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Abstract

This paper is devoted to the fractional generalization of the Fokker-
Planck equation associated with a nonlinear stochastic differential equation
on a bounded domain. The driving process of the stochastic differential
equation is a Lévy process subordinated to the inverse of Lévy’s mixed sta-
ble subordinators. The Fokker-Planck equation is given through the general
Waldenfels operator, while the boundary condition is given through the gen-
eral Wentcel’s boundary condition. As a fractional operator a distributed
order differential operator with a Borel mixing measure is considered. In the
paper fractional generalizations of the Fokker-Planck equation are derived
and the existence of a unique solution of the corresponding initial-boundary
value problems is proved.
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1. Introduction

The Fokker-Planck equation, including fractional versions, play an im-
portant role in the modeling of various random processes. Its applica-
tions can be found in statistical physics [0, 13 B5], quantum mechanics
[6, 29], biology [7, 26], finance [23] 35], just to mention a few. The most of
these applications assume an idealistic model in which a random quantity
may take values in the whole d-dimensional space RY. Fractional general-
izations of the Fokker-Planck equation in this case are obtained in works
[9, 12] 14] 15], 24} [37]; see also references therein. The connection of a wide
class of fractional Fokker-Planck equations with their associated stochastic
differential equation driven by time-changed Lévy processes was studied in
paper [14].

What concerns stochastic processes in a bounded domain, they are also
spread out broadly, an example of which is a diffusion in a bounded region.
The essential difference of the stochastic process in a bounded domain from
the case of stochastic processes in R? is the influence of the boundary or
near boundary processes to the whole picture. There is a rich literature on
the stochastic processes and the associated (non fractional) Fokker-Planck
equations on a bounded domain; see recent monograph by Taira [30].

In the present paper we will discuss fractional generalizations of Fokker-
Planck-Kolmogorov (FPK for short) equations associated with nonlinear
stochastic differential equations on a bounded domain with a smooth bound-
ary. The fractional diffusion and associated FPK equation on a bounded
domain was studied in papers [II, 8 10, 21, 32] in various particular cases.
Our goal in this paper is to study general initial-boundary value problems
describing stochastic processes undergoing inside a bounded region, as well
as on its boundary. We also discuss initial-boundary value problems for
fractional FPK equations associated with stochastic differential equations
driven by fractional Brownian motion on a bounded domain. Note that
fractional FPK equation in the whole space R¢ associated with stochastic
processes driven by fractional Brownian motion was considered in papers
[2, 5, 15l [16].

For reader’s convenience we start the discussion with a well known
particular cases of the influence of the boundary and related boundary
conditions. Consider a nonlinear stochastic differential equation

dXt = b(t,Xt)dt + O'(t,Xt)dBt, XO =, (11)

where z € R? is a random vector independent of m-dimensional Brownian
motion By, and the mappings

b:(0,00) x R 5 RY 5 :(0,00) x RY — RP*¥™
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satisfy Lipschitz and linear growth conditions. Namely, there exist positive
constants C; and Cy such that for all z,y € R? the inequalities

d d m
Do 1ot 2) = bt )+ DD lowelt, x) = ope(t,y)l < Cilz —yl, (1.2)

k=1 k=1 ¢=1
and

Z\bktaz|+ZZ\akgtx|<Cg(1+|x\) (1.3)

k=1 =1
hold. The stochastlc differential equation (I.1]) is understood as
t t

Xt = Xo +/b(s,X5)ds + /O'(S,Xs)dBS, (1.4)
0 0
with the second integral in the sense of It0.
The backward Kolmogorov equation associated with SDE (L.1]) in terms
of the density function u(t,x) of X¥ = (X¢|Xo = z) is

t
8“2;”“’) = A(u(t,z), t>0,z € R (1.5)
where t-dependent differential Operator A( ) is defined in the form
d
0?
= by (t t, 1.
; k(jx +Za]k y@m;@xk (16)

with (d x d)-matrix-function {aj,k(t, a:), 7, k: = 1...d}, coinciding with the
matrix-function 3o (t,z)o” (¢, ). Here o7 (t,z) is the matrix transposed to
the matrix-function o (¢, x). The corresponding Fokker-Planck equation, or
forward Kolmogorov equation, has the form

Ju(t, x)
ot

where A* is the formally adjoint operator to A(t). Both equations (L.3]) and
(L7) are accompanied with the initial condition

u(0,z) = up(x), =z e€RY, (1.8)

where ug(x) is the density function of the initial vector Xjy. Unifying the
terminology used in these two equations we call the pair of equations (L5l)
and (L17) the FPK equation, the term used throughout the current paper.

If the solution process X; of the stochastic differential equation in (LTI)
is allowed to change only in a bounded region Q C R¢ with a smooth
boundary 02, then the probability P(X; € R%\ Q) of X; being out of the
region (Q is zero. The associated FPK equation in this case needs to be
supplemented by boundary conditions. In order to see in what form the

= A*(t)u(t,z), t>0,z€RY, (1.7)
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boundary conditions emerge, we need to introduce the notion of probabil-
ity current, a d-dimensional vector field ®(t,x), components of which are
defined by

d
O (t,x) = bi(t Zi[ajkta:p(t,x)], kE=1,...,d.

