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Abstract

In this paper, we consider the following Brézis-Nirenberg problem in-
volving the fractional Laplacian operator:{

(−Δ)su = λu+ |u|2∗s−2u in Ω,
u = 0 on ∂Ω,

where s ∈ (0, 1), Ω is a bounded smooth domain of R
N (N > 6s) and

2∗s = 2N
N−2s is the critical fractional Sobolev exponent. We show that, for

each λ > 0, this problem has infinitely many sign-changing solutions by
using a compactness result obtained in [34] and a combination of invariant
sets method and Ljusternik-Schnirelman type minimax method.
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1. Introduction and main results

In this paper, we consider the following nonlinear problem with the
fractional Laplacian{

(−Δ)su = λu+ |u|2∗s−2u in Ω,
u = 0 on ∂Ω,

(1.1)
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where λ > 0, 0 < s < 1, Ω is a bounded smooth domain of R
N and

2∗s = 2N
N−2s is the critical exponent in fractional Sobolev inequalities. Here

the fractional Laplacian (−Δ)s is defined as follows.
Let {ϕk} be an orthonormal basis of L2(Ω) with ‖ϕk‖L2(Ω) = 1 forming

a spectral decomposition of −Δ in Ω with zero Dirichlet boundary data and
λk be the corresponding eigenvalues, i.e. −Δϕk = λkϕk in Ω with ϕk = 0
on ∂Ω. Let 0 < s < 1 and

Hs
0(Ω) =

⎧⎨⎩u =

∞∑
k=1

ukϕk ∈ L2(Ω) : ‖u‖Hs
0 (Ω) =

( ∞∑
k=1

λsku
2
k

)1/2

<∞
⎫⎬⎭

be the fractional Sobolev space (see [2, 37]) with inner product

(u, v)Hs
0 (Ω) =

∞∑
0

λskukvk =

∫
Ω
(−Δ)s/2u · (−Δ)s/2vdx.

It is not difficult to see that Hs
0(Ω) is a Hilbert space. For any u ∈ Hs

0(Ω),
u =

∑∞
k=1 ukϕk with uk =

∫
Ω uϕkdx, the spectral fractional Laplacian

(−Δ)s is defined by

(−Δ)su =

∞∑
k=1

λskukϕk.

We say that {(ϕk, λ
s
k)} are the eigenfunctions and eigenvalues of (−Δ)s in

Ω with zero Dirichlet boundary data. In the pioneering work [6], Brézis and
Nirenberg considered the existence solutions of equation (1.1) with s = 1.
They show that for λ > 0 the problem⎧⎨⎩ −Δu = λu+ |u|2∗−2u in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where 2∗ = 2N
N−2 , may admit non-trivial solutions under a subtle depen-

dence on the dimension N ≥ 3. After that, there are many results on this
problem. See e.g. [14, 15, 17, 28] and the references therein. In particu-
lar, in [18], Devillanova and Solimini showed that, when N ≥ 7, problem
(1.1) with s = 1 has infinitely many solutions for each λ > 0 by using the
uniform bounded theorem (see Theorem 1.1 in [18]). Recently, under the
same assumptions of [18], Schechter and Zou [23] proved that this problem
has infinitely many sign-changing solutions by combining the estimates of
Morse indices of nodal solutions with the uniform bounded theorem due to
Devillanova and Solimini [18].

Nonlinear problems involving the fractional Laplacian have been exten-
sively studied recently. Caffarelli et al. [8, 9] studied the free boundary
problem for the fractional Laplacian. Silvestre [27] investigated the regu-
larity of the obstacle problem for the fractional Laplace operator. In [10],
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Caffarelli and Silvestre given a new local realization of the fractional Lapla-
cian (−Δ)s by introducing the so-called s-harmonic extension. After that,
several authors, using the localization method, have extended some results
of the classical elliptic problems to the fractional Laplacian, see for exam-
ple [2, 5, 7, 13, 16, 31, 34, 35, 36, 24, 25, 26] and the references therein.
In particular, Chang and Wang [16], using the method of invariant sets
of descending flow, obtained the existence and multiplicity of nodal solu-
tions for the elliptic equaitons involving the fractional Laplacian (−Δ)s for
all s ∈ (0, 1) with subcritical nonlinearities; for the Brézis-Nirenberg type
problem involving the fractional Laplacian (1.1), Tan [31] proved the ex-
istence of positive solutions with the special case s = 1

2 and Barrios et al.
[2] studied the general case with 0 < s < 1. For any λ > 0, Yan et al.
[34] proved that problem (1.1) possesses infinitely many solutions by using
a compactness result for the subcritical perturbed problem associated to
(1.1). In [21] the authors study bifurcation and multiplicity of solutions for
the fractional Laplacian with critical exponential nonlinearity using critical
point theorem of Bartolo, Benci and Fortunato [3]. Multiplicity of solu-
tions for fractional differential equations via variational method is studied
in [1, 32, 37].

