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Abstract

In this paper, we consider the following Brézis-Nirenberg problem in-
volving the fractional Laplacian operator:

{ (—=A)u = Mu+ |u/*"2u in Q,

u=0 on 09,
where s € (0,1), Q is a bounded smooth domain of RY (N > 6s) and
2 = Nzi\g - is the critical fractional Sobolev exponent. We show that, for

each A > 0, this problem has infinitely many sign-changing solutions by
using a compactness result obtained in [34] and a combination of invariant
sets method and Ljusternik-Schnirelman type minimax method.
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1. Introduction and main results

In this paper, we consider the following nonlinear problem with the
fractional Laplacian
{ (=A)u = u+ |u|*"2u in Q, (1.1)
u =0 on 052, ’
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where A > 0, 0 < s < 1, Q is a bounded smooth domain of RY and
2t = N2iv2 - is the critical exponent in fractional Sobolev inequalities. Here
the fractional Laplacian (—A)® is defined as follows.

Let {¢r} be an orthonormal basis of L?(€) with [[¢p|z2(q) = 1 forming
a spectral decomposition of —A in ) with zero Dirichlet boundary data and
A be the corresponding eigenvalues, i.e. —Apr = A\ppr in Q with o =0
on 0. Let 0 < s < 1 and

- 1/2

k=1

be the fractional Sobolev space (see [2,37]) with inner product
(u,v) 3 (@) Z)\kukvk = / (=AY (=A)*Puda.
Q

It is not difficult to see that H{(R2) is a Hilbert space. For any v € H§(),
u = 220:1 uppr with ug = fQ uppdx, the spectral fractional Laplacian

(—A)* is defined by
—A)’u = Z AU Pk -

We say that {(¢g, A7)} are the eigenfunctions and eigenvalues of (—A)® in
Q2 with zero Dirichlet boundary data. In the pioneering work [6], Brézis and
Nirenberg considered the existence solutions of equation (LI]) with s = 1.
They show that for A > 0 the problem

—Au = Au+[ul* "2u in Q,

u >0 in €,
u =0 on 0,
where 2% = ]\2,—1172, may admit non-trivial solutions under a subtle depen-

dence on the dimension N > 3. After that, there are many results on this
problem. See e.g. [14] 15l [17, 28] and the references therein. In particu-
lar, in [I8], Devillanova and Solimini showed that, when N > 7, problem
(LI) with s = 1 has infinitely many solutions for each A > 0 by using the
uniform bounded theorem (see Theorem 1.1 in [I8]). Recently, under the
same assumptions of [I8], Schechter and Zou [23] proved that this problem
has infinitely many sign-changing solutions by combining the estimates of
Morse indices of nodal solutions with the uniform bounded theorem due to
Devillanova and Solimini [18].

Nonlinear problems involving the fractional Laplacian have been exten-
sively studied recently. Caffarelli et al. [8, 9] studied the free boundary
problem for the fractional Laplacian. Silvestre [27] investigated the regu-
larity of the obstacle problem for the fractional Laplace operator. In [10],
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Caffarelli and Silvestre given a new local realization of the fractional Lapla-
cian (—A)® by introducing the so-called s-harmonic extension. After that,
several authors, using the localization method, have extended some results
of the classical elliptic problems to the fractional Laplacian, see for exam-
ple [2, Bl [7, 13], 16] BT, B4} 35, 36}, 24], 25, 26] and the references therein.
In particular, Chang and Wang [16], using the method of invariant sets
of descending flow, obtained the existence and multiplicity of nodal solu-
tions for the elliptic equaitons involving the fractional Laplacian (—A)? for
all s € (0,1) with subcritical nonlinearities; for the Brézis-Nirenberg type
problem involving the fractional Laplacian (I.II), Tan [31] proved the ex-
istence of positive solutions with the special case s = % and Barrios et al.
[2] studied the general case with 0 < s < 1. For any A > 0, Yan et al.
[34] proved that problem (I.I]) possesses infinitely many solutions by using
a compactness result for the subcritical perturbed problem associated to
(LI). In [21] the authors study bifurcation and multiplicity of solutions for
the fractional Laplacian with critical exponential nonlinearity using critical
point theorem of Bartolo, Benci and Fortunato [3]. Multiplicity of solu-
tions for fractional differential equations via variational method is studied
in [1, 32, 7).

A natural question is whether problem (1)) has infinitely many sign-
changing solutions for each A > 0 and s € (0,1). To the best of our
knowledge, there is no result in the literature concerning this question. In
this paper, we give a positive answer to this open question. The main result
of this paper is the following.