Jj=1 %;

Using the probability current, one can write forward FPK equation (7))
in the form of a conservation law:

apta: Z8<I>kt:1:
8:L‘k

7

or, the same,

Op(t
p(alzx) +V - @(t,x) =0,
where V = (52 BT ..,aixd) is the gradient operator and the symbol “-”

means the dot product of two vector objects.

Let S be a (d—1)-dimensional hyper-surface in 2, and n,, = € S, be an
outward normal to S at the point € S. Then the total flow of probabilities
through the hyper-surface S can be calculated by the surface integral

/ ®(t,x) - nydS.
S

Two boundary conditions are common in the study of stochastic processes
in a bounded region:

(a) reflecting boundary condition, and

(b) absorbing boundary condition.
The reflecting boundary condition means that there is no probability flow
across the boundary, leading to the condition

®(t,z) - n, =0, t>0, ze€N. (1.9)

In this case X; will stay in the region 2 forever and be reflected when X;
reaches the boundary 0f2. The absorbing boundary means that X; will be
absorbed by boundary as soon as X; reaches the boundary, leading to the
condition

p(t,x) =0. t>0, z €N (1.10)
Let a boundary operator B be defined in the form
0
Bo(z) = p(z)p(z) + V(m)a:f . t>0, z €00, (1.11)

€T
where the functions p(z) and v(x) are continuous on the boundary 052,
satisfying some physical conditions discussed below, and n,, is the outward
normal at point x € 9. In order to define operators that will be used
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in the FPK equations associated with the SDEs in a bounded domain we
introduce the following spaces:

C%(Q) := {p € C*(Q) : Bp(z) = 0,2 € 9Q},

with the boundary operator B defined in (ILII]). Introduce the operator
Ap(t) on the space C’%(Q):

Ap(t) == {A(t Zbk (4,0 22 Z a; (t,7) Pol) o Q}
=1

— Oxy, I Ox;0xy,’

In other words the operator Ap(t) formally is the same as the operator A(t)
defined in (IZ6), but with the domain Dom(Ag(t)) = CE(Q) for each fixed
t > 0. The operator Ag is linear and maps the space CE(Q2) to C(€2).

Both boundary conditions for stochastic processes in a domain with
absorbing or reflecting boundaries discussed above can be reduced to the
boundary condition

Bp(t,z) =0, t>0, x€ 0.
Therefore, the forward and backward FPK equations in the case of bounded
domain in terms of the density function u(t, z) of Xj¥ = (X;| Xy = x) can be

formulated with the help of the operator Ag. Namely, the backward FPK
equation is given by

t
8“2;” = Ag(t)u(t,z), t>0,z€Q,
and the forward FPK equation is given by
ou(t, )

5 = Ap(t)u(t,z), t>0,z €9,

where A is the formally adjoint operator to Ag.

Thus, the explicit form of the FPK equation associated with a SDE
with drift and diffusion coefficients independent of the time variable ¢ is
given by the initial—boundary value problem

d 2
8utaz Zb 8utaz Zai,j(l’)a u(t, z) 150, zeQ

8$J i1 8%181‘]
(1.12)
/
Bu(t,z') = M(m/)%;f) + (@ u(t,2') =0, t>0, 2 €99, (1.13)
u(0,x) = do(x), z€Q, (1.14)

where b;(z),j = 1,...,d, are drift coeflicients and a; j(x),4,j = 1,...,d,
are diffusion coefficients; the functions u(z’) and v(2’) are continuous func-
tions defined on the boundary 9€). It is well known that the stochastic
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process solving SDE corresponding to the FPK equation in (LI2)-(LI4) is
continuous. Such a stochastic process represents a diffusion process of a
Markovian particle.

The paper is organized as follows. Section 2] provides necessary prelim-
inary information on general (integer order) FPK equations through the
Waldenfels operator and Wentcel’s boundary conditions. The correspond-
ing stochastic processes represent solutions of associated stochastic differ-
ential equations on a bounded domain with combined continuous diffusion,
jump, and other relevant phenomena. The main results of the paper is in
Section[3l In this section we derive initial-boundary value problems for frac-
tional order FPK equations. The associated stochastic processes represent
solutions of stochastic differential equations in a bounded domain with an
appropriate time-changed driving processes. In this section we also prove
the existence of a unique solution to the obtained initial-boundary value
problems.

2. Preliminaries and auxiliaries

FPK equation (LI2])-(TI4]) does not take into account jumping events
and some specific phenomena (diffusion on the boundary, jumps on the
boundary or into the domain, viscosity, etc.) which may occur on the
boundary. The general case with jump and viscosity effects involve pseudo-
differential operators in the FPK equation and in the boundary condition.
The theory of pseudo-differential operators was first developed by Kohn
and Nirenberg [20] and Hérmander [I7]. An operator A is called pseudo-
differential with a symbol o4(x, &), if

Af@) = g | ot e e (2.1)

where f(€) is the Fourier transform of f:

F© = | fleda.
R4

The symbols of pseudo-differential operators in [20} [17] are smooth and
satisfy some growth conditions as |£| — co. However, symbols of pseudo-
differential operators considered in the present paper are not smooth. We
refer the reader to works [3, (I8, 33] where appropriate classes of symbols
are studied.

