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Abstract

The Caputo-Fabrizio fractional derivative is analyzed in classical and
distributional settings. The integral inequalities needed for application in
linear viscoelasticity are presented. They are obtained from the entropy
inequality in a weak form. Moreover, integration by parts, an expansion
formula, approximation formula and generalized variational principles of
Hamilton’s type are given. Hamilton’s action integral in the first principle,
do not coincide with the lower bound in the fractional integral, while in the
second principle the minimization is performed with respect to a function
from a specified space and the order of fractional derivative.
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1. Introduction

M. Caputo and M. Fabrizio proposed in [11] a fractional derivative of

order α ∈ (0, 1) of an absolutely integrable function f on [t0, T̃ ], for any

T̃ > t0 ≥ 0, f ∈ ACloc([t0,∞) (which means that the first derivative of f

is integrable on [0, T̃ ) for every T̃ > 0) in the form

CF
t0 D

α
t f (t) =

M (α)

1− α

∫ t

t0

exp

(
− α

1− α
(t− τ)

)
f (1) (τ) dτ, t > t0,
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where f (1) =
d

dτ
f and M (α) is a normalization function such that M (0) =

M (1) = 1. We take M (α) = 1 in the analysis which is to follow. Thus, we
consider (see [21], p. 89)

CF
t0 D

α
t f (t) =

1

1− α

∫ t

t0

exp

(
− α

1− α
(t− τ)

)
f (1) (τ) dτ

=
1

1− α
exp

(
− α

1− α
t

)
∗ f (1) (t) , t ∈ (t0,∞), (1.1)

where ∗ denotes the convolution.
In this paper we reconsider CF

t0 D
α
t , α ∈ (0, 1), in the distributional set-

ting, even introduce a Riemann-Liouville version of such fractional deriv-
ative and examine several properties of CF

t0 D
α
t f (t) that are important in

applications. One can simply derive the similar properties of the Riemann-
Liouville version of this notion. By the use of the Caputo-Fabrizio fractional
derivative (CFFD), we shall formulate the Hamilton principle of analytical
mechanics and its generalization corresponding to the case when a memory
of a system and a time of a process do not coincide. The results presented
here follow the corresponding ones for “standard” Caputo fractional deriv-
ative C

t0D
α
t f (t), cf. [8, 14, 17, 22] and references given therein.

We comment now a class of fractional derivatives to which (1.1) belongs
(cf. [20]). In general, fractional derivative of Riemann-Liouville and Caputo
type can be defined as

RLDα
t y(t) =

d

dt

∫ t

t0

k (t− τ) y (τ) dτ, CDα
t y(t) =

∫ t

t0

k (t− τ)
dy (τ)

dτ
dτ,

(1.2)
where k is a function with specified properties. For example, in [20] it is
required that the Laplace transform of k satisfies conditions that guaran-
tee certain useful properties of (1.2). Relation (1.2) may also be used to
define variable order fractional derivatives as it is proposed in [26]. How-
ever, in this case k satisfies additional conditions. Many choices of k, in
forms of special functions, with integrals not necessarily of convolution
type, for example with k being Meijer G-function, and more generally,
Fox H-function of the specific form, lead to generalized fractional calculus
presented in [18] and [19]. The classical cases of Riemann-Liouville and

Caputo fractional derivatives correspond to k given as k (t) = t−α

Γ(1−α) , t >

0, 0 < α < 1. The analysis presented here corresponds to the case when

k (t) = 1
(1−α)Tα exp

(
− α

1−α
t
T

)
, t > 0, 0 < α < 1, T > 0, called CF kernel.

We refer to Section 2 for the explanation of the introduction of parameter
T . Note that in papers [10],[13] in the definition of (CFFD), it was assumed
that T = 1.
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The paper is organized as follows. We present in Section 2 distribu-
tional framework for (CFFD) as well as some generalizations including
symmetrized complex order (CFFD). Moreover, we introduce the Riemann-
Louiville type fractional derivative with CF kernel. Several properties of
(CFFD) are derived in Section 3, while Section 4 is related to two varia-
tional problems for (CFFD).