THEOREM 1.1.  Suppose that N > 6s and A > 0, then problem (L))
has infinitely many sign-changing solutions.

REMARK 1.1. Denote \j the first eigenvalue of (—A)® in Q with zero
Dirichlet boundary condition. Multiplying the first eigenfunction and in-
tegrating both sides, one can easily check that if A > A{, any nontrivial
solution of (LLT]) is sign-changing. Therefore, by the results of [34], to prove
Theorem [[], it suffices to consider the case of A € (0, A]).

Theorem [l extends the result in [23] to the fractional Laplacian.
Motivated by [30] which used the more simple proof than [23] to ob-
tain the same result, we will prove Theorem [[.I] by applying the usual
Ljusternik-Schnirelman type minimax method in conjunction with invari-
ant set method. However, due to the fact that the operator (—A)® is
nonlocal, the techniques of constructing invariant sets of descending flow in
[4, 19, 20] cannot be directly applied to problem (L.I). In order to construct
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invariant sets, we adopt an idea from [13} [I6] to introduce an auxiliary op-
erator A, (see Section [3]) associated to the subcritical perturbed problem
23). Then we can follow the same way as in [30] with the help of the
compactness result (Theorem 2.1} see Section [2) due to Yan et al. [34] to
obtain Theorem [L.11

This paper is organized as follows. In Section 2 we describe a varia-
tional setting of the problem and state a compactness result due to Yan et
al. [34] for the solutions of the perturbed problem (2.4]). In Section Bl we
introduce an auxiliary operator A. and then construct the invariant sets,
the proof of Theorem [[.T]is given at the end of this section.

2. Preliminaries and functional setting

Denote H~*(2) the dual space of H{(£2). Define the inner product in
H§(2) by

(w 0oy = [ (-2 ul(-A)Pvda,
Q

DEFINITION 2.1. We say that u € H{(2) is a weak solution of (ILTJ) if
the identity

/ (=A)2u(=A)*2pda = / (Mg + |u® ~2uep)da
Q Q
holds for every ¢ € H(2).

Note that the right hand side of the identity in the above definition
is well defined, since ¢ € H(Q) — L% (Q), and for u € HZ(Q), \u +
lu|%~2u € L%(Q) It is standard (see e.g. [22]) to show that the weak

solutions of problem (II]) correspond to the critical points of the energy
functional I : H3(2) — R given by

1 A 1 *
1) = /Q (~2)uPde 2 /Q ulde — o /Q wZde, Ve Hi(Q).

Clearly, I € C*(H§(Q),R).

Define Rf“ = {(z,y) : = € RN,y > 0}, the upper half space in
RN*1. Associate to the bounded domain Q, we consider the cylinder C =
Q x (0,00) € RY* and denote its lateral boundary by 9.C = 99 x [0, 00).

Note that (—A)?® is a nonlocal operator, motivated by the work of Caf-
farelli and Silvestre [10]. Using the so-called s-harmonic extension, several
authors have considered an equivalent definition of the operator (—A)* de-
fined through the spectral decomposition as above. Then the nonlocal prob-
lems can be transformed into a local problem see e.g. 2} 5] [7, [13] 16 34} [35].
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For a given u € H;(2), we define its s-harmonic extension w = Es(u) to C
as the solution of the problem

—div(y!=2*Vw) =0 in C,
w=0 on 0rC, (2.1)
w(z,0) =u on €.

Following [10], we can define the fractional Laplacian operator by the
Dirichlet to Neumann map as follows.

DEFINITION 2.2. For any u € H{(12), the fractional Laplacian (—A)*
acting on u is defined by

s o 1 . 1—2s 8’[1)
(—A)’u(zx) == —k—syg%l+y 8—yw(m,y), Vaoeq,
where w = Es(u) and ks = % is a normalization constant.

Define Hj ; (C) as the closure of C5°(C) under the norm

1/2
il e = (e [ 2V uPdedy)
Denote by trq the trace operator on Q x {0} for functions in H 1 (C):
troqw = w(-,0), for we Hj(C).
Then for any w € Hg ; (C), the following trace inequality holds
[trowl| gz @) < HWHH&L(C)-

Moreover, we have the following result (see [2] [16]).

LeMMA 2.1 (Lemma 2.3, [16]). (i) Es(-) is an isometry between
H§(Q2) and H 1 (C), that is
lull ) = 1B (@)lmg , c)s

(ii) For any w € H [ (C), there exists a constant C' independent of w
such that

[trowl|Lr @) < Cllwllmg , )

holds for all v € [2,27]. Moreover, Hg ; (C) is compactly embedded
into L"(Q2) for every r € [2,2F).