For simplicity we assume that Q@ C R is a bounded domain with a
smooth boundary 9Q C R?~!. In the general case the (backward) FPK
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equation can be formulated as follows:

&ug;: 2) = A(z, D)u(t,x), t>0, z €, (2.2)
W(az',D)u(t,2’) =0, t>0, 2’ €09, (2.3)
u(0,x) = ug(z), =€, (2.4)

where A(z, D) is a second order Waldenfels operator acting on the space
of twice differentiable functions defined on 2, that is

A(z, D)p(x) = co(x)p(z) (2.5)
d T d 2 T
+ Y 0D+ S 0y 5
i=1 ¢ ij=1 ki
d
()
+ (y) — o(z, )< () = > (yi— ) )]V(m,d), T € Q,
/ oy y) | ¢ ; y o y

Q

and W(a2/, D) is a boundary pseudo-differential operator defined on the
space of twice differentiable functions defined on 92 through the local co-
ordinates @’ = (x1,...,24-1) € 00 (see [30]):

W(2', D) = Q(2, D) (2.6)
+ ,u(z')gin —§(2")A(2', D) + Ty (2, D) + Ta(2', D),

with (pseudo)-differential operators

, N  OPp(a!)
Q(«', D)p(a') = ; Ga@) g e (2.7)
< oonde)
+_ 8" =5 = +(@)p(a),
j=1 I
T2, D)p(') (2.8)
Con e dp(a') ;o
= [ o) =no) [ ela) + Y- 205 | |,
o0 k=1 v
and
Ts(2/, D)pl(a) (2.9)
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Here 7j(2',y’), j = 1,2, are local unit functions and v;(2’,dy’),j = 1,2,
are Lévy kernels satisfying some conditions indicated below, and ug is the
density function of the initial state Xy. If the initial state Xy = 0, then
up(x) = dp(x). The boundary condition (2.3)) is called a second order Went-
cel’s boundary condition, to credit Wentcel’s contribution [36] to the theory
of diffusion processes.

Obviously, initial-boundary value problem (2.2)-(2.4) recovers (L.12])-
(CI) if v(z,) = 0, Q(&', D)p(a') = (2 )p(e’), 8(x') = 0, and vy(a',-) =
0, j = 1,2. Moreover, one can work with coeflicients a;;(z),i.7 =1....,n,
bj(z),j =1,...,d, co(x), and the symbol o4(z, £) of the operator A(z, D) in
([2.5)) satisfying mild conditions similar to Lipschitz (L2]) and linear growth
condition (I.3]). However, in this paper, for simplicity, we assume the fol-
lowing conditions:

(i) ai(z) € C=(Q) N C(Q) and a;j(z) = aji(z) for all 4,5 =1,... .4,
and z € €2, and there exists a constant ag > 0 such that

d
Z az’j(l')ngj > a0|£|2, x € ﬁ, e Rd;
2,7=1

(ii) bj(x) e C*(QY)NCQ), j=1,...,d;

(iii) co(x) € C®(Q)NC(Q), and co(z) <0 in Q;

(iv) the local unity function ¢(z,y) and the kernel function v(z, dy) are
such that the symbol o4(z,§) of the operator A(x, D) belongs to
the class of symbols S(Q x RY) = C(Q x RY) N C®(Q x (R?\ G)),
where G € R? is a set of d-dimensional measure zero; see [33] for
the theory of pseudo-differential operators with such a nonregular
symbols.

Equation (2.2]) describes a diffusion process accompanied by jumps in )
with the drift vector (by(z),...,b,(x)) and diffusion coefficient defined
by the matrix-function a; j(x), and jumps governed by the Lévy measure
v(z,-). We assume additionally that the condition

(C1)  A(z, D)[1(z)] = co(x) +({[1 — ¢(z,y)lv(z,dy) <0, e,

is fulfilled to ensure that the jump phenomenon from z € Q) to the the out-
side of a neighborhood of z is “dominated” by the absorption phenomenon
at x (see [30] for details).

The coefficients a;j(2), 4,5 = 1....,d, B;(z'),j =1,...,d, and v(z’) of
the operator Q(z, D) in (2.5]) satisfy the following conditions:
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(a) aj(z') € C®(0Q) and a;j(z’) = aji(2f) for all 4,5 = 1,...,d — 1,
and 2/ € 99, and there exists a constant a > 0 such that
d—1
D ()& > aol¢?, 2 €09, ¢ eRTY
ij=1

(b) Bj(z") € C>®(09), j=1,...,d;

(c) v(2') € C**(0R), and v(z') < 0 in ON.

The symbols or, (2, £) and or, (2, €) of the boundary pseudo-differential
operators I'1(2/, D) and T'y(2’, D) in equations (Z8) and (2.9) satisfy the
following condition:

(d) the local unity functions ¢i(x,y), k = 1,2, and the kernel function

vi(z,dy), k = 1,2, are such that the symbols or, (z’, §) of operators
I'y(z', D),k = 1,2, belong to the class of symbols S(99,RY) =
C=(0Q x (R?\ Gp)), where Gy € R? is a set of d-dimensional
measure zero.