A natural question is whether problem (1.1) has infinitely many sign-
changing solutions for each λ > 0 and s ∈ (0, 1). To the best of our
knowledge, there is no result in the literature concerning this question. In
this paper, we give a positive answer to this open question. The main result
of this paper is the following.

Theorem 1.1. Suppose that N > 6s and λ > 0, then problem (1.1)
has infinitely many sign-changing solutions.

Remark 1.1. Denote λs1 the first eigenvalue of (−Δ)s in Ω with zero
Dirichlet boundary condition. Multiplying the first eigenfunction and in-
tegrating both sides, one can easily check that if λ ≥ λs1, any nontrivial
solution of (1.1) is sign-changing. Therefore, by the results of [34], to prove
Theorem 1.1, it suffices to consider the case of λ ∈ (0, λs1).

Theorem 1.1 extends the result in [23] to the fractional Laplacian.
Motivated by [30] which used the more simple proof than [23] to ob-
tain the same result, we will prove Theorem 1.1 by applying the usual
Ljusternik-Schnirelman type minimax method in conjunction with invari-
ant set method. However, due to the fact that the operator (−Δ)s is
nonlocal, the techniques of constructing invariant sets of descending flow in
[4, 19, 20] cannot be directly applied to problem (1.1). In order to construct
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invariant sets, we adopt an idea from [13, 16] to introduce an auxiliary op-
erator Aε (see Section 3) associated to the subcritical perturbed problem
(2.3). Then we can follow the same way as in [30] with the help of the
compactness result (Theorem 2.1, see Section 2) due to Yan et al. [34] to
obtain Theorem 1.1.

This paper is organized as follows. In Section 2, we describe a varia-
tional setting of the problem and state a compactness result due to Yan et
al. [34] for the solutions of the perturbed problem (2.4). In Section 3, we
introduce an auxiliary operator Aε and then construct the invariant sets,
the proof of Theorem 1.1 is given at the end of this section.

2. Preliminaries and functional setting

Denote H−s(Ω) the dual space of Hs
0(Ω). Define the inner product in

Hs
0(Ω) by

(u, v)Hs
0 (Ω) :=

∫
Ω
(−Δ)s/2u(−Δ)s/2vdx.

Definition 2.1. We say that u ∈ Hs
0(Ω) is a weak solution of (1.1) if

the identity∫
Ω
(−Δ)s/2u(−Δ)s/2φdx =

∫
Ω
(λuφ+ |u|2∗s−2uφ)dx

holds for every φ ∈ Hs
0(Ω).

Note that the right hand side of the identity in the above definition
is well defined, since φ ∈ Hs

0(Ω) ↪→ L2∗s (Ω), and for u ∈ Hs
0(Ω), λu +

|u|2∗s−2u ∈ L
2N

N+2s (Ω). It is standard (see e.g. [22]) to show that the weak
solutions of problem (1.1) correspond to the critical points of the energy
functional I : Hs

0(Ω) → R given by

I(u) =
1

2

∫
Ω
|(−Δ)s/2u|2dx− λ

2

∫
Ω
|u|2dx− 1

2∗s

∫
Ω
|u|2∗sdx, ∀ u ∈ Hs

0(Ω).

Clearly, I ∈ C1(Hs
0(Ω),R).

Define R
N+1
+ = {(x, y) : x ∈ R

N , y > 0}, the upper half space in

R
N+1. Associate to the bounded domain Ω, we consider the cylinder C =

Ω× (0,∞) ⊂ R
N+1
+ and denote its lateral boundary by ∂LC = ∂Ω× [0,∞).

Note that (−Δ)s is a nonlocal operator, motivated by the work of Caf-
farelli and Silvestre [10]. Using the so-called s-harmonic extension, several
authors have considered an equivalent definition of the operator (−Δ)s de-
fined through the spectral decomposition as above. Then the nonlocal prob-
lems can be transformed into a local problem see e.g. [2, 5, 7, 13, 16, 34, 35].
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For a given u ∈ Hs
0(Ω), we define its s-harmonic extension w = Es(u) to C

as the solution of the problem⎧⎨⎩
−div(y1−2s∇w) = 0 in C,
w = 0 on ∂LC,
w(x, 0) = u on Ω.

(2.1)

Following [10], we can define the fractional Laplacian operator by the
Dirichlet to Neumann map as follows.