Set
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With the above extension, from [10], we can transform the nonlocal problem
(L) into the following local problem

—div(y'=%Vw) =0 in C,
w=0 ondrC, (2.2)
03w = Aw(zx,0) + |w(z,0)|* 2w(x,0) on Q.

A weak solution to this problem is a function w € Hg [ (C) such that

k:s/yl_zs(Vw,Vw)dxdy = /(Aw(:r,O) + |w($,0)|2§w(aj,0))trm/1da:,
C Q

for all ¢ € Hg (C). Then, critical points of the functional

ks

A 1 .
J(w) = 5/Cy1—2s|Vw|2da:dy— §/Q|w($,0)|2d33— §/§2|w($,0)|25d1‘,

defined on Hg ;(C) correspond to the solutions of (2.2]). For any weak
solution w € Hj 1 (C) to [2.2), the function u = trow € H{((2) is a weak
solution of problem (LI]) and is a critical point of I. The converse is also
true. Therefore, these two formulations are equivalent, and we will use
both formulations in the sequel.

Given £ > 0 small enough, associated to problems (1)) and (2.2]), we
consider the following subcritical perturbed nonlocal problem:

(—A)*u = Mu+ |[u/>72"5u in Q,
{ u =0 on 0f, (2.3)
and the local problem
—div(y!=%Vw) =0 in C,
w=0 on 0rC, (2.4)

03w = Aw(x,0) + |w(z,0)|% "2 w(x,0) on .
The functional I, : H3(€2) — R corresponding to (2.3]) is defined as follows

1 ) A 1
L =g [ 1=ayPuPae=3 [ ude-

25—«
It is easy to check that I. € C1(H(Q),R).
Now we state the following compactness result due to Yan et al. [34],
which plays an important role in our proof.

/Q lu%~¢dx,Yu € H3(S).

THEOREM 2.1 ([34], Theorem 1.1). Suppose N > 6s and A > 0.
Assume that wy(n = 1,2, ---) is a nontrivial solution of (2.4 withe = ¢, >
0, and {wy, }nen satisfies ||wy,|| < C for some positive constant independent
of n. Then {wy,}nen possesses a subsequence which converges strongly in
Hg () as n — oo.
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3. Proof of the main result

In this section, we will prove Theorem [T.11

3.1. Some technical lemmas. Let
D<A <A <A << A8 <o

be the eigenvalues of ((—A)*, H;(€2)) introduced in Section [l and ¢,, be
the eigenfunction corresponding to A;,. Denote

E,, :==span{p1, 02, -, ¥m}

Fix ¢ € (2,2}). In the following, we will always assume that
A€ (0,A]) and €€ (0,2; — ().

In order to construct the minimax values for the perturbed functional I,
the following three technical lemmas are needed.

LeEmMA 3.1.  For any € € (0,2% — (), the functional 1. satisfies the
Palais-Smale ((PS) for short) condition.

P roof Suppose {u,} C H§() is a (PS) sequence for I, i.e.,

I.(up) > c€R and Il(u,) =0 asn— oo
We have
1
c+o(L)(1 + lunlmy) = I(un) — 2_§<I;(un)’un>H*S(Q),H§(Q)

1 1
— (3 - 32 ) Qe = Alnl?)

11\ A=A,
2 <§ - 2—2> THUHHHg(Q),

which implies that {u,} is bounded sequence in H§(€2). Hence, there exists
up € Hi(2) such that

U, — ug in Hy(Q).
By Lemma 2.1l we have
u, = up in L"(Q) with r € [2,2])
and

up(x) = ug(z) for a.e. x € Q.
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It follows that

o(1) = (IZ(un), un — uo) g—s(0),H5 (@)

= /(—A)S/zun(—A)5/2(un — ug)dx + / (A | 72 ) (uy, — ug)da

Q Q

= |Ju, — UQ”%{S(Q) +o0(1), as n— oo,

which implies that
U — ug in Hy(Q)

and the proof is completed. O

LEMMA 3.2. Suppose m > 1. Then there exists R = R(E,,) > 0, such
that for all € € (0,2% — (),

sup I. <0,
B%NEm

where Bf, := Hj() \ Bg and Br = {u € Hj() : |[ullgs ) < R}

P r o o f. Define an auxiliary functional I, : Hj(2) — R given by

L(u) = %/Q (1-2)"2uf? — x?) dr - 2i /Q wlde.  (3.1)

Noting that

.
2% —5’