The boundary condition (2.3]) with the operator W(x, D) defined in
equations (Z.6)-(29]) describes a combination of continuous diffusion and
jumping processes undergoing on the boundary, as well as jumps from the
boundary into the region, and the viscosity phenomenon near the boundary.
Namely, the term

d—1

d—1
0u(t,x') ou(t,z’) ou(t,z’)
. / ) / ) / 9
> (e Get) 3 () 2 o) 24 )
]J{Z:l ]:]_

governs the diffusion process on the boundary, the term ~y(z')u(t,z’) is
responsible for the absorption phenomenon at the point 2/ € 01, the

term p(z’ )ani, expresses the reflexion phenomenon at 2’ € 91, the term

5(m’)A(m’,D)Z(t,x’) expresses the viscosity near 2/ € 92, and the terms
[y (2', D)u(t,2") and T'a(2’, D)u(t, ') govern jump processes on the bound-
ary and jump processes from the boundary into the region, respectively.
We assume that the condition

(€2 W, D)1@)] =) + / 1 — (e, (e dy)
o0

T / 1= (s y)a(al,dy) <0, ' € D9,
Q

is fulfilled to ensure that the jump phenomenon from z’ € 9 to the outside
of a neighborhood of 2’ on the boundary 9 or inward to the region Q is
“dominated” by the absorption phenomenon at z’.
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We also assume the following transversality condition of the boundary
operator W :

(C3) fQ vo(a!,dy) = oo, if u(2’) =46(2')=0
Fractional order FPK equations use fractional derivatives, and in more
general case, fractional distributed order operators. Below we briefly recall
the definitions and some properties of these operators referring the reader to
the sources [19] 22], 33\ [34] for details. By definition, the Caputo-Djrbashian
derivative of order 0 < 8 < 1 is defined by

1 b g'(s)ds
D t 2.1
o) = 5= | e <t (2.10)
where 7 > 0 is an initial point and I'(z), z € C\ {...,—2,—1,0}, is Euler’s
gamma function. We assume that the function ¢(t), ¢ > 0, is a differentiable

function. We write DY when 7 = 0. Making use of the fractional integration
operator of order a > 0

1 t
) = =—— [ (t—5)*"f(s)d
1) = g7 [ =9 p(s)as

we can write TDf also in the operator form
d
D= g

* dt

In our further analysis, without loss of generality, we assume that 7 = 0.

Let p be a Borel measure defined on the Borel sets of the interval (0, 1).
The distributed order differential operator with the mixing measure u, by

definition, is
Dyt /Dﬁ du(3

Two functions IC,(t) and ®,(s) defined with the help of the measure p
respectively by

L 48
Ku(t) :/0 md/ﬁ(ﬁ), t>0, (2.11)
1
D, (s) :/0 sPdu(B), s > 0. (2.12)

play an important role in our further analysis. We denote by g(s) the
Laplace transform of a function g, that is

i(s) = /0 " g0yt

One can verify using the Laplace transform formula for fractional deriva-
tives,



FRACTIONAL FOKKER-PLANCK EQUATIONS ... 1291

[DYg)(s) = sg(s) — s 1g(0+) (2.13)
that the formula

Dpesl(s) = @u(5)5) — gl0-+) 2L

2.14
. ,8>0, ( )

e

holds. Moreover, using the formula [t=5](s) = I'(1 — 8)s°~! (see [33]), one
can also verify that the relation

Ko(s) = Puls) oo, (2.15)

holds.

The widest class of processes for which the It6 calculus can be extended
is the class of semimartingales [27]. A semimartingale is a cadlag process
(the processes with paths which are right continuous and have left limits)
which has the representation (see details in [27]) Z; = Zy + V; + M;, where
Zy is a d-dimensional random vector, V; is an adapted finite variation pro-
cess, and M; is a local martingale. An example of a semimartingale is
a Lévy process defined as follows. A stochastic process L; € R? t > 0,
is called a Lévy process if the following three conditions are verified: (1)
Lo = 05 (2) L; has independent stationary increments; (3) for all €, > 0,
limg_y; P(|Ly— Lg| > €) = 0. Lévy processes have cadlag modifications. Lévy
processes are fully described by three parameters: a vector b € R%, a non-
negative definite matrix ¥, and a measure v defined on R?\ {0} such that
[ min(1, |z|?)dv < oo, called its Lévy measure. The Lévy-Khintchine for-
mula provides a characterization of Lévy process through its characteristic
function ®;(¢) = 'Y€, with the Lévy symbol (see, e.g. [28])

V) = ib.8) = (6O + [ (¢ — 1= i &)1 gz da). (210
R4\ {0}

A Lévy subordinator is a nonnegative and nondecreasing Lévy process. A
Lévy subordinator with the Lévy symbol W(s) = s°, s > 0, is called a 8-
stable Lévy subordinator. The composition of two Lévy processes is again
a Lévy process. In particular, a time-changed process Lp, with a stable
Lévy subordinator D; is again a Lévy process. Transition probabilities
of such a time-changed process satisfy FPK type equation with a pseudo-
differential operator on the right hand side, whose symbol is continuous
but not smooth. However, the composition Lyy,, where W; = inf{r > 0 :
D, > t}, the inverse to the stable subordinator Dy is not a Lévy process,
but still is a semimartingale. This drastically changes the associated FPK
equation: now it is a time-fractional pseudo-differential equation [14] [15],
implying non-Markovian behaviour of the process.
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The properties of the density function of the inverse process W; are
listed below in the more general case when W; represents the inverse of a
process which belongs to the class S, of mixtures of an arbitrary number
of independent stable subordinators with a mixing measure p. Namely, a
non-negative increasing Lévy stochastic process D; belongs to the class S,
if

InE [e_SDt] = —t®,(s).

