w ([a, b]× [a, b]), obtain the inequality

||K||2L2
w⊗w

=

∫ b

a

∫ b

a
w(x)|K(x, s)|2w(s)dxds ≥

(
min

s′∈[a,b]
w(s′)

)2

·
∞∑

k=−∞

1

(λk)2
> 0,

and we infer that (3.38) is valid. �

The assumption
1

p
∈ C[a, b] leads to two possible cases, namely p can be

a positive or negative function. When function p is positive the spectrum
is bounded from below which means that the fractional Sturm-Liouville
operator has at least a finite number of negative and an infinite number of
positive eigenvalues.
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Corollary 3.2. Let 1 ≥ α > 1
2 , q,

1

p
∈ C[a, b], p > 0 and ξ < 1.

Then, the operator Lq has a purely discrete (countable spectrum) with
λn → ∞. The eigenfunctions yn corresponding to the respective eigenval-
ues are continuous, obey the homogeneous mixed boundary conditions, i.e.
belong to the CB [a, b]-space and form an orthogonal basis in the L2

w(a, b)-
space. Moreover, the following estimation is valid:

λn > min
x∈[a,b]

q(x)

w(x)
(3.39)

and the series below is convergent
∞∑

n=−n0

1

(λn)2
< ∞. (3.40)

P r o o f. We again can assume that the basis of eigenfunctions is or-
thonormal in L2

w(a, b) and let eigenfunction yn correspond to eigenvalue λn,
i.e. it fulfills the equation:

Lqyn(x) = λnw(x)yn(x).

Multiplying both sides by yn and integrating over interval [a, b] we get the
relation below ∫ b

a
yn(x)Lqyn(x)dx = λn〈yn, yn〉w

which leads to the following formula for eigenvalue λn

λn = 〈yn, cDα
b−p

cDα
a+yn〉+ 〈yn, qyn〉.

Now, we use the fact that each eigenfunction fulfills the homogeneous mixed
boundary conditions and by applying the fractional integration by parts
rule we arrive at the equality

λn = ||√p cDα
a+yn||2L2 + 〈yn, qyn〉.

Clearly, the first term on the right-hand side is positive, therefore the fol-
lowing inequality is valid:

λn > 〈yn, qyn〉 ≥ min
x∈[a,b]

q(x)

w(x)
· 〈yn, yn〉w

which means

λn > 〈yn, qyn〉 ≥ min
x∈[a,b]

q(x)

w(x)
,

because we have assumed 〈yn, yn〉w = 1.
The proven inequality means that in the case when function p is posi-

tive we have at least a finite number of negative eigenvalues and an infinite
number of positive ones tending to infinity. Numbering the negative eigen-
values by n = −n0, ...,−1, we get the convergence in Eq. (3.40) from the
general formula (3.38). �
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The proof of the analogous result for p negative is similar so we just
formulate the corollary as follows noting that here we have at least a finite
number of positive eigenvalues and an infinite number of the negative ones
tending to −∞.

Corollary 3.3. Let 1 ≥ α > 1
2 , q,

1

p
∈ C[a, b], p < 0 and ξ < 1.

Then, the operator Lq has a purely discrete (countable spectrum) with
λn → −∞. Eigenfunctions yn corresponding to the respective eigenval-
ues are continuous, obey the homogeneous mixed boundary conditions i.e.
belong to the CB [a, b]-space and form an orthogonal basis in the L2

w(a, b)-
space. Moreover, the following estimation is valid:

λn < max
x∈[a,b]

q(x)

w(x)
(3.41)

and the series below is convergent
−∞∑
n=n0

1

(λn)2
< ∞. (3.42)

Finally, let us note that the above statements on the regular FSLP with
the fractional Sturm-Liouville operator defined in Eq. (2.11) are also valid
for its reflected version with FSLO in the form of

L̃q :=
cDα

a+p(x) Dα
b− + q(x) (3.43)

and boundary conditions

f(b) = 0, Dα
b−f(a) =

cDα
b−f(a) = 0, f ∈ C[a, b]. (3.44)

As the proof of the result on spectrum and eigenfunctions’ system of the
reflected FSLP is very simple and based only on the properties of the re-
flection operator in interval [a, b] we formulate the theorem omitting the
proof.

