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Abstract

There are many numerical algorithms for solving the fractional-order
ordinary differential equations (FODEs). They are usually very different
in nature, and it is difficult to compare their performances. To solve this
problem, a set of five benchmark problems of different categories of FODESs
with known analytical solution are designed and proposed, they can be used
as benchmark problems for testing the numerical algorithms. A Simulink
block diagram scheme is used for solving these benchmark problems, with
computing errors and the running times reported.
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1. Introduction

In recent years, fractional-order ordinary differential equations (FODEs)
are widely used in the accurate descriptions of complicated dynamic sys-
tems in diverse fields of science and engineering. A prominent example
is the Bagley—Torvik equation [I8] - a linear multi-term FODE, and many
fractional-order control systems are described by this kind of the equations.

(© 2017 Diogenes Co., Sofia
pp. 1305-1312, DOI: 10.1515/fca-2017-0068 DE GRUYTER



1306 D. Y. Xue, L. Bai

Since very few FODEs can be solved analytically, numerical algorithms are
needed.

Many classical and recently published numerical algorithms for solv-
ing FODEs are available, such as the fractional-order linear multi-step
algorithm, and it is very efficient to the FODEs with zero initial condi-
tions [I2HI4]; the closed-form numerical solution is presented for linear
FODEs with zero initial conditions in [23]. However, the higher precision
solutions cannot be obtained by these algorithms, when there exist nonzero
initial conditions in the FODEs. Although the FODEs with nonzero initial
conditions can be solved by the matrix algorithm [I7], the unified approach
for solving nonlinear FODEs is not presented. The nonlinear FODEs can
be solved by the predictor—corrector-like algorithms [4H8LT0OL1T], however,
they are not quite efficient. A valuable nonlinear FODE is presented in [6],
the corrected version can be used as a benchmark problem for testing al-
gorithms. For fractional-order state space equations, a sequential updating
discrete algorithm is used in [16]. A numerical algorithm for distributed
order differential equations is proposed in [9]. Some new algorithms are also
presented recently, such as the algorithms in [2|3l[21]. Some of the existing
algorithms claimed to be of high accuracy, but the orders are restricted
to the range (0, 1), while others are restricted to handling only zero initial
condition problems. Besides, there is no efficient algorithms available for
solving implicit FODEs.

It is also noted that in most of the original papers of the existing algo-
rithms, each algorithm comes with its own dedicated numerical examples,
therefore it might not be fair to cross comparing the performances of them.
Benchmark problems of different categories of FODEs are badly needed to
assess the accuracy and efficiency of the algorithms. A set of five benchmark
problems with analytical solutions are designed and proposed in [I]. In this
paper, they are further enhanced and deliberately made more challenging.

To the authors’ knowledge, there is not a single existing numerical
algorithm capable of solving all the five benchmark problems. An attempt
is made in [20] by introducing unified block diagram-based solution schemes
aiming at handling Caputo differential equations of any complexity. Some
high precision algorithms for many kinds of FODEs are also proposed in
[20], with their MATLAB implementations provided in the FOTF Toolbox
[19]. In this paper, the difficulties, accuracy and time elapse analysis for
all the benchmark problems are provided using the block diagram-based
schemes and other methods, and it is believed that the results given here are
the most accurate ones so far obtainable by any existing approaches, under
double-precision data type, and the accuracy are usually several orders of
magnitude higher.
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2. Benchmark Problems

A set of five benchmark problems for the assessment of FODE numerical
algorithms are designed with known analytical solutions. Some of the
benchmarks problems are inspired by the existing examples in literature,
and deliberately made more challenging.

2.1. Benchmark Problem 1. A simple one-term FODE is given by

1 0.3
S 0<t<1
r(13) =heo
707y =4 TGP 2 21)
e )
r(13)  T(23) ’

The initial condition is y(0) = 0, and the solution interval is ¢ € (0, 2).
The analytical solution of equation (2.I]) is a piecewise function
£, 0<t<l,
y(t)_{ t—(t—1)2, t>1.