It is known (see e.g. [28]) that mixtures of independent stable processes
of different indices are no longer stable. For a stochastic process in S,, we
use the notation D, ; showing the dependence on the measure y, and for
their inverses the notation W, ;. The density function of W, ; is denoted by
f1 (7). Note that such mixtures model complex diffusions and other types
of stochastic processes with several simultaneous diffusion modes. Their
associated FPK type equations are distributed order differential equations
(see e.g. [19, 22, [34]).

LEMMA 2.1. The density function f}'(T) possesses the following prop-
erties:

(a
(b
(

(d

limy_y o f{'(1) = do(7), T > 0;

lim, 1o f{'(7) = Ku(t), t > 0;

lim; 00 fﬂ(T) =0, t>0;

Loss[f1(7)](s) = 2 e=m2u) 5 > 0, 7 > 0,

o — —

LEMMA 2.2. The function f}'(r) satisfies for each t > 0 the equation

D ff () =~ FE7) — ol ), (2.17)

in the sense of distributions.
For the proofs of these lemmas we refer the reader to [33].

3. Main results: fractional FPK equations associated with SDEs
on a bounded domain

In this section we derive fractional order FPK equations associated
with SDEs on a bounded domain as initial-boundary value problems. We
also prove existence of a unique solution to obtained initial-boundary value
problems.

THEOREM 3.1. Let X; be a stochastic process associated with the
FPK equation (2.2)-(24]) and W, be the inverse to a Lévy’s subordinator
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D,; € S, with a mixing measure ju. Then the FPK equation associated
with the time changed stochastic process Xy, , has the form

Dyv(t,x) = A(x, D)v(t,z), t>0, €, (3.1)
W(z', D)v(t,2') =0, t>0, 2’ €9, (3.2)
v(0,2) = up(x), z €.
where ug € C3,(Q) = {p € C*(Q2) : W(2/, D)p(x) = 0}.

P r o o f. Let T} be the semigroup with the infinitesimal generator A =

Az, D) : C(Q) — C(Q), with the domain
D(A) = {¢ € C*(Q) : W(z/, D)p(2') = 0, 2’ € 90}.
Then the unique solution of problem (2.2])-(2.4]) has the form
u(t,z) = Tyug(x) = Elug(Xy)| Xo = =,

indicating connection of the solution u(t,z) of the FPK equation in (2:2])-
[24]) with the stochastic process X;. Now, consider the function v(t,z)
obtained from the latter replacing X; by Xw, ,, that is

v(t, ) = Elug(Xw,, )| Xo = 7]

_ /0 " Eluo(Xuw, )| Wos = 7|0 = 0)dr
= / u(T, {L’)fWH’t(T)dT

- 0
- /0 v () Trug () dr. (3.4)

We will show that v(¢,z) defined above satisfies the initial-boundary value
problem for fractional FPK equation in (3I)-(B3]). First, we show that
v(t, z) satisfies equation (B.I]). Indeed, one can readily see that

olt) == [ G, @) (Tt

Now it follows from the definition of D, ; that the Laplace transform of
v(t, z) satisfies

1 (3]
(s, x) = 7“[0 ) / e Jo Sﬁd“(ﬁ)(TTuo(:r))dT
s 0
_ ‘DHS(S) W@ (s),2), s> @, (3.5)

where @(s,z) is the Laplace transform of u(t,z), the function ®,(s) is
defined in (Z12]), and @ > 0 is a number such that s > @ if ®,,(s) > w (@ is
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uniquely defined, since as is seen from Definition (Z.I2]), the function ®,(s)
is a strictly increasing function). The function (s, x) satisfies the equation

su(s,z) — A(z, D)u(s,x) = ug(z), =€, (3.6)

Indeed, applying the Laplace transform to both sides of equation (2.2]) and
taking into account the initial condition (2.4]), we obtain equation (B.6]). It
follows from equations (3.5)) and (B.6]) that the composite function

&(@H(s),w) = 55(3,33)/(I)u(5)

satisfies the equation

s0(s,x) ~
((I)M(S) — A(z, D)) ,5) up(x), s>w, x €9,
or, the same, the equation
((I)M(S) — A(z, D))T)(s,x) = ug(x) (I)”S(S), s>w,r €.

We rewrite the latter in the form
P
D, (s)0(s, ) — #U(Ohw) = A(z,D)o(s,z), s>w, z€Q. (3.7)

We notice that the left hand side of the latter equation is the Laplace
transform of the expression D, v(t,z) due to formula (2I3]). Therefore,
equation (3.7) is equivalent to equation (B.I]).