Definition 2.2. For any u ∈ Hs
0(Ω), the fractional Laplacian (−Δ)s

acting on u is defined by

(−Δ)su(x) := − 1

ks
lim
y→0+

y1−2s∂w

∂y
w(x, y), ∀ x ∈ Ω,

where w = Es(u) and ks =
21−2sΓ(1−s)

Γ(s) is a normalization constant.

Define Hs
0,L(C) as the closure of C∞

0 (C) under the norm

‖w‖Hs
0,L(C) =

(
ks

∫
C
y1−2s|∇w|2dxdy

)1/2

.

Denote by trΩ the trace operator on Ω× {0} for functions in Hs
0,L(C):

trΩw = w(·, 0), for w ∈ Hs
0,L(C).

Then for any w ∈ Hs
0,L(C), the following trace inequality holds

‖trΩw‖Hs
0 (Ω) ≤ ‖w‖Hs

0,L(C).

Moreover, we have the following result (see [2, 16]).

Lemma 2.1 (Lemma 2.3, [16]). (i) Es(·) is an isometry between
Hs

0(Ω) and H
s
0,L(C), that is

‖u‖Hs
0 (Ω) = ‖Es(u)‖Hs

0,L(C);

(ii) For any w ∈ Hs
0,L(C), there exists a constant C independent of w

such that

‖trΩw‖Lr(Ω) ≤ C‖w‖Hs
0,L(C)

holds for all r ∈ [2, 2∗s ]. Moreover, Hs
0,L(C) is compactly embedded

into Lr(Ω) for every r ∈ [2, 2∗s).

Set

∂sνw(x) := − 1

ks
lim

y→0+
y1−2s∂w

∂y
w(x, y).
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With the above extension, from [10], we can transform the nonlocal problem
(1.1) into the following local problem⎧⎨⎩

−div(y1−2s∇w) = 0 in C,
w = 0 on ∂LC,
∂sνw = λw(x, 0) + |w(x, 0)|2∗s−2w(x, 0) on Ω.

(2.2)

A weak solution to this problem is a function w ∈ Hs
0,L(C) such that

ks

∫
C
y1−2s(∇w,∇ψ)dxdy =

∫
Ω
(λw(x, 0) + |w(x, 0)|2∗sw(x, 0))trΩψdx,

for all ψ ∈ Hs
0,L(C). Then, critical points of the functional

J(w) =
ks
2

∫
C
y1−2s|∇w|2dxdy − λ

2

∫
Ω
|w(x, 0)|2dx− 1

2∗s

∫
Ω
|w(x, 0)|2∗sdx,

defined on Hs
0,L(C) correspond to the solutions of (2.2). For any weak

solution w ∈ Hs
0,L(C) to (2.2), the function u = trΩw ∈ Hs

0(Ω) is a weak

solution of problem (1.1) and is a critical point of I. The converse is also
true. Therefore, these two formulations are equivalent, and we will use
both formulations in the sequel.

Given ε > 0 small enough, associated to problems (1.1) and (2.2), we
consider the following subcritical perturbed nonlocal problem:{

(−Δ)su = λu+ |u|2∗s−2−εu in Ω,
u = 0 on ∂Ω,

(2.3)

and the local problem⎧⎨⎩
−div(y1−2s∇w) = 0 in C,
w = 0 on ∂LC,
∂sνw = λw(x, 0) + |w(x, 0)|2∗s−2−εw(x, 0) on Ω.

(2.4)

The functional Iε : H
s
0(Ω) → R corresponding to (2.3) is defined as follows

Iε(u) =
1

2

∫
Ω
|(−Δ)s/2u|2dx−λ

2

∫
Ω
|u|2dx− 1

2∗s − ε

∫
Ω
|u|2∗s−εdx,∀u ∈ Hs

0(Ω).

It is easy to check that Iε ∈ C1(Hs
0(Ω),R).

Now we state the following compactness result due to Yan et al. [34],
which plays an important role in our proof.

Theorem 2.1 ([34], Theorem 1.1). Suppose N > 6s and λ > 0.
Assume that wn(n = 1, 2, · · · ) is a nontrivial solution of (2.4) with ε = εn >
0, and {wn}n∈N satisfies ‖wn‖ ≤ C for some positive constant independent
of n. Then {wn}n∈N possesses a subsequence which converges strongly in
Hs

0,L(Ω) as n→ ∞.
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3. Proof of the main result

In this section, we will prove Theorem 1.1.

3.1. Some technical lemmas. Let

0 < λs1 < λs2 ≤ λs3 ≤ · · · ≤ λsm ≤ · · ·
be the eigenvalues of ((−Δ)s,Hs

0(Ω)) introduced in Section 1 and ϕm be
the eigenfunction corresponding to λsm. Denote

Em := span{ϕ1, ϕ2, · · · , ϕm}.
Fix ζ ∈ (2, 2∗s). In the following, we will always assume that

λ ∈ (0, λs1) and ε ∈ (0, 2∗s − ζ).