2.2. Benchmark Problem 2. A linear multi-term FODE is given by

Y"(8) + 520y (t) +y"(8) + 4y (8) +§ 2 Cy(t) + dy(t) = 6eost,  (2.2)

with the nonzero initial conditions y(0) = 1, ¥/(0) = 1, y”(0) = —1, and
the analytical solution is y(t) = v/2sin (¢ + m/4), with ¢ € (0,5000).

2.3. Benchmark Problem 3. A nonlinear explicit FODE is given by

CVy(t) = —+5- A=Y 005,y e [y 0], (23)
Ei15(—t)

where E; 15(-) is a two-parameters’ Mittag-Leffler function. The initial
conditions are y(0) = 1, y’(0) = —1, and the analytical solution is y(t) =
e !, t €(0,2). Equation ([Z3) is inspired by [6], where the one-parameter
Mittag-Leffler functions are corrected to two-parameter ones, and the high-
est order is deliberately changed to an irrational number v/2, such that the
FODE is no longer a commensurate-order one.

2.4. Benchmark Problem 4. An implicit nonlinear FODE is given by

6 20%y(8) § 24 %y(8) + 6 20%y(1) § 20 Ty(t)

t (2.4)
= —2 [Buis(=t/2)BL12(~t/2) — Biar(=4/2) Eva(—t/2)].
with the initial conditions y(0) = 1,4/(0) = —1/2, and the analytical

solution is y(t) = e~%/2, and t € (0, 10).
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2.5. Benchmark Problem 5. A fractional-order state space model is

given by 1
S0l = = (V) = 05)(=(0) - 0.3) + Vi)
§P02y(t) = T(2.2)(a(t) — 1) (2.5)
0964(t) = L8 1y _05).

2.2

The initial conditions a(re m)(O) =1, y(0) = 0.5, 2(0) = 0.3, and the
analytical solutions are z(t) =t + 1, y(t) = t12 4+ 0.5, 2(t) = t1* + 0.3, and
t€(0,5). 3. Solutions and Comments

In this section, our results to all the benchmark problems are provided,
and the reusable solvers and Simulink models are provided with the new
versions of FOTF Toolbox. Detailed Simulink model structures and related
reusable MATLAB codes are reported in a companion PDF file in the
toolbox. In this paper, only major results are provided. All the elapse time
are measured on the same laptop - Lenovo Yoga 5 Pro, equipped with Intel
i7-7500U CPU at 2.90GHz, 16GB RAM and 1TB SSD.

(1) Solutions to benchmark problem 1. The difficulties in the equation
is that the right hand side function in the equation is a piecewise one.
The design of this benchmark problem is motivated by Dr Yiheng Wei of
University of Science and Technology of China.

The Simulink model for the differential equation is created and stored
in file bplmodel.slx, downloadable with FOTF Toolbox. By choosing the
expected frequency range as (107°,10°) in the Oustaloup’s filter [15], and
an order of N = 25, the maximum error obtained is 6.0761 x 1076, and the
solutions can be obtained with 10 seconds, with 78468 points computed. If
stiff solver odelbs in Simulink is adopted, the time elapse is only 0.38 sec-
onds, with only 1467 points computed, and the maximum error is virtually
the same.

(2) Solutions to benchmark problem 2. The time duration is deliber-
ately set to t € (0,5000). It is obvious that none of the existing fixed-step
algorithms can be used, since if the step-size is selected relatively small, the
total computational load may be too heavy even for modern computers.

Simulink model bp2model.slx can be established, and with the param-
eters (107°,10°%), N = 25, maximum error as low as 1.2945 x 107! can be
achieved, with time elapse of 12.63 seconds, and a total of 617581 points
computed. If Runge-Kutta—Felhberg algorithm is used, a smaller time
interval ¢ € (0,100) can be tried, and 7231268 points may be computed,
with around 151 seconds. The maximum error is virtually the same. It is
strongly suggested that the stiff equation solvers in Simulink be adopted
for efficient solutions.
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(3) Solutions to benchmark problem 3. Many existing algorithms are
established based on the assumptions that the original equations can be
expressed by commensurate-order systems, while in this particular example,
since an irrational order is involved, the equation is an incommensurate-
order one. Many of the existing algorithms cannot be used at all in solving
incommensurate-order FODEs.