2. An intrinsic approach to new fractional derivatives

We assume that f ∈ ACloc([t0,∞)), t0 ≥ 0, and that f (1) is supported
by [t0,∞). The independent variable t ∈ [t0,∞) in (1.1) is dimensionless. In
cases when t has a dimension (time for example), we introduce a parameter
T having the dimension of t and replace t in kernel of CF

t0 D
α
t f (t), by t/T .

The modified definition of (CFFD) proposed in this paper is

CF
t0 D

α
t f (t) =

1

Tα(1− α)

∫ t

t0

exp

(
− α

1− α

t− τ

T

)
f (1) (τ) dτ, t ∈ (t0,∞) .

(2.1)
In this definition one has two parameters, α ∈ (0, 1) and T ∈ (0,∞) . If we
take T = 1, then (2.1) becomes (1.1).

Remark 2.1. The kernel, initially proposed in [11] was modified in
[12] so that the following definition was proposed (see [12], eq. (1))

Dα
t f (t) =

1

(1− α)

∫ t

t0

exp

(
− α

1− α

t− τ

T0

)
f (1) (τ) dτ, t > t0, (2.2)

where T0 has the same meaning as our T. However, the expression (2.2)

does not reduce to f (1) in the limiting case α → 1− since

lim
α→1−

Dα
t f (t) = T0f

(1) (t) , t > t0.

Therefore, the modification of the kernel, in order to make the argument
of the exponential function dimensionless, requires that the normalization
function (in the terminology of [12]) has to be modified with 1

Tα(1−α) instead

of 1
1−α .

2.1. Distributional framework. In order to simplify the notation, we
assume T = 1 and t0 = 0. Let H denote the Heaviside function so that it is
right continuous at 0, that is H(0) = 1. We will consider f ∈ ACloc([0,∞))
as well as functions f in ACloc((−∞,∞)) so that their restrictions on [0,∞)
denoted by fH belong to ACloc([0,∞)).
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Let α ∈ (0, 1) and

ϕα (t) =
1

1− α
exp

(
− α

1− α
t

)
, t ∈ R = (−∞,∞) .

By the use of distribution theory, one has, for any θ ∈ C∞
0 (R),

〈Hφα, θ〉 = 1

1− α

∫ ∞

0
e

−ατ
1−α θ(τ)dτ =

∫ ∞

0
e−αsθ((1− α)s)ds,

which implies

Hφα → δ in S ′(R) as α → 1−.
Then, we define the generalization of (1.1) corresponding to Riemann-
Liouville of fractional derivative, (RLCFFD), with CF kernel

RLCF
0 D

α
t f (t) =

(
(Hϕα)

′ ∗ (Hf)
)
(t), t ∈ (−∞,∞),

so that
CF
0 D

α
t f (t) =RLCF

0 Dα
t f (t)− f (0)ϕα(t), t ∈ (0,∞) .

The properties are stated in the next proposition. The proofs are simple
(in the distribution framework) and they are omitted. In the sequel, the
assumption f ∈ AC([0,∞)) enable us to consider f on (−∞,∞) being
equal zero on (−∞, 0).

Proposition 2.1. Suppose that f ∈ ACloc([0,∞)). Then the following
holds

RLCF
0 D

α
t f (t) =

1

1− α
f(t)− α

1− α
CF

0I
α
t f (t) , t ∈ (0,∞) ,

where the Caputo-Fabrizio fractional integral is defined as
CF
0 I

α
t f (t) = (Hϕα) ∗ (Hf)(t), t ∈ (0,∞).