Theorem 3.3. Let 1 ≥ α > 1
2 , q,

1

p
∈ C[a, b] and ξ < 1. Then, the

operator L̃q given in Eq. (3.43) has a purely discrete (countable spectrum)
with |λn| → ∞. Eigenfunctions yn corresponding to the respective eigen-
values are continuous, obey the reflected boundary conditions (3.44) and
form a basis in the L2

w(a, b)-space. Moreover, the following number series
is convergent:

∞∑
n=−∞

1

(λn)2
< ∞. (3.45)
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4. Numerical solution

We start the construction of numerical scheme by dividing the consid-
ered interval [a, b] intoN equidistant subintervals of length Δx = (b− a) /N
with the central points xi = a + (i − 0.5)Δx for i = 1, ..., N . A value of
function y at node xi we denote as yi = y(xi). In addition, we introduce
the notation xi±0.5 = xi ± 0.5Δx.

The intermediate integral equation Eq. (3.7) can be written as follows

y (x) +

N∑
k=1

xk+0.5∫
xk−0.5

K1 (x, s) q (s) y (s) ds

= λ

N∑
k=1

xk+0.5∫
xk−0.5

K1 (x, s)w (s) y (s) ds

(4.1)

with kernel K1 given by Eq. (3.27). Next, we approximate the above
integrals by the quadrature rule

y (x) +

N∑
k=1

uk K1 (x, xk) q (xk) y (xk) = λ

N∑
k=1

uk K1 (x, xk) w (xk) y (xk) ,

(4.2)
where uk are the weights of the quadrature rule (for the midpoint rectan-
gular rule: uk = Δx).

If we evaluate the equation at every node xi, i = 1, ..., N , then we
obtain the following system of N linear algebraic equations

y (xi) +
N∑
k=1

uk K1 (xi, xk) q (xk) y (xk) = λ
N∑
k=1

uk K1 (xi, xk) w (xk) y (xk)

(4.3)
which can be written in the short notation for node values of eigenfunctions
looks as follows:

yi +

N∑
k=1

uk (K1)i,k qk yk = λ

N∑
k=1

uk (K1)i,k wk yk, (4.4)

where (K1)i,k = K1 (xi, xk).
Now, the above system of equations can be rewritten in the matrix form

[25]. We introduce:

- two diagonal matrices Q and W:

Q = diag (q1, q2, ..., qN ) ,
W = diag (w1, w2, ..., wN ) ,

(4.5)

where
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qi =
1

Δx

xi+0.5∫
xi−0.5

q (x) dx, wi =
1

Δx

xi+0.5∫
xi−0.5

w (x) dx, (4.6)

- the matrix M:

M = {Mi,k} =
{
uk (K1)i,k

}
, (4.7)

for i = 1, ...., N and k = 1, ...., N ,
- the vector Y:

Y = [y1, y2, ..., yN ]T . (4.8)

By using these notations, the system of equations (4.4) takes the fol-
lowing matrix form

Y +MQY = λMWY, (4.9)

and after transformations it is a matrix eigenvalue problem:

AY = λY, (4.10)

where

A = (MW)−1 (I+MQ) . (4.11)

In order to compute the eigenvalues and eigenvectors of Eq. (4.10) one can
use mathematical software. Let us note that the eigenvectors corresponding
to distinct eigenvalues are orthogonal in a N -dimensional weighted Hilbert
space with the scalar product defined as follows:

〈Y,X〉W =

N∑
k=1

(
Y
)
k
wk (X)k . (4.12)

In calculations demonstrating the orthogonality of eigenvectors, we apply
the fact that matrix M is symmetric. Let eigenvector Yλ correspond to
eigenvalue λ and Yρ correspond to eigenvalue ρ. First, we have the follow-
ing relation valid:

〈Yλ,AYρ〉W
= 〈Yλ,

(
W−1M−1 +W−1Q

)
Yρ〉W

=
∑
k=1

(Yλ)k [Mkj(Yρ)j + qk(Yρ)k]

=
∑
k=1

(Yρ)k [Mkj(Yλ)j + qk(Yλ)k]

= 〈Yρ,AYλ〉W .

Now, we calculate the scalar products on the left- and right-hand side of
the above equality remembering that Yλ and Yρ are eigenvectors of matrix
A:

〈Yλ,AYρ〉W = ρ〈Yλ,Yρ〉W
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〈Yρ,AYλ〉W = λ〈Yρ,Yλ〉W = λ〈Yλ,Yρ〉W .