With Simulink modeling technique, the model bp3model.slx can be
established. When the parameters of the Oustaloup filters are set to (1077,
10%), N = 25, the maximum error is 2.0917 x 1075, and the time needed is
only 0.57 seconds.

If the o(h?) algorithm in [20] is used, with step-size h = 0.0001 and
p = 2, the maximum error is as small as 3.5314 x 1078, about 60 times
more accurate than the Simulink result, however, the time required is 318
seconds, about 550 times more time needed. Large step-sizes are also
allowed in the o(hP) algorithm. For instance, if h = 0.01, p = 4, the
maximum error is 4.2143 x 1078, with 83.2 seconds.

If the algorithm in [16] is used, for the interval ¢ € (0,1), with step-
size of h = 0.00001, the maximum error is 2.1064 x 1075, and the time
elapse is 156 seconds, and it begins to diverge when ¢ is larger. It should
be noted that the time consumption in this algorithm is highly nonlinear
with respect to h. It is not suitable to further reduce h to achieve more
accurate results.

(4) Solutions to benchmark problem 4. Since the original FODE is an
implicit one, and the initial value of § 2-2y(t) at ¢t = 0 is likely to be zero,
the original FODE cannot be converted into an explicit one, by merely
dividing both sides by 009,9'2y(t). To the authors’ knowledge, there is no
other efficient algorithms capable of tackling implicit FODEs, the Simulink
scheme may be the only choice. The Simulink model bp4model.slx can
be used in describing the implicit Caputo equation, and with (1075,10°),
N = 25, the maximum error is 3.6868 x 10~°, and the time needed is 289.47
seconds.

Since this equation is an implicit one, algebraic loops in Simulink model
are unavoidable, which means that within each computation step, an alge-
braic equation is solved, which makes the execution of the model very time
consuming.

(5) Solutions to benchmark problem 5. Again, this benchmark prob-
lem is less challenging, compared with others. If the parameters of the
Oustaloup filters are selected as (107°,10°), N = 25, the maximum error
is 3.5656 x 10™*, within 3.83 seconds.
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It should be noted that since signal z(¢) increases with ¢ rapidly, abso-
lute maximum error on z(t) is not a good measure to describe the accuracy
of the numerical algorithms. Relative errors may be more meaningful.

For this particular example, if the algorithm in [16] is used, with fixed
step-size of h = 0.00001, the maximum error is reduced to 1.1071 x 1075,
and the codes runs about two hours. The result is more accurate than
the Simulink results, however is is too time demanding. If time interval
is changed to t € (0,10), such a small step-size definitely cannot be used,
while in Simulink model, the time consumption is almost linear with respect

to terminate time.
4. Concluding Remarks

A set of five benchmark problems, covering wide categories of FODE
types, is designed and proposed. They can be used in the assessment of
numerical algorithms for fractional-order ordinary Caputo equations. It
can be seen that all of them can be solved with the unified high efficiency
Simulink based solvers.

The Simulink models involved are usually stiff, therefore, it is suggested
that stiff equation solvers such as odelbs and odell3 in Simulink can be
adopted for fast and efficient solutions.

The parameters (wy,wy) and N of Oustaloup filters or their modified
versions [22] are important in approximating fractional-order derivative or
integral activities. For all the solutions, they are selected the same. One
may fine-tune them accordingly if necessary. For instance, if the error is
large when t is large, wy, can be reduced.

All the FODEs studied in the paper come with analytical solutions,
however, in real applications, it is not the case, since most of the FODEs
have no analytical solutions, and numerical solutions are the only way
to study them. If the analytical solutions are not known, of course, the
validation process in this paper cannot be used. Alternatively, two different
set of Oustaloup filter parameters, or Simulink solvers or other control
parameters can be used. If they yield virtually the same results, the
solutions can be regarded as validated, otherwise, use better parameters,
for instance, wider frequency band, or higher order in Oustaloup filters and
try again, until satisfactory results are obtained.

Since Simulink with various of variable-step algorithms are involved in
the solutions, it is not possible to mathematically prove the precisions or
error bands of the algorithms.
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