Further, using (2.3]), we have

W(z', D)v(t,2’) = W(z', D) /000 u(T, :E/)fWu’t(T)dT

— [ W Dyutr e (r)dr = 0
0
since W (', D)u(r,2’) = 0 for all 7 > 0 due to boundary condition (2.3).
Finally, making use of the dominated convergence theorem,
v(0,2) = lim Eluo(Xw,, )| Xw,, = 2]
= Eluo(Xw,, )| Xw,, = 7]
= E[UO(X())‘XO = .T]
= Eug(z)] = up(x).

Hence, v(t,z) defined in (3.4)) satisfies the initial-boundary value problem
in B)-(B3) for the fractional order FPK equation. O

In the particular case of W; being the inverse of a single Lévy’s sub-
ordinator D; with the stability index 8 € (0,1) this theorem implies the
following result:
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COROLLARY 3.2. Let X; be a stochastic process associated with the
FPK equation (2.2)-(2Z4]) and W; be the inverse to the Lévy’s stable subor-
dinator with a stability index 0 < < 1. Then the FPK equation associated
with the time changed stochastic process Xy, has the form

Dou(t,z) = Az, D)v(t,z), t>0, z€Q, (3.8)
W(a',D)v(t,2') =0, t>0, 2’ €99, .
v(0,2) = up(x), x €. (3.10)

An important question is the existence of a unique solution of the initial-
boundary value problem in equations (B.13])-(B.15]).

THEOREM 3.3. Let the conditions (i) — (iv), (a) — (d), and (C1) —
(C3) are verified. Then initial-boundary value problem B.I3])-B.I5]) for
fractional order FPK equation has a unique solution v(t,x) in the space
C((0,00) x Q) NCHt > 0; CF,(Q).

REMARK 3.1. Here C*(t > 0;C%,() is the space of vector-functions
differentiable in ¢ and belonging to C3,(Q) for each fixed ¢ > 0.

P r o o f. Introduce the operator tlyy as follows: Ly = A(x, D) with
the domain Dom(thy) = {¢p € C(Q) : A(z,D)¢p € C(Q),W(2', D)p(z') =
0,Vz' € 90}. As is proved in [3I] if the conditions of the theorem are
verified, then there exists a Feller semigroup {7} }+>¢ (nonnegative and con-
tractive) on Q generated by . That is for any ¢ € C(Q) such that
0 < ¢(r) <1 on Q one has 0 < Typ(xr) < 1 on Q. Moreover, it fol-
lows from the general semigroup theory (see, e.g. [30]) that the equation
Typ(z) = ™ ip(z) holds. Hence, for an arbitrary ug € C(Q) the function
u(t,x) = Tyug(z), t > 0,2 € Q, exists and solves the following initial value
problem for a differential-operator equation

Ou(t
uggx) = Sy ult,z), t>0, zeQ, (3.11)
limu(t,z) = uo(z), z €. (3.12)
t—0

Since the operator A(x, D) is elliptic with the spectrum in the negative real
axis, it follows from the smoothness of a solution to parabolic equations
that u(t,z) has all the derivatives if ¢ > 0 and x € Q. Thus, in particular,
this function belongs to the space C((0,00) x Q) N CL(t > 0; C3,(2). The
existence and uniqueness of a solution of initial-boundary value problem
BI)-B3) immediately follows from representation (3.4]). Also, it follows
from this representation that v(¢,z) has all derivatives if ¢ > 0 and that
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the estimate
v (t, z)] S/O F)|Trug(@)]dr < iggHTtuo(x)HC(Q)
= sup [lu(t, 2)|lc@), t=0, z€ Q,
>0
holds. Thus, the function v(¢,z) inherits all the properties of u(t, ), in-
cluding the property C((0,00) x Q) N C(t > 0; CZ,(). O

Now consider the following initial-boundary value problem (2.2))-(2.4])
for t-dependent generalization of the FPK equation

augtt,x) _ B, Dyut. ) + OV A Dyt x), t>0, zeQ,
(3.13)
W(z',D)u(t,z’) =0, t>0, 2’ €09Q, (3.14)
u(0,2) = p(z), e, (3.15)

where B(x, D) is a pseudo-differential operator whose order is strictly less
than the order of the operator A(z,D). We assume that A(z, D) is an
elliptic Waldenfels operator defined in (Z5) and W(z/, D) is a Wentcel’s
boundary pseudo-differential operator defined in (2.6). The parameter -y
runs in the interval (—1,1). Equation ([3.13) is a parabolic equation: if 0 <
v < 1, then it is degenerate; if —1 < v < 0, then it is singular. Obviously,
the initial-boundary value problem in ([B13])-(BI5]) recovers problem (2:2])-
2.4), if B(z,D) =0 and v = 0.

Here is the motivating example: if B(z,D) = 0, v = 2H — 1 and
A(xz,D) = A, Laplace operator, then equation (B.I3]) reduces to

ou(t,x)
ot

which represents the FPK equation associated with the fractional Brownian
motion with the Hurst parameter H € (0,1) (see, e.g. [5 [16]). Therefore,
initial-boundary value problem (B.I3)-([BI5]) can be considered as a FPK
equation of a stochastic process driven by fractional Brownian motion. By
definition, the fractional Brownian motion with the Hurst parameter H is
a stochastic process B}, Gaussian with mean zero for each fixed ¢ > 0,
with continuous paths and the following covariance function:

1
Ry (s,t) = E(BEBH) = 3 (127 4 27— ¢ — 527
Fractional Brownian motion is not Markovian and is not a semimartin-
gale. Therefore, a stochastic integral and stochastic differential equation

driven by a fractional Brownian motion can not be defined in the It6 sense.