Subtracting the above equalities we arrive at the result

(ρ− λ)〈Yλ,Yρ〉W = 0

which implies that when eigenvalues are distinct, the corresponding eigen-
vectors are orthogonal:

〈Yλ,Yρ〉W = 0 ρ �= λ. (4.13)

In the next step, we construct the approximate eigenfunctions by applying
the eigenvectors obtained via the numerical scheme corresponding to the
equidistant partition of interval [a, b] into N subintervals:

yapλ (x) =
N∑
k=1

(Yλ)k χ[xk−0.5,xk+0.5)(x). (4.14)

Let us note that from the orthogonality of eigenvectors the lemma on ap-
proximate eigenfunctions results.

Lemma 4.1. Approximate eigenfunctions corresponding to distinct
eigenvalues are orthogonal in the L2

w(a, b) - space for each N ∈ N

〈yapλ , yapρ 〉w = 0 λ �= ρ. (4.15)

P r o o f. The orthogonality of approximate eigenfunctions is a straight-
forward result of the orthogonality of eigenvectors (4.13):

〈yapλ , yapρ 〉w = Δx〈Yλ,Yρ〉W = 0 ρ �= λ.

�

If we assume in the considered FSLP the coefficient and weight functions
constant: p = w = 1 and q = 0, then matrix A is determined by simple
formula

A = M−1, (4.16)

where M = {Mi,k} = {uk(K0)i,k} = {ukK0 (xi, xk)}, for i = 1, ...., N ,
k = 1, ...., N . Let us point out that in this case kernel K0 and therefore
matrix M−1 can be calculated explicitly.

4.1. The special case for functions: p (x) = w(x) = 1 and q (x) = 0.
Now, we consider the mentioned special case which extends the classical
harmonic oscillator equation and eigenvalue problem. Namely, we choose
q = 0 and we assume that the coefficient and weight functions are con-
stant: p = w = 1. We shall calculate exact values of the kernel and apply
them further in calculating the numerical solutions. In this case, Eq. (3.7)
reduces to the following form

y (x) = λIαa+I
α
b−y (x) (4.17)
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and the composition of integral operators can be written as

Iαa+I
α
b−y (x) =

b∫
a

K0 (x, s) y (s) ds , (4.18)

where the kernel K0 (defined by Eq. (3.27) for p = 1) for order 1 ≥ α > 1/2
is of the following explicit form

K0 (x, s) =
(x− a)α (s− a)α

Γ (α) Γ (α+ 1)

×

⎧⎪⎪⎨⎪⎪⎩
(x− a)−1

2F1

(
1− α, 1; 1 + α;

s− a

x− a

)
, if s � x ,

(s− a)−1
2F1

(
1− α, 1; 1 + α;

x− a

s− a

)
, if s > x .

(4.19)

For x = s (by using properties of the hypergeometric function 2F1) one has

K0 (x, x) =
1

Γ2 (α)

(x− a)2α−1

2α− 1
. (4.20)

One can see that kernel K0 is a symmetric function on square [a, b]× [a, b]

K0 (x, s) = K0 (s, x) . (4.21)

For order α = 1 we obtain

K0 (x, s) =

{
s− a if s � x
x− a if s > x

. (4.22)

5. Example of calculations

In order to verify the proposed numerical method, we present two ex-
amples of numerical calculations of eigenvalues and eigenfunctions. As the
first example we consider the generalization of the classical harmonic os-
cillator problem with p = w = 1 and q = 0 (this corresponds to the case
studied in Subsection 4.1), and in the second example, we assumed the
functions to be p(x) = x2 + exp(x), q(x) = 1

4 sin(4πx), and w(x) = x2 + 2.
In both examples, we consider the interval [0, 1].

In Tables 1 and 2 we present the numerical values of the first ten eigen-
values for orders α ∈ {1, 0.8, 0.6} and different values ofN ∈ {250, 500, 1000,
2000, 4000}. While, in Figures 1 and 2 we show graphs of the approximate
eigenfunctions corresponding to the first four eigenvalues for the considered
cases, respectively, and N = 4000. The approximate eigenfunctions were
normalized by ∫ b

a
w(x) yapλ (x) yapλ (x) dx = 1. (5.1)
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Also, in Tables 1 and 2, the experimental rate of convergence (ercλ) of
numerical calculations of the k-th eigenvalue is presented. The values of
ercλ for fixed parameters α and variable values of N we determined from
the following formula ([12])

ercλ (N,α, k) = log2
λ
(N,α)
(k) − λ

(N/2,α)
(k)

λ
(2N,α)
(k) − λ

(N,α)
(k)

. (5.2)

Analyzing the values in Tables 1 and 2, one can observe that the values of
ercλ depends on the fractional order α and does not depend on the various
types of functions p, q, and w and it is close to the value of 2α.