Moreover,

lim
α→0+

CF
0 I

1−α
t f(t) = f (t) , t ≥ 0,

lim
α→1−

CF
0 I

1−α
t f(t) =

{ ∫ t
0 f (u) du, t > 0,
0, t < 0,

lim
α→1−

RLCF
0 D

α
t f (t) = (Hf)′ (t) = (Hf ′)(t) + f (0) δ (t) , t ∈ (−∞,∞),

lim
α→1−

0
CFDα

t f (t) = (Hf ′)(t) = f ′(t), t > 0,

(f ′ is locally integrable on [0,∞)),

lim
α→0+

RLCF
0 D

α
t f (t) = f(t), t > 0,

lim
α→0+

0
CFDα

t f (t) = f(t)− f (0) , t > 0.
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Next, we consider the distributional Laplace transform (see [27], p.
127). Let f be of exponential growth, that is, f is locally integrable on
[0,∞) and |f(t)| ≤ Meωt, t > 0 (ω ∈ R). Then, the Laplace transform is
defined as

Lf (s) = 〈f(t), e−st〉 =
∫ ∞

0
e−stf (t) dt, s ∈ C, �s > ω.

It is a matter of simple calculations to show that

L (
CF
0 D

α
t f (t)

)
(s) =

1

α+ s (1− α)
[sL (f) (s)− f (0)] , �s > ω,

L (
RLCF

0 D
α
t f (t)

)
(s) =

1

α+ s (1− α)
sL (f) (s) , �s > ω.

Recall that the Fourier transform is defined by

F (f) (ω) =

∫ ∞

−∞
e−iωtf (t) dt, ω ∈ R, f ∈ L1(R).

Changing s with iω, ω ∈ R, we obtain the Fourier transforms of both
types of fractional derivatives (having in mind that supp f ⊂ [0,∞)). Let

Φ (t) = 1
1−α exp

(
− α

1−α |t|
)
, t ∈ R. For the later use, we note that the same

arguments give, for

F (Φ) (ω) =
2α

α2 + (1− α)2ω
, ω ∈ R. (2.3)

Let α = A + iB be a complex number so that A = �α ∈ (0, 1). We
can define CF

t0 D
α
t f (t) by (1.1). Since we prefer to work with real valued

functions after fractional differentiation, we follow our approach presented
in [9] and define combination of (CFFD) of complex order as:

CF
0 D̄

A,B
t f(t) =

1

2

[
T
iB CF

0D
A+iB
t f(t) + T

−iB CF
0D

A−iB
t f(t)

]
, t > 0,

where T is a constant having the dimension of time and can be interpreted
as relaxation time.

3. Some properties of CF
t0 D

α
t f

Since the previous exposition of Section 2 is the same if we consider
t0 > 0 instead of t0 = 0, for the sake of simplicity, we continue with the
assumption t0 = 0.
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3.1. A consistency result. In viscoelasticity and heat conduction prob-
lems with fractional derivatives, in proving consistency of a model with the
Second law of Thermodynamics, the estimate of the following functional is
needed

I (f) =

∫
˜T

0
f (1) (t) CF

0 Dα
t f (t) dt =

1

1− α

∫
˜T

0
f (1) (t)

[
ϕα ∗ f (1)

]
(t)dt,

(3.1)

for arbitrary T̃ > 0. In order to estimate I, we shall examine the properties
of the kernel in (1.1).

Proposition 3.1. Suppose that f ∈ ACloc ([0,∞)) is real valued.

Then, I (f) ≥ 0 for every T̃ > 0.

P r o o f. By (2.3), F (
e−λ|τ |) (ω) > 0, ω ∈ R. The Bochner-Schwartz

theorem ([23], p. 331) implies that e−λ|τ | is a function of positive type
(positive definite). Recall that a function f is of positive type if for any

test function θ ∈ D(R) there holds 〈f(t), θ ∗ θ∗〉 ≥ 0, where θ∗(τ) = θ(−τ),
θ ∗ θ∗(t) =

∫
R
θ(τ)θ∗(t − τ)dτ. This result holds in a more general case

for positive definite tempered distributions which is not needed here. The

derivative of f in [0, T̃ ] is an integrable function so we consider f (1) as a

locally integrable function in [0,∞) equal zero outside [0, T̃ ]. Let us denote

by φn, n ∈ N, a sequence of smooth functions, supported by [0, T̃ ], which

converges to f (1) in L1([0, T̃ ]). Since f is real valued, we take φn, n ∈ N to
be real valued. By the Bochner-Schwartz theorem, for every n,∫

˜T

0

∫
˜T

0
exp (−λ |t− τ |)φn (t)φn (τ)dτdt ≥ 0.