(Jul* = 1) <

! |
— u
23

it is easy to check that

¥

*
S

Q
) < 1(w) + 50

holds for any € € (0,2} — (). Since any norm in finite dimensional space is
equivalent,

im I(u) = —o0
l[ull g () =00, u€Em

for any fixed m > 1. Thus the result follows. O

LEMMA 3.3. For any ¢ € (0,2} — (), there exist p. > 0 and oz > 0
such that

inf I > ag,

Pe

where By, = {u € H5(Q) : [[ullmg ) < pe}-

Proof For u € Hj(Q), by Lemma 2], there exists C'(¢) > 0 such
that
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1 2% —¢
1€<u>=—||u||%qgm) ol — el
)‘s ( ) 25—¢
> P Ml — 5ol

Noting that 2 < 27 — ¢, we conclude that there exist pc > 0 and o, > 0
such that
inf I > ag,

Pe
as required. O

3.2. Properties of the operator A.. In order to introduce an auxiliary
operator A., which will be used to construct invariants set, we first define
the inverse of the operator (—A)* (see [16], Section 4).

DEFINITION 3.1. Given g € H~*(2), define the operator T : H*(2) —
HG(S2), by Ts(g) = trow, where w € Hj ; (C) solves
—div(y!=2*Vw) =0 in C,
w=0 on IrC, (3.2)
5w = g(x) on €.

As in [16] (see also [7]), the above definition is well defined and

Tso (-A)° =id |gyo) (—A)7oTs

which implies Ty is the inverse of the operator (—A)®.
Clearly,

— Zd |H7$(Q),
Denote T by (—A)~%.

(=8)~° = ((-=a))7"
Moreover, by Proposition 4.2 in [16], the operator (—A)~*
and positive compact operator.
Now we define the operator A, : H5(Q2) — H{(S2) by
Ac(u) = (=2)7*[u + [uf** 2%
for u € H§(?). Then the gradient of I. has the form

IL(u) = u — A-(u).

is a self-adjoint

Indeed, we have
<Ié(u)790>H—s(Q),H3(Q):/Q(—A)S/QU(—A)S/QQOda;—/Q()\u+ |u|2—2¢

— [CA)u-ay s~ [ (-a)Acw)pds
Q

Q
= [(CAPul-2) pds [ (-8R Aw)(-2) s
Q Q
YV ou, o € H5(S).

u)pdx

= (u — Ac(u), 0) s (0)
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Note that the set of fixed points of A, is the same as the set of critical
points of I, which is K. := {u € H§(Q) : I.(u) = 0}.

3.3. Invariant subsets of descending flow. It is easy to check that I
is locally Lipschitz continuous. We consider the negative gradient flow ¢,
of I. defined by

dt
0:(0,u) = u.

Here and in the sequel, define the convex cones

Pt ={u€ H(Q):u>0} and P~ ={ue€ H{Q):u<0}.

{ isos(t,u) = —I'(pc(t,u)) for t >0,

For ¥ > 0, we denote

Py = {u € H§(Q) : dist(u, P*) < 9}
and

Py ={ue Hj(Q) : dist(u, P™) < 9},

where dist(u, P¥) = inf,cp=+ ||u — V||l mg (o). Obviously, Py = —Pj . Let
W =PSUP;.

Then, W is an open and symmetric subset of Hj(Q2) and Q := Hj(2) \ W
contains only sign-changing functions. By similar arguments as in [16] (see
also [13]) and [19], we have the following result which shows that for o
small, Pgt is an invariant set and all sign-changing solutions to (2.3]) are
contained in Q.

LeEMMA 3.4. There exists 99 > 0 such that for any ¥ € (0,9], there
holds
A-(0Pf) C Py,
and
@e(t,u) € P forall t >0 and u € P—z;t.

Moreover, every nontrivial solutions u € P; and uw € P, of ([2.3) are
positive and negative, respectively.

REMARK 3.1. Note that there exists a constant C' > 0 independent of
p € [2,2*] such that ||ul, < C||lulj2+ for all p € [2,2*], as in the proof of
Lemma 5.2 in [16], one can show that there exists ¥y > 0 such that for any
v € (0,7], there holds A€(8P1;t) C Pigt for all € > 0 small enough.
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In the following, we may choose an ¥ > 0 small enough such that
Pét is an invariant set. In order to construct nodal solution by using the
combination of invariant sets method and minimax method, we need a
deformation lemma in the presence of invariant sets. Since I. satisfies the
(PS) condition, using similar arguments to Lemma 5.1 in [20], we have the
following result.