In order to construct the minimax values for the perturbed functional Iε,
the following three technical lemmas are needed.

Lemma 3.1. For any ε ∈ (0, 2∗s − ζ), the functional Iε satisfies the
Palais-Smale ((PS) for short) condition.

P r o o f. Suppose {un} ⊂ Hs
0(Ω) is a (PS) sequence for Iε, i.e.,

Iε(un) → c ∈ R and I ′ε(un) → 0 as n→ ∞.

We have

c+ o(1)(1 + ‖un‖Hs
0 (Ω)) = Iε(un)− 1

2∗s
〈I ′ε(un), un〉H−s(Ω),Hs

0(Ω)

=

(
1

2
− 1

2∗s

)
(‖un‖2Hs

0(Ω) − λ‖un‖22)

≥
(
1

2
− 1

2∗s

)
λs1 − λ

λs1
‖un‖2Hs

0(Ω),

which implies that {un} is bounded sequence in Hs
0(Ω). Hence, there exists

u0 ∈ Hs
0(Ω) such that

un ⇀ u0 in Hs
0(Ω).

By Lemma 2.1, we have

un → u0 in Lr(Ω) with r ∈ [2, 2∗s)
and

un(x) → u0(x) for a.e. x ∈ Ω.
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It follows that

o(1) = 〈I ′ε(un), un − u0〉H−s(Ω),Hs
0 (Ω)

=

∫
Ω
(−Δ)s/2un(−Δ)s/2(un − u0)dx+

∫
Ω
(λ+ |un|2∗s−2−ε)un(un − u0)dx

= ‖un − u0‖2Hs
0 (Ω) + o(1), as n→ ∞,

which implies that

un → u0 in Hs
0(Ω)

and the proof is completed. �

Lemma 3.2. Suppose m ≥ 1. Then there exists R = R(Em) > 0, such
that for all ε ∈ (0, 2∗s − ζ),

sup
Bc
R∩Em

Iε < 0,

where Bc
R := Hs

0(Ω) \ BR and BR = {u ∈ Hs
0(Ω) : ‖u‖Hs

0 (Ω) ≤ R}.

P r o o f. Define an auxiliary functional I∗ : Hs
0(Ω) → R given by

I∗(u) =
1

2

∫
Ω

(
|(−Δ)s/2u|2 − λu2

)
dx− 1

2∗s

∫
Ω
|u|ζdx. (3.1)

Noting that
1

2∗s
(|u|ζ − 1) ≤ 1

2∗s − ε
|u|2∗s−ε,

it is easy to check that

Iε(u) ≤ I∗(u) +
|Ω|
2∗s
,

holds for any ε ∈ (0, 2∗s − ζ). Since any norm in finite dimensional space is
equivalent,

lim
‖u‖Hs

0
(Ω)→∞,u∈Em

I∗(u) = −∞

for any fixed m ≥ 1. Thus the result follows. �

Lemma 3.3. For any ε ∈ (0, 2∗s − ζ), there exist ρε > 0 and αε > 0
such that

inf
∂Bρε

Iε ≥ αε,

where Bρε = {u ∈ Hs
0(Ω) : ‖u‖Hs

0 (Ω) ≤ ρε}.

P r o o f. For u ∈ Hs
0(Ω), by Lemma 2.1, there exists C(ε) > 0 such

that
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Iε(u) =
1

2
‖u‖2Hs

0 (Ω) −
λ

2
‖u‖22 −

1

2∗s − ε
‖u‖2∗s−ε

2∗s−ε

≥ λs1 − λ

2λs1
‖u‖2Hs

0 (Ω) −
C(ε)

2∗s − ε
‖u‖2∗s−ε

Hs
0 (Ω).

Noting that 2 < 2∗s − ε, we conclude that there exist ρε > 0 and αε > 0
such that

inf
∂Bρε

Iε ≥ αε,

as required. �

3.2. Properties of the operator Aε. In order to introduce an auxiliary
operator Aε, which will be used to construct invariants set, we first define
the inverse of the operator (−Δ)s (see [16], Section 4).

Definition 3.1. Given g ∈ H−s(Ω), define the operator Ts : H
−s(Ω) →

Hs
0(Ω), by Ts(g) = trΩw, where w ∈ Hs

0,L(C) solves⎧⎨⎩ −div(y1−2s∇w) = 0 in C,
w = 0 on ∂LC,
∂sνw = g(x) on Ω.