Letting n → ∞, by the Lebesque theorem, we obtain∫
˜T

0

∫
˜T

0
exp (−λ |t− τ |) f ′ (t) f ′ (τ) dτdt ≥ 0.

Since ∫
˜T

0

∫
˜T

0
exp (−λ |t− τ |)φn (t)φn (τ)dτdt

=

∫
˜T

0
φn (t)

[∫ t

0
exp (−λ (t− τ))φn (τ)dτ

]
dt

+

∫
˜T

0
φn (τ)

[∫
˜T

t
exp (−λ (τ − t))φn (t)dt

]
dτ
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= 2

∫
˜T

0
φn (t)

[∫ t

0
exp (−λ (t− τ))φn (τ)dτ

]
dt,

we obtain I (f) ≥ 0. �

Remark 3.1. The result of Proposition 3.1, for the case of Riemann-
Liouville fractional derivative, was proved in [25], [15] and [3]. In [24] the
problem of estimating an integral of type (3.1) was treated for the case
when the lower bound in the integral is −∞ and when the support of the

functions involved in the integration is not [0, T̃ ] but [−∞, T̃ ]. Our result
presented here can be simply transferred to the similar assertion with the
(RLCFFD).

The result of Proposition 3.1 can be generalized in order to derive dy-
namically consistent models for viscoelastic bodies of Kelvin-Voigt type.
We formulate this result as follows.

Proposition 3.2. Suppose that f ∈ ACloc ([0,∞)) and that it is

real-valued. Then, for α ∈ (0, 1) , β ∈ (0, 1) , a, b ∈ R, T̃ > 0,

I (f, a, b) =

∫
˜T

0
f (1) (t)

[
a CF

0 Dα
t f (t) + b CF

0 Dβ
t f (t)

]
dt,

if the following condition is satisfied:

a α (1− β)2 + b (1− α)2 β > 0. (3.2)

P r o o f. Without loss of generality we assume that β ≥ α. Let

Fα,β(τ) =
a

1− α
exp

(
− α

1− α
|τ |

)
+

b

1− β
exp

(
− β

1− β
|τ |

)
, τ ∈ R.

Then, by (2.3),

F (Fα,β) (ω) = 2

[
a

α

α2 + (1− α)2 ω2
+ b

β

β2 + (1− β)2 ω2

]
, ω ∈ R. (3.3)

It follows from (3.3) that F (Fα,β) (ω) > 0, ω ∈ R, if

a α
β2 + ω2 (1− β)2

α2 + ω2 (1− α)2
+ b β > 0. (3.4)

Since

min{β
2 + ω2 (1− β)2

α2 + ω2 (1− α)2
;ω ∈ R} =

(1− β)2

(1− α)2
≤ 1,
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(3.4) leads to (3.2). Thus, as in the previous assertion, we conclude that
F is of positive type. Now we proceed in the same way as in the proof of
Proposition 3.1 and conclude that the assertion holds true. �

3.2. Partial integration. We present integration by parts formula for
CF
0 Dβ

t f (t) . First, we define the right (CFFD) of real order 0 < α < 1
for f ∈ ACloc ([0,∞)) as

CF
t Dα

b f (t) = − 1

1− α

∫ b

t
exp

(
− α

1− α
(τ − t)

)
f (1) (τ) dτ,

where 0 < a < t < b.

Proposition 3.3. Suppose that f ∈ ACloc([a, b)]), 0 < α < 1, 0 < a <
b. Then∫ b

a
f (t) CF

a Dα
t g (t) dt =

∫ b

a
g (t) CF

t Dα
b f (t) dt

+ f (b)

∫ b

a
g (τ)ϕα (b−τ) dτ−g (a)

∫ b

a
f (τ)ϕα (τ) dτ.

(3.5)

The proof is easy and we omit it. Similarly, one can prove the corre-
sponding assertion for the (RLCFFD).

3.3. Approximation formula. Next we derive an approximation formula
needed for the development of an appropriate numerical procedure for
solving differential equations with fractional derivatives. We follow our
approach given in [4, 5] for C

0D
α
t f and continue to consider functions in

ACloc([0,∞)).