Figure 1. Eigenfunctions for the first 4 eigenvalues for
p(x) = 1, q(x) = 0, w(x) = 1 and α ∈ {1, 0.8, 0.6} (a = 0,
b = 1) (classical fractional oscillator)

6. Conclusions

In the paper, we studied the regular FSLP in a bounded domain, sub-
jected to the homogeneous mixed boundary conditions. We transformed
the analyzed problem into an integral one. Then, we proved the exis-
tence of a purely discrete, countable spectrum and the orthogonal system
of eigenfunctions by utilizing the Hilbert-Schmidt operators theory. In the
numerical approach to the FSLP, we made the discretization of the integral
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Figure 2. Eigenfunctions for the first 4 eigenvalues for
p(x) = x2 + exp(x), q(x) = 1

4 sin(4πx), and w(x) = x2 + 2
and α ∈ {1, 0.8, 0.6} (a = 0, b = 1)

equation by using the numerical quadrature rule to the approximation of
the integral. The obtained system of algebraic equations was rewritten as
the matrix equation, from which the eigenvalues and eigenvectors are de-
termined by using standard methods. The presented procedure allows us
to calculate the approximate eigenvalues and eigenfunctions. We presented
the obtained eigenvalues and eigenfunctions, for the selected functions p, q,
w and the order α, to show the influence of these parameters on the solu-
tion to the considered FSLP. We also determined the experimental rate of
convergence of the proposed method. The experimental rate of convergence
of the numerical scheme, in all considered examples, is close to 2α. More-
over, orthogonality of the approximate eigenfunctions is kept at each step
of the procedure. It should be pointed out that the presented numerical
method can be treated as an extension of method used for the solution of
the Sturm-Liouville problem of the integer order and, of course, for α = 1
we obtain the approximate eigenvalues and eigenfunctions for the classical
Sturm-Liouivlle problem.
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α = 1 α = 0.8 α = 0.6

k N λ(k) ercλ λ(k) ercλ λ(k) ercλ
1 250 2.4673930 - 1.9580409 - 1.5966035 -

500 2.4673991 2.000 1.9581331 1.607 1.5989630 1.198
1000 2.4674006 1.995 1.9581633 1.605 1.5999915 1.199
2000 2.4674010 1.660 1.9581733 1.604 1.6004394 1.200
4000 2.4674011 - 1.9581766 - 1.6006344 -

2 250 22.205952 - 11.994294 - 6.4004171 -
500 22.206446 2.000 11.997725 1.603 6.4384921 1.189
1000 22.206569 2.000 11.998854 1.603 6.4551977 1.195
2000 22.206600 1.997 11.999225 1.602 6.4624940 1.198
4000 22.206607 - 11.999348 - 6.4656744 -

3 250 61.679954 - 26.986045 - 11.608982 -
500 61.683759 2.000 27.003363 1.602 11.734829 1.178
1000 61.684710 2.000 27.009070 1.602 11.790437 1.191
2000 61.684948 1.999 27.010950 1.601 11.814799 1.196
4000 61.685008 - 27.011570 - 11.825433 -

4 250 120.88317 - 46.289229 - 17.275740 -
500 120.89778 2.000 46.340141 1.600 17.555896 1.167
1000 120.90144 2.000 46.356931 1.601 17.680642 1.186
2000 120.90235 2.000 46.362466 1.601 17.735481 1.194
4000 120.90258 - 46.364290 - 17.759454 -

5 250 199.80624 - 69.085904 - 23.092775 -
500 199.84617 2.000 69.199264 1.599 23.596078 1.156
1000 199.85616 2.000 69.236685 1.601 23.821973 1.181
2000 199.85866 2.000 69.249025 1.601 23.921631 1.192
4000 199.85928 - 69.253093 - 23.965264 -