LEMMA 3.5. Define IC;’C =K NW, IC?C = Ke,e N Q, where K, . :=
{u € H§(Q) : I.(u) = ¢,I.(u) = 0}. Let ¢ > 0 be such that (K!.), ¢ W
where (Kl.), == {u € H§(Q) : dist(u,Kl.) < ¢}. Then there exists
an 09 > 0 such that for any 0 < 0 < o, there exists n € C([0,1] x
H§(), H3(Q)) satisfying:

(i) n(t,u) =u for t =0 or u ¢ I-([c — do,c + &) \ (ICE’C)Q.

(i) (L ISP UWN\ (K2 )30) C IEPUW and n(1, ISP UW) C IEOUW

iflC?vc = (). Here I¢ = {u € H§(Q) : I.(u) < d} for any d € R.

(iii) n(t,-) is odd and a homeomorphism of H§(2) for t € [0, 1].

(iv) I.(n(-,u)) is non-increasing.

(v) n(t, W) C W for any t € [0,1].

3.4. Existence of infinitely many sign-changing solutions. Now we
prove the existence of infinitely many sign-changing solutions to problem
(LI).

Proof of Theorem [[Il Here and in the sequel, we fix A € (0, A]).
As in [30], we divide the proof into three steps.

Step 1. For any € € (0,2* — () small, we define the minimax value c. j,
for the perturbed functional I.(u) with £k =2,3,---. Set

G ={h € C(BRNE,,Hj(Q)) : his odd and h = id on OBr N Ey, },

where R > 0 is given by Lemma Note that id € G,,, thus G,, # 0.
For k > 2, we define

Iy :={h(BrNE,\Y) :h € Gy,m >k, Y = =Y is open and y(Y) < m—k},

where y(K) is the Krasnoselskii genus of the symmetric closed se K, i.e.
the smallest integer n such that there exists and odd continuous map o :
K — 8"l From [22], T}, possess the following properties:

(10) Iy 75 ¢ and Fk+1 Cc I'y for all & > 2.

(2°) If ¢ € C(HG(Q2),H§(2)) is odd and ¢ = id on OBr N E,,, then
p(A) e it Ae Ty for all k> 2.

(3°) f AeTly, Z=—Zisopen and y(Z) < s < k and k — s > 2, then
A \ Z €T,
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Now, for k = 2,3, -, we can define the minimax value c. ;, given by

Ce = inf sup I.(u).
A€k ye ANQ

We need to show that c. ; (k > 2) are well defined (that is for any A € I'y,
ANQ #0)and ¢, > a. > 0, where o, is given by Lemma B3]
Consider the attracting domain of 0 in H(2):
D :={uec HjQ) : pe(t,u) — 0, as t — oo}.
Note that D is open, since 0 is a local minimum of I. and by the continuous
dependence of ODE on initial data. Moreover, D is an invariant set and

PfN P, CD.

In particular, there holds
I.(u) > 0 for every u € P—Jﬁ P—ﬂ_\ {0}

by the similar arguments to Lemma 3.4 in [4]. Now we claim that for any
A €T, with k > 2, it holds

ANQNAID # 0. (3.3)
Set

A=h(BRNE,\Y)
with v(Y) < m — k and k > 2. Define
O :={ueBrNE,:h(u) € D}

Obviously, O is a bounded open symmetric set with 0 € @ and O C

Br N Ey,. Thus, by the Borsuk-Ulam theorem that v(00) = m and by the
continuity of h, h(00) C ID. As a consequence,

h(0O\Y) C ANaoD,
and therefore
Y(ANID) > (R0 \Y)) = 7(00\Y) > 4(90) —(Y) > k,
by the “monotone, sub-additive and supervariant” property of the genus
(cf. Proposition 5.4 in [29]). Since P; N Py NdD = ), one has
y(WNnoD) < 1.
Thus for £ > 2, we conclude that
YANQNID) >~v(ANID) —y(WNoD)>k—-1>1,
which proves ([33). Therefore, it follows from ([3.3) that AN Q # (. More-
over, we have
Ce 2 > Qe > 07

because 0B,. C D and supyng le > infgp lc > infsp, I > ac > 0 by
Lemma [3.3
Hence, c.  are well defined for all £ > 2and 0 < o, <2 <ce3<---.
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Now, we claim
Koo 1Q #0, (3.4)

which implies that there exists a sign-changing critical point u. j such that

Ia(us,k) = Ce k>
and c.; — 00, as k — oo. It can be done, using deformation Lemma
following the same arguments as in the proof of Step 1 in [30].

Step 2. We show that for any fixed k > 2, [luc | mg(o) is uniformly
bounded with respect