Proposition 3.4. Suppose that f ∈ ACloc ([0,∞)) and 0 < α < 1.

Then, for T̃ > 0,

CF
0 Dα

t f (t) = ϕα (t)

∞∑
k=0

αkVk

(
f (1)

)
(t)

(1− α)k k!
, t ∈ (0, T̃ ],

where the convergence is uniform on [0, T̃ ] and

Vk

(
f (1)

)
(t) =

∫ t

0
τkf (1) (τ) dτ, t ∈ [0, T̃ ], (3.6)

are moments of f (1). In particular, the approximation of CF
0 Dα

t f (t) may be
written as

CF
0 D

α
t f (t) ≈ ϕα (t)

N∑
k=0

αkVk

(
f (1)

)
(t)

(1− α)k k!
,
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with
CF
0 D

α
t f (t) =CF

0 Dα
t f (t)−QN+1 (t) , t > t0,

and lim
N→∞

||QN+1 (t) ||L∞([0, ˜T ]) = 0.

P r o o f. We have

CF
0 Dα

t f (t) =
1

1− α
exp

( −αt

1− α

)∫ t

0

∞∑
k=0

αkτk

(1− α)kk!
f (1) (τ) dτ

=
1

1− α
exp

( −αt

1− α

) ∞∑
k=0

αkVk

(
f (1)

)
(t)

(1− α)kk!
, t ∈ [0, T̃ ]. (3.7)

Decompose (3.7) as

CF
0 Dα

t f (t)=
1

1− α
exp

( −αt

1− α

) N∑
k=0

αkVk

(
f (1)

)
(t)

(1− α)kk!
+QN+1 (t) , t ∈ [0, T̃ ],

where QN+1 (t) is the remainder. We have the estimate for QN+1 (t) , t ∈
[0, T̃ ]

QN+1 (t) =
1

1− α
exp

( −αt

1− α

) ∞∑
k=N+1

αk
∫ t
0 τ

kf (1) (τ) dτ

(1− α)kk!

≤ 1

1− α
exp

( −αt

1− α

)∥∥∥f (1)
∥∥∥
L1([0, ˜T ])

∞∑
k=N+1

αktk

(1− α)k (k)!
.

Therefore, the statement of the proposition follows, with Vk

(
f (1)

)
(t) given

by (3.6). �

Remark 3.2. Using the same procedure, we obtain the approximation
formula for CF

t Dα
˜T
f (t) as

CF
t Dα

˜T
f (t) = −ϕα (t)

∞∑
k=0

(−1)k αkṼk

(
f (1)

)
(t)

(1− α)k k!
, t ∈ (0, T̃ ],

where the series converges in the uniform sense and

Ṽk

(
f (1)

)
(t) =

∫
˜T

t
τkf (1) (τ) dτ, t ∈ [0, T̃ ].

We derive now the expression for derivative of CF
0 Dα

t f (t) with respect
to α. We state this as:
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Proposition 3.5. Suppose that f ∈ ACloc([0,∞)), 0 < α < 1. Then

∂ CF
0 Dα

t f (t)

∂α
=

1

1−α

[
CF
0 Dα

t f (t)− 1

(1−α)

(
[t(φα)(t)] ∗ f (1)

)
(t)

]
, t ∈ (0, T̃ ].

(3.8)

P r o o f. Definition gives (1.1) we have

∂ CF
0 Dα

t f (t)

∂α
=

1

(1− α)2
CF
0 Dα

t f (t)

− 1

(1− α)2

∫ t

0
(t− τ)φα(t− τ)f (1) (τ) dτ, t ∈ (0, T̃ ].

Therefore, (3.8) follows. �

Note that the result equivalent to (3.8) for Riemann-Liouville fractional
derivative was obtained in [7] and can be, as above, transferred for the
(RLCFFD).

4. Variational principles of Hamilton type with CF
0 Dα

t y (t)

In this section we present the necessary conditions for an extremum
in the case when a Lagrangian density contains CF

0 Dα
t y (t) . We start with

the generalization of the classical Hamilton principle that we state as the
following two problems.