(3.2)

As in [16] (see also [7]), the above definition is well defined and

Ts ◦ (−Δ)s = id |Hs
0(Ω), (−Δ)s ◦ Ts = id |H−s(Ω),

which implies Ts is the inverse of the operator (−Δ)s. Denote Ts by (−Δ)−s.
Clearly,

(−Δ)−s = ((−Δ)s)−1.
Moreover, by Proposition 4.2 in [16], the operator (−Δ)−s is a self-adjoint
and positive compact operator.

Now we define the operator Aε : H
s
0(Ω) → Hs

0(Ω) by

Aε(u) = (−Δ)−s[λu+ |u|2∗s−2−εu]
for u ∈ Hs

0(Ω). Then the gradient of Iε has the form

I ′ε(u) = u−Aε(u).
Indeed, we have

〈I ′ε(u), ϕ〉H−s(Ω),Hs
0 (Ω)=

∫
Ω
(−Δ)s/2u(−Δ)s/2ϕdx−

∫
Ω
(λu+ |u|2∗s−2−εu)ϕdx

=

∫
Ω
(−Δ)s/2u(−Δ)s/2ϕdx−

∫
Ω
(−Δ)sAε(u)ϕdx

=

∫
Ω
(−Δ)s/2u(−Δ)s/2ϕdx−

∫
Ω
(−Δ)s/2Aε(u)(−Δ)s/2ϕdx

= 〈u−Aε(u), ϕ〉Hs
0 (Ω), ∀ u, ϕ ∈ Hs

0(Ω).
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Note that the set of fixed points of Aε is the same as the set of critical
points of Iε, which is Kε := {u ∈ Hs

0(Ω) : I
′
ε(u) = 0}.

3.3. Invariant subsets of descending flow. It is easy to check that I ′ε
is locally Lipschitz continuous. We consider the negative gradient flow ϕε

of Iε defined by {
d

dt
ϕε(t, u) = −I ′ε(ϕε(t, u)) for t ≥ 0,

ϕε(0, u) = u.

Here and in the sequel, define the convex cones

P+ = {u ∈ Hs
0(Ω) : u ≥ 0} and P− = {u ∈ Hs

0(Ω) : u ≤ 0}.
For ϑ > 0, we denote

P+
ϑ = {u ∈ Hs

0(Ω) : dist(u, P
+) < ϑ}

and

P−
ϑ = {u ∈ Hs

0(Ω) : dist(u, P
−) < ϑ},

where dist(u, P±) = infv∈P± ‖u− v‖Hs
0 (Ω). Obviously, P−

ϑ = −P+
ϑ . Let

W = P+
ϑ ∪ P−

ϑ .

Then, W is an open and symmetric subset of Hs
0(Ω) and Q := Hs

0(Ω) \W
contains only sign-changing functions. By similar arguments as in [16] (see
also [13]) and [19], we have the following result which shows that for ϑ
small, P±

ϑ is an invariant set and all sign-changing solutions to (2.3) are
contained in Q.

Lemma 3.4. There exists ϑ0 > 0 such that for any ϑ ∈ (0, ϑ0], there
holds

Aε(∂P
±
ϑ ) ⊂ P±

ϑ ,

and

ϕε(t, u) ∈ P±
ϑ for all t > 0 and u ∈ P±

ϑ .

Moreover, every nontrivial solutions u ∈ P+
ϑ and u ∈ P−

ϑ of (2.3) are
positive and negative, respectively.

Remark 3.1. Note that there exists a constant C > 0 independent of
p ∈ [2, 2∗] such that ‖u‖p ≤ C‖u‖2∗ for all p ∈ [2, 2∗], as in the proof of
Lemma 5.2 in [16], one can show that there exists ϑ0 > 0 such that for any
ϑ ∈ (0, ϑ0], there holds Aε(∂P

±
ϑ ) ⊂ P±

ϑ for all ε > 0 small enough.
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In the following, we may choose an ϑ > 0 small enough such that
P±
ϑ is an invariant set. In order to construct nodal solution by using the

combination of invariant sets method and minimax method, we need a
deformation lemma in the presence of invariant sets. Since Iε satisfies the
(PS) condition, using similar arguments to Lemma 5.1 in [20], we have the
following result.

Lemma 3.5. Define K1
ε,c := Kε,c ∩W, K2

ε,c := Kε,c ∩ Q, where Kε,c :=

{u ∈ Hs
0(Ω) : Iε(u) = c, I ′ε(u) = 0}. Let � > 0 be such that (K1

ε,c)� ⊂ W

where (K1
ε,c)� := {u ∈ Hs

0(Ω) : dist(u,K1
ε,c) < �}. Then there exists

an δ0 > 0 such that for any 0 < δ < δ0, there exists η ∈ C([0, 1] ×
Hs

0(Ω),H
s
0(Ω)) satisfying:

(i) η(t, u) = u for t = 0 or u /∈ I−1
ε ([c − δ0, c+ δ0]) \ (K2

ε,c)�.