= Ht2H_1Au(t,m), t>0, x €,
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Nevertheless, one can define stochastic differential equations driven by frac-
tional Brownian motion in a meaningful sense [4], 11} 25]. Thus, the class
of initial-boundary value problems of the form (B.I3])-(B.I5]) describes sto-
chastic processes in a bounded region €2 driven by not only Lévy processes,
but also fractional Brownian motion. Below we derive the fractional FPK
equation associated with such a stochastic process with a time-changed
driving process.

THEOREM 3.4. Let X; be a stochastic process associated with the FPK
equation (B.I3)-BI5) and W, be the inverse to a Lévy’s subordinator
D,: € S, with a mixing measure u. Then the FPK equation associated
with the time changed stochastic process Xy, , has the form

7+1

D, v(t,x) =B(x, D)v(t,z) + ——G Az, D)v(t,z), t>0, €,

(3.16)
W(a',D)v(t,2’) =0, t>0, 2’ €99, (3.17)
v(0,2) = up(z), x €. (3.18)

where the operator G, ,; is defined as

I'y+1) /C”m my(2)0(z, )
2w Jo—iso (p(s) = p(2))7F!

Gunyiv(t,z) = @u(t) * Es_—ln[ dz]( )s

(3.19)
where * denotes the convolution operation, the symbol L7, means the
inverse Laplace transform, 0 < C' < s, the functions p(z) and m,(z) are
defined by

Jo B2 du(B)
p(2)
is defined in (212), and uy € C3,(Q2) = {¢ € C*(Q) :

9

1
plz) = /O P 4u(B), my(z) =

the function ®,,(t

)
W(a', D)p(a") = 0}.

Proof. Letu(t,r) and v(t,z) be density functions of X; and Xw,, ,,
respectively. Then due to the formula for the conditional density, we have

v(t, z) = fxy, , (7)
= | Aoy B Wi € )
/ u(r, x)P(W,; € dr)

/ i Ydr, t>0, xe€qQ. (3.20)
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By definition of X; the function u(t,z) solves problem (B.I3)-([BI5). We
will show that v(¢,z) satisfies problem (B.I6)-(3I8). To show that v(t,z)
satisfies equation (B.16]), we compute

Dy v(t,x) = /000 Dy f1(T)u(r, z)dr.

Here the change of the order of D, ; and the integral is valid thanks to
the estimate obtained in [I5] for the density function f/'(7) of a mixture
of stable subordinators having mixing measure p with suppp C (0,1). It
follows from Lemma that

[e'e} 1% T o0
Dy oolt,z) = — /0 Wéii)u(r)dT—lC“(t) /0 So(Fyu(r)dr.  (3.21)

Integration by parts in the first integral, we have

=< aff(r) _ [T du(r)
— ; 5y u(r)dr = /0 1) 50 dr (3.22)
~ X fA(r)u(r) + lim £ (7))

The first limit on the right hand side is zero due to part (c) of Lemma 2.11
Due to part (b) of Lemma [2.1] the second limit on the right hand side of
(B:22]) has the same value as the second integral on the right side of (3.21]),
but with the opposite sign. Hence, it follows that

D, v(t, x) :/0 ff(T)a—aTu(T,a:)dT.

Now using equation ([3.13]), we have

D, v(t,x) = /OO () [B(a:,D)u(T,x) +

mD/ i TxdT—i-—.AmD/ fH(r) T (T, x)dr

O DT 4 Dyu(rz)| dr

= B(z, D)u(t, x)+—A / FE) T u(r, 2)dr

— Bz, D)u(t, HPYTH (2, D)Gury 0t ),

where
Gppv(t, x) :/ ()T u(r, x)dr. (3.23)
0

The fact that the operator G, ,; has the representation (3.19) is proved in
[16].

Further, we show that W(2/, D)v(t,2") = 0 if 2’ € 9. Indeed, using
W(z', D)u(r,z") = 0 for all 7 > 0, we have
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W(a', D)v(t,2') = / W(z', Dyu(r,2') fw,, (T)dr =0, ' €09,
0

for any fixed t > 0.
Finally, making use of part (a) of Lemma [2.J] and the dominated con-
vergence theorem,

t£151+v(t,$) = tl_i>r51+ 000 f()u(r, z)dr
- /0 dim f(r) u(r, z)dr = /0 do() u(r, z)dr = u(0,2) = ug(x).

Hence, v(t, z) defined in (B.20]) satisfies the initial-boundary value problem
in (3.16)-(3.18) for time dependent fractional order FPK equation. O

REMARK 3.2. The properties of the operator G ; are studied in paper
[16], including the fact that the family {G.;, —1 < v < 1} possesses the
semigroup property. Namely, for any v, € (—1,1),y +3J € (—1,1), one

has G o Gy, = G:Mt = G5, 0GY,, where “o” denotes the composition of
two operators.