4.1. Problem 1. Find necessary conditions for the existence of minimum
of a functional

I (y) =

∫ B

A
L
(
t, y (t) ,CF

a Dα
t y (t)

)
dt, α ∈ (0, 1),

where y belongs to a prescribed set U ⊂ ACloc([0,∞)) described below,
[A,B] ⊂ (a, b) ⊂ [0,∞). In this exposition we follow our paper [6].

Let y∗ ∈ U exist so that

min
y∈U

I (y) = I (y∗) . (4.1)

Suppose that

L ∈ C1 ((a, b)× R× R) , (4.2)

t �→ ∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂y

is integrable on (a, b) ,

t �→ ∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

∈ AC (a, b) for every y ∈ AC (a, b) . (4.3)
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Proposition 4.1. Additionally to (4.2) and (4.3), assume that the
set of admissible functions U is

U=
{
y : y ∈ y ∈ AC(a, b), y (a) = y0,

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

∣∣∣∣∣
t=A

= 0,

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

∣∣∣∣∣
t=B

= 0

}
. (4.4)

Then, for t ∈ (a,B) , y∗in (4.1) has to satisfy

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂y

+CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

= 0,

t ∈ (A,B)

CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

−CF
t Dα

A

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

= 0.

t ∈ (a,A) (4.5)

P r o o f. Suppose that (4.1) holds and let y = y∗ + εf. From y (a) =
y0, we conclude that f (a) = 0. Then, by the standard procedure, the

condition dI(y∗+εf)
dε

∣∣∣
ε=0

= 0, gives∫ B

A

[
∂L

(
t, y (t) ,CF

a Dα
t y (t)

)
∂y

f (t) +
∂L

(
t, y (t) , CF

a Dα
t y (t)

)
∂ CF

a Dα
t y (t)

CF
a Dα

t f (t)

]
× dt = 0. (4.6)

Integration by parts formula (3.5), applied to the interval [a,B] , leads to∫ B

a

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

CF
a Dα

t f (t) dt

=

∫ B

a

CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

f (t) dt

+
∂L

(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

∣∣∣∣∣
t=B

∫ B

a
f (τ)ϕα (B − τ) dτ

− f (a)

∫ B

a

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

ϕα (t) dt.

After the use of boundary conditions defined by (4.4), we obtain
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∫ B

A

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

CF
a Dα

t f (t) dt

=

∫ B

A

CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

f (t) dt

+

∫ A

a

CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

f (t) dt

−
∫ A

a

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

CF
a Dα

t f (t) dt.

Integration by parts formula for the interval [a,A] leads to∫ A

a

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

CF
a Dα

t f (t) dt

=

∫ A

a

CF
t Dα

A

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

f (t) dt

+
∂L

(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

∣∣∣∣∣
t=A

∫ A

a
f (τ)ϕα (B − τ) dτ

− f (a)

∫ A

a

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

ϕα (t) dt.

Again, the boundary terms vanish so that∫ B

A

[
∂L

(
t, y (t) ,CF

a Dα
t y (t)

)
∂y

+CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

]
f (t) dt

+

∫ A

a

[
CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

−CF
t Dα

A

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

]
× f (t) dt = 0.

Since f is arbitrary, the fundamental lemma of variational calculus (see [1],
Lemma 3.31 and [16]) leads to (4.5). �

Remark 4.1. Let a = A. Then (4.5) reduces to the known equations
(see [2]) and the elements of the set of admissible functions satisfy the
natural boundary conditions. The interpretation of (4.5)2 subjected to
y (a) = 0, is that y(t) represents the history of the process for t ∈ (a,A)
which contributes to the extremum of the action integral I in the interval
(A,B) .
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4.2. Problem 2. Here we consider the minimization problem of a func-
tional when both y and α are independent variables in the functional. Thus,
we consider

min
y∈U ,α∈A

I (y, α) =

∫ 1

0
L
(
t, y (t) ,CF

0 Dα
t y (t)

)
dt, (4.7)

where U is given by (4.4) and A = [α0, α1] , with 0 < α0 < α1 < 1. We
assume that