(ii) η(1, Ic+δ
ε ∪W \ (K2

ε,c)3�) ⊂ Ic−δ
ε ∪W and η(1, Ic+δ

ε ∪W ) ⊂ Ic−δ
ε ∪W

if K2
ε,c = ∅. Here Idε = {u ∈ Hs

0(Ω) : Iε(u) ≤ d} for any d ∈ R.
(iii) η(t, ·) is odd and a homeomorphism of Hs

0(Ω) for t ∈ [0, 1].
(iv) Iε(η(·, u)) is non-increasing.
(v) η(t,W ) ⊂W for any t ∈ [0, 1].

3.4. Existence of infinitely many sign-changing solutions. Now we
prove the existence of infinitely many sign-changing solutions to problem
(1.1).

P r o o f o f T h e o r em 1.1. Here and in the sequel, we fix λ ∈ (0, λs1).
As in [30], we divide the proof into three steps.

Step 1. For any ε ∈ (0, 2∗ − ζ) small, we define the minimax value cε,k
for the perturbed functional Iε(u) with k = 2, 3, · · · . Set
Gm := {h ∈ C(BR ∩Em,H

s
0(Ω)) : h is odd and h = id on ∂BR ∩Em},

where R > 0 is given by Lemma 3.2. Note that id ∈ Gm, thus Gm �= ∅.
For k ≥ 2, we define

Γk := {h(BR∩Em\Y ) : h ∈ Gm,m ≥ k, Y = −Y is open and γ(Y ) ≤ m−k},
where γ(K) is the Krasnoselskii genus of the symmetric closed se K, i.e.
the smallest integer n such that there exists and odd continuous map σ :
K → Sn−1. From [22], Γk possess the following properties:

(1◦) Γk �= ∅ and Γk+1 ⊂ Γk for all k ≥ 2.
(2◦) If φ ∈ C(Hs

0(Ω),H
s
0(Ω)) is odd and φ = id on ∂BR ∩ Em, then

φ(A) ∈ Γk if A ∈ Γk for all k ≥ 2.
(3◦) If A ∈ Γk, Z = −Z is open and γ(Z) ≤ s < k and k − s ≥ 2, then

A \ Z ∈ Γk−s.
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Now, for k = 2, 3, · · · , we can define the minimax value cε,k given by

cε,k := inf
A∈Γk

sup
u∈A∩Q

Iε(u).

We need to show that cε,k (k ≥ 2) are well defined (that is for any A ∈ Γk,
A ∩Q �= ∅) and cε,k ≥ αε > 0, where αε is given by Lemma 3.3.

Consider the attracting domain of 0 in Hs
0(Ω):

D := {u ∈ Hs
0(Ω) : ϕε(t, u) → 0, as t→ ∞}.

Note that D is open, since 0 is a local minimum of Iε and by the continuous
dependence of ODE on initial data. Moreover, ∂D is an invariant set and

P+
ϑ ∩ P−

ϑ ⊂ D.
In particular, there holds

Iε(u) > 0 for every u ∈ P+
ϑ ∩ P−

ϑ \ {0}
by the similar arguments to Lemma 3.4 in [4]. Now we claim that for any
A ∈ Γk with k ≥ 2, it holds

A ∩Q ∩ ∂D �= ∅. (3.3)
Set

A = h(BR ∩ Em \ Y )

with γ(Y ) ≤ m− k and k ≥ 2. Define

O := {u ∈ BR ∩ Em : h(u) ∈ D}.
Obviously, O is a bounded open symmetric set with 0 ∈ O and O ⊂
BR ∩Em. Thus, by the Borsuk-Ulam theorem that γ(∂O) = m and by the
continuity of h, h(∂O) ⊂ ∂D. As a consequence,

h(∂O \ Y ) ⊂ A ∩ ∂D,
and therefore

γ(A ∩ ∂D) ≥ γ(h(∂O \ Y )) ≥ γ(∂O \ Y ) ≥ γ(∂O)− γ(Y ) ≥ k,

by the “monotone, sub-additive and supervariant” property of the genus
(cf. Proposition 5.4 in [29]). Since P+

ϑ ∩ P−
ϑ ∩ ∂D = ∅, one has

γ(W ∩ ∂D) ≤ 1.