6 250 298.43670 - 95.198549 - 29.105802 -
500 298.52582 2.000 95.413812 1.598 29.909873 1.144
1000 298.54811 2.000 95.484937 1.600 30.273754 1.175
2000 298.55368 2.000 95.508401 1.601 30.434883 1.189
4000 298.55507 - 95.516137 - 30.505545 -

7 250 416.75900 - 124.20624 - 35.176421 -
500 416.93283 2.000 124.57277 1.596 36.357661 1.132
1000 416.97630 2.000 124.69399 1.599 36.896741 1.170
2000 416.98716 2.000 124.73400 1.600 37.136358 1.187
4000 416.98988 - 124.74719 - 37.241618 -

8 250 554.75442 - 156.01634 - 41.335872 -
500 555.06252 2.000 156.59492 1.595 42.976638 1.119
1000 555.13956 2.000 156.78647 1.599 43.731895 1.164
2000 555.15883 2.000 156.84971 1.600 44.068916 1.184
4000 555.16364 - 156.87057 - 44.217221 -

Table 1. Numerical values of the first 8 eigenvalues and the
experimental rates of convergence ercλ for α ∈ {1, 0.8, 0.6},
p(x) = 1, q(x) = 0, and w(x) = 1
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α = 1 α = 0.8 α = 0.6

k N λ(k) ercλ λ(k) ercλ λ(k) ercλ
1 250 1.3584974 - 1.1387715 - 0.9893191 -

500 1.3584988 1.999 1.1388057 1.606 0.9903662 1.199
1000 1.3584992 2.007 1.1388169 1.604 0.9908223 1.200
2000 1.3584993 1.775 1.1388206 1.603 0.9910208 1.200
4000 1.3584993 - 1.1388218 - 0.9911072 -

2 250 17.415682 - 9.5114080 - 5.0943056 -
500 17.416073 2.000 9.5142567 1.602 5.1267401 1.188
1000 17.416170 2.000 9.5151948 1.602 5.1409749 1.195
2000 17.416195 1.998 9.5155039 1.601 5.1471929 1.198
4000 17.416201 - 9.5156058 - 5.1499036 -

3 250 49.362322 - 21.578465 - 9.2190735 -
500 49.365493 2.000 21.592998 1.601 9.3256384 1.178
1000 49.366286 2.000 21.597789 1.601 9.3727246 1.191
2000 49.366485 2.000 21.599368 1.601 9.3933541 1.196
4000 49.366534 - 21.599888 - 9.4023590 -

4 250 97.153196 - 37.129314 - 13.762621 -
500 97.165512 2.000 37.172412 1.600 14.001140 1.167
1000 97.168591 2.000 37.186630 1.601 14.107352 1.186
2000 97.169361 2.000 37.191318 1.601 14.154046 1.194
4000 97.169554 - 37.192864 - 14.174459 -

5 250 160.88338 - 55.433830 - 18.367541 -
500 160.91720 2.000 55.529924 1.599 18.795232 1.156
1000 160.92565 2.000 55.561652 1.600 18.987191 1.181
2000 160.92777 2.000 55.572118 1.600 19.071880 1.192
4000 160.92830 - 55.575569 - 19.108960 -

6 250 240.52999 - 76.439512 - 23.143959 -
500 240.60564 2.000 76.622406 1.597 23.828700 1.144
1000 240.62455 2.000 76.682845 1.600 24.138585 1.175
2000 240.62928 2.000 76.702787 1.600 24.275809 1.189
4000 240.63046 - 76.709365 - 24.335990 -

7 250 336.07766 - 99.73969 - 27.942888 -
500 336.22542 2.000 100.05127 1.596 28.948387 1.132
1000 336.26237 2.000 100.15432 1.599 29.407255 1.170
2000 336.27161 2.000 100.18834 1.600 29.611222 1.187
4000 336.27391 - 100.19956 - 29.700823 -

8 250 447.51002 - 125.31117 - 32.816924 -
500 447.77215 2.000 125.80346 1.595 34.214801 1.119
1000 447.83769 2.000 125.96645 1.599 34.858243 1.164
2000 447.85408 2.000 126.02027 1.600 35.145375 1.184
4000 447.85818 - 126.03803 - 35.271729 -

Table 2. Numerical values of the first 8 eigenvalues and the
experimental rates of convergence ercλ for α ∈ {1, 0.8, 0.6},
p(x) = x2 + exp(x), q(x) = 1

4 sin(4πx) and w(x) = x2 + 2
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