Similarly to Corollary B.2] in the particular case of W; being the in-
verse of a single Lévy’s subordinator D; with the stability index g € (0,1)
Theorem [3:4] implies the following result:

COROLLARY 3.5. Let X; be a stochastic process associated with the
FPK equation [3.13)-B.I5) and W; be the inverse to the Lévy’s stable
subordinator with a stability index 0 < 8 < 1. Then the FPK equation
associated with the time changed stochastic process Xy, has the form

1
DBu(t, z) = B(z, D)o(t,z) + 24~ Gpur v Az, D)o(t,z), £>0, z € Q,
W', D)v(t,2’) =0, t>0, 2’ €99,
v(0,2) = up(x), =z €.

THEOREM 3.6. Let the operators A(x, D), B(x, D), and W(z', D) in
problem (316)-(3.18]) satisfy the following conditions:

(A) The pseudo-differential operator A(z, D) is an elliptic Waldenfels
operator defined in (2.5l) with the conditions (i) — (iv) and (C1)
satisfied;

(B) The operator B(x, D) is a pseudo-differential operator whose order
is strictly less then the order of A(x, D);
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(W) The pseudo-differential operator W(z', D) is a Wentcel’s boundary
operator defined in ([2.6l) with the conditions (a) — (d), (C2), and
(C3) satisfied.

Then for an arbitrary ug € C3,(Q) initial-boundary value problem (3.16])-
(BIR) has a unique solution v(t,x) in the space C([0,00) x Q) N C(t >
0; C(9)).

P r o o f. The arguments used in the proof of Theorem B.3] do not work
in the case of problem (B.I6])-(3.18]), since the solution u(¢,z) of problem
B13)-(BI5) does not have a representation through the Feller semigroup.
To prove the theorem we will use the properties of pseudo-differential op-
erators.

Consider the operator

Ap(t) = %A(:p, D) + B(x, D)

with the domain Dom(Aw(t)) = {¢ € C*(Q) : W(a/,D)¢(2') = 0, ' €
00}. This operator is a pseudo-differential operator with the symbol

o(t,z,€) = gaA(x,f) +op(x,€), t>0,z€Q, £ R (3.24)

where o4(z,€) and og(x,§) are symbols of the operators A(z, D) and
B(z, D), respectively. Due to conditions (A) and (B) of the theorem, for
each fixed ¢t > 0 the symbol o(t, z, &) satisfies the following ellipticity esti-
mate

—a(t,xz,€) > ri€)’, €] > C, (3.25)

with some constants x; > 0, C' > 0, and § > 0.
One can see that the solution of problem ([B.I3)-(@3I5) has a formal
representation

u(t,x) = S(t,x, D)ug(x), t>0, x € Q, (3.26)
where the solution pseudo-differential operator S(¢,z, D) has the symbol
s(t, @, &) = BT >0, ¢ e R (3.27)

The fact that u(¢, x) satisfies equation (3.I3]) can be verified by direct cal-
culation. To show this fact let us extend ug(z) for all z € R%\ Q by zero,
and denote the extended function again by ug(z). Let @o(&) is the Fourier
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transform of ug(z). Then, we have
Ou(t,r)  9S(t,z,D)ug(x)

ot ot

1 0

- _ - Z to(t,z,£) —ixé ~
(27T)d 8t/e € UO(g)dg

R4

_ (27];)11 / |:O'(t7:1,’7€) Ly 80'(168,:76):| eta(t,x,f)e—ixfﬂo(f)df

R4

— ot [ [ o)+ onle )] et

Rd

- [%A(%D) + B(x,D)] w(t,z), t>0, x€,

where w(t, ) has the Fourier transform

W(t, &) = e Oag(), >0, £ R
Changing the differentiation and integration operators in the above calcula-
tion is legitimate due to estimate (B.25]). Now calculating the inverse Fourier
transform of w(t, £), and using the definition (2.1)) of pseudo-differential op-
erators, we have

() = g [ €I (@i
R4
1 o
= (27T)d /S(t,x,f)e ZISUo(f)df = S(t,x,D)uo(az), t> 07 x € Q.
R4

Thus, w(t,z) = u(t, z), and hence u(t, ) defined by (3.20)) satisfies equation
(BI3). Further, since W(z/, D)ug(z") = 0 for ' € 99, it follows from (3.26])
that
W', D)u(t,z’) =0, t>02a €.

Moreover, it follows from (B.27) that S(0,x, D) = I, the identity operator,
implying u(0,x) = ug(x). Finally, estimate (8.25) and representation (3.26))
of the solution imply the inclusion of the solution to the space C'([0,00) x
Q)N CLt > 0; CF,()).

The existence and uniqueness of a solution to initial-boundary value
problem (3.16)-([B.I8]) immediately follows from representation (3.20), namely

v(t,a:):/ fe()u(r, z)dr,

0
where u(t, x) is the solution of problem (B.I3)-(3I5]). The arguments here
are similar to the proof of Theorem [B.3l Also, similar to Theorem [3.3], the
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function v(t, z) inherits all the properties of u(t, ), including the property
C((0,00) x Q)N CL(t > 0; CZ,(9). O

REMARK 3.3. The technique used to prove Theorem is applicable
for FPK equations in the whole space R obtained in papers [15] [16].
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