Thus for k ≥ 2, we conclude that

γ(A ∩Q ∩ ∂D) ≥ γ(A ∩ ∂D)− γ(W ∩ ∂D) ≥ k − 1 ≥ 1,

which proves (3.3). Therefore, it follows from (3.3) that A ∩Q �= ∅. More-
over, we have

cε,2 ≥ αε > 0,

because ∂Bρε ⊂ D and supA∩Q Iε ≥ inf∂D Iε ≥ inf∂Bρε
Iε ≥ αε > 0 by

Lemma 3.3.
Hence, cε,k are well defined for all k ≥ 2 and 0 < αε ≤ cε,2 ≤ cε,3 ≤ · · · .
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Now, we claim
Kε,cε,k ∩Q �= ∅, (3.4)

which implies that there exists a sign-changing critical point uε,k such that

Iε(uε,k) = cε,k,

and cε,k → ∞, as k → ∞. It can be done, using deformation Lemma 3.5
following the same arguments as in the proof of Step 1 in [30].

Step 2. We show that for any fixed k ≥ 2, ‖uε,k‖Hs
0 (Ω) is uniformly

bounded with respect to ε, and then uε,k converges strongly to uk in Hs
0(Ω)

as ε→ 0.
In fact, using the same Γk above, we can also define the minimax value

for the auxiliary functional I∗ (see (3.1)) by

βk := inf
A∈Γk

sup
u∈A

I∗(u), k = 2, 3, · · · .

Here, choosing R > 0 sufficiently large if necessary, we point out that
Lemma 3.2 also holds for I∗. Then from a Z2 version of the Mountain Pass
Theorem (see Theorem 9.12 in [22]), for each k ≥ 2, βk > 0 is well defined
and

βk → ∞, as k → ∞.
Since

Iε(u) ≤ I∗(u) +
|Ω|
2∗s

holds for any ε ∈ (0, 2∗s − ζ), by the definition of cε,k and βk, we have

cε,k ≤ βk +
|Ω|
2∗s
.

Therefore, for fixed k ≥ 2, cε,k is uniformly bounded for ε ∈ (0, 2∗s − ζ),
i.e., there exists C = C(βk,Ω) > 0 independent on ε, such that cε,k ≤ C
uniformly for ε. Since uε,k is a nodal solution of (2.3) and Iε(uε,k) = cε,k,
one concludes that

λs1 − λ

λs1

∫
Ω
|(−Δ)s/2uε,k|2dx ≤

∫
Ω
|uε,k|2∗s−εdx =

2(2∗s − ε)

2∗s − ε− 2
cε,k ≤ C, (3.5)

which implies that ‖uε,k‖Hs
0 (Ω) ≤ C uniformly with respect to ε. Denote

wε,k = Es(uε,k).
Then, wε,k is a solution of (2.4) satisfying ‖wε,k‖Hs

0,L(C) ≤ C uniformly

with respect to ε. So we can apply Theorem 2.1 and obtain a subsequence
{wεn,k}n∈N, such that

wεn,k → wk strongly in Hs
0,L(C)

for some wk ∈ Hs
0,L(C). We set

uk = trΩwk.
Then,
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uεn,k → uk strongly in Hs
0(Ω)

by the trace inequality and also cεn,k → ck. Thus uk is a solution of (1.1)
and I(uk) = ck. Moreover, since uεn,k is sign-changing, similar to Step 1,
by Lemma 2.1, we can show that uk is still sign-changing.

Step 3. We are in a position to prove that the functional has infinitely
many sign-changing critical points. Recalling that ck is non-decreasing with
respect to k, we distinguish two cases:

Case I: There exist 2 ≤ k1 < · · · < ki < · · · , satisfying ck1 < · · · <
cki < · · · .

Case II: There is a positive integer l such that ck = c for all k ≥ l.
Obviously, in Case I, problem (1.1) has infinitely many sign-changing

solutions such that I(ui) = cki , thus we are done. So we assume in the
sequel that Case II holds. From now on, we suppose that there exists a
δ > 0, such that I(u) has no sign-changing critical point u with

I(u) ∈ [c− δ, c) ∪ (c, c + δ].

Otherwise, the result follows.

We claim that

γ(K2
c) ≥ 2,

where Kc := {u ∈ Hs
0(Ω) : I(u) = c, I ′(u) = 0} and K2

c = Kc ∩ Q. If it is
true, I(u) has infinitely many sign-changing critical points and thus we are
done. Here we borrow some ideas used in [11]. Arguing by contradiction,
suppose that

γ(K2
c ) = 1

(note that K2
c �= ∅). Moreover, we assume K2

c contains only finitely many
critical points, otherwise the proof is completed. As a consequence, K2

c is
compact. Clearly, 0 /∈ K2

c . Thus there exists a open neighborhood N in
Hs

0(Ω) with K2
c ⊂ N such that γ(N) = γ(K2

c).
Define

Uε := I−1
ε ([c − δ, c+ δ]) \N.