L
(
t, y,CF

0 Dα
t y, α

) ∈ C1 ((a, b)× R× R×A) , (4.8)

t �→ ∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂y

is integrable on (a, b) , y ∈ AC (a, b) , α ∈ A,

t �→ ∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

∈ AC (a, b) , y ∈ AC (a, b) , α ∈ A. (4.9)

Proposition 4.2. Suppose that (4.8) and (4.9) hold. If min
y∈U ,α∈A

I (y, α)

= I (y∗, α∗), then y∗ and α∗ satisfy

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂y

+ CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

= 0, t ∈ (0, 1),∫ 1

0

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

×
[
CF
0 Dα

t y (t)−
1

(1− α)2

(
t exp

( −α

1− α
t

)
∗ y(1)

)
(t)

]
dt = 0.

P r o o f. Let y = y∗ + ε1f, α = α∗ + ε1Δα, where f and Δα are fixed.
Substituting this in (4.7), we obtain

I (y∗ + ε1f, α
∗ + ε2Δα) =

∫ 1

0
L
(
t, y∗ (t) + ε1f (t) ,CF

0 Dα∗+ε2Δα
t y (t)

)
dt.

Conditions ∂I
∂ε1

∣∣∣
ε1=ε2=0

= ∂I
∂ε2

∣∣∣
ε1=ε2=0

= 0 imply∫ 1

0

[
∂L

(
t, y (t) ,CF

a Dα
t y (t)

)
∂y

+ CF
t Dα

B

∂L
(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

]
f (t) dt = 0,

Δα

∫ 1

0

[
∂L

(
t, y (t) ,CF

a Dα
t y (t)

)
∂CF

a Dα
t y (t)

∂CF
0 Dα

t f (t)

∂α

]
dt = 0.

(4.10)

By (3.8) in (4.10)2 and the fact that f is arbitrary, we obtain the necessary
conditions of the proposition. �
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Remark 4.2. The application of CF
0 Dα

t f (t) in Viscoelasticity for the
Stress relaxation and the Creep in viscoelastic body of Hooke-Newton type,
Kelvin-Voigt and Generalized Zener model will be given in our paper in
preparation.
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Jimémez, V.H. Olivares-Pregrino, A. Abundez-Pliego, Formulation of
Euler-Lagrange and Hamilton equations involving fractional operators
with regular kernel. Adv. Differ. Eq. 2016 (2016), # 283, 17 pp.; DOI:
10.1186/s13662-016-1001-5.

[14] K. Diethelm, The Analysis of Fractional Differential Equations.
Springer, Berlin (2010).

[15] D. Dolicanin-Djekic, On a new class of constitutive equations for linear
viscoelastic body. Fract. Calc. Appl. Anal. 20, No 2 (2017), 521–536;
DOI: 10.1515/fca-2017-0027; https://www.degruyter.com/view/j/

fca.2017.20.issue-2/issue-files/fca.2017.20.issue-2.xml.
[16] I.M. Gelfand, S.V. Fomin, Calculus of Variations. Dover, New York

(2000).
[17] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications

of Fractional Differential Equations. Elesvier, Amsterdam (2006).
[18] V. Kiryakova, Generalized Fractional Calculus and Applications. Pit-

man, Longman, Harlow & Wiley, New York (1994).
[19] V. Kiryakova, The special functions of fractional calculus as generalized

fractional calculus operators of some basic functions. Comput. Math.
Appl. 59 (2010), 1128–1141.

[20] A.N. Kochubei, General fractional calculus, evolution equations, and
renewal processes. Integr. Equ. Oper. Theor. 71 (2011), 583–600.

[21] J. Losada, J.J. Nieto, Properties of a new fractional derivative without
singular kernel. Prog. Fract. Differ. Appl. 1 (2015), 87–92.

[22] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelastic-
ity. An Introduction to Mathematical Models. Imperial College Press,
London 2010.

[23] M. Reed, B. Simon,Methods of Modern Mathematical Physics, I: Func-
tional Anaalysis. Academic Press, New York (1980).
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