Now we claim that for ε > 0 small, Iε has no sign-changing critical point
in Uε. Indeed, if not, we suppose that there exist εn → 0 and un ∈ Uεn

satisfying I ′εn(un) = 0, with u±n �= 0, and un /∈ N. Obviously,

Iεn(un) ∈ [c− δ, c + δ].

Then, similar to (3.5), one can obtain that ‖un‖Hs
0 (Ω) ≤ C uniformly with

respect to n. Set

wn = Es(un).
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By Lemma 2.1 wn is a solution of (2.4) satisfying ‖wn‖Hs
0,L(C) ≤ C uni-

formly with respect to n. Therefore, by Theorem 2.1, we obtain, up to a
subsequence, that

wn → w strongly in Hs
0,L(C)

for some w ∈ Hs
0,L(C). We set

u = trΩw.

Clearly, un → u strongly in Hs
0(Ω). Thus

I ′(u) = 0, I(u) ∈ [c− δ, c+ δ] and u /∈ K2
c .

But u is still sign-changing, a contradiction.
From the above observation, one can easily show that for any ε > 0

small, there exists a constant αε > 0 such that

‖I ′ε(u)‖ ≥ αε, for u ∈ I−1
ε ([c− δ, c+ δ]) \ (N ∪W ) .

Then, as in [11], standard techniques show that for ε > 0 small enough,
there exists an odd homeomorphism η ∈ C(Hs

0(Ω),H
s
0(Ω)) such that η(u) =

u for u ∈ Ic−2δ
ε and

η(Ic+δ
ε ∪W \N) ⊂ Ic−δ

ε ∪W. (3.6)

See for example the proof of Theorem A.4 in [22] and also Lemma 5.1 in
[20].

Now fix k > l. Since cε,k, cε,k+1 → c as ε → 0, we can find an ε > 0
small, such that

cε,k, cε,k+1 ∈ (c− δ

4
, c+

δ

4
).

By the definition of cε,k+1, we can find a set A ∈ Γk+1, A = h(BR∩Em\Y ),
where h ∈ Gm, m ≥ k + 1, γ(Y ) ≤ m− (k + 1), such that

Iε(u) ≤ cε,k+1 +
δ

4
< c+

δ

2
,

for any u ∈ A ∩Q, which implies, A ⊂ I
c+ δ

2
ε ∪W. Then by (3.6), we have

η(A \N) ⊂ I
c− δ

2
ε ∪W. (3.7)

Let Ỹ = Y ∪ h−1(N). Then Ỹ is symmetric and open, and

γ(Ỹ ) ≤ γ(Y ) + γ(h−1(N)) ≤ m− (k + 1) + 1 = m− k.

Therefore one can obtain that Â := η(h(BR ∩ Em \ Ỹ )) ∈ Γk by (2◦) and
(3◦) above. Consequently, by (3.7),

cε,k ≤ sup
̂A∩Q

Iε ≤ sup
η(A\N)∩Q

Iε ≤ c− δ

2
,

which contradicts to

cε,k > c− δ

4
.
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Hence the proof is completed and the functional I has infinitely many sign-
changing critical points. �
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[7] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving
the square root of the Laplacian. Adv. Math. 224, No 5 (2010), 2052–
2093.

[8] L. Caffarelli, J.M. Roquejoffre and Y. Sire, Variational problems for
free boundaries for the fractional Laplacian. J. Eur. Math. Soc. 12, No
5 (2010), 1151–1179.

[9] L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the
solution and the free boundary of the obstacle problem for the fractional
Laplacian. Invent. Math. 171, No 2 (2008), 425–461.

[10] L. Caffaralli and L. Silvestre, An extension problem related to the
fractional Laplacian. Comm. Partial Differential Equations 32, No 8
(2007), 1245–1260.

[11] D. Cao, S. Peng and S. Yan, Infinitely many solutions for p-Laplacian
equation involving critical Sobolev growth. J. Funct. Anal. 262, No 6
(2012), 2861–2902.

[12] D. Cao and S. Yan, Infinitely many solutions for an elliptic problem in-
volving critical Sobolev growth and Hardy potential. Calc. Var. Partial
Differential Equations 38, No 3 (2010), 471–501.

[13] A. Capella, Solutions of a pure critical exponent problem involving the
half-Laplacian in annular-shaped domains. Comm. Pure Appl. Anal.
10, No 6 (2011), 1645–1662.

[14] G. Cerami, D. Fortunato and M. Struwe, Bifurcation and multiplicity
results for nonlinear elliptic problems involving critical Sobolev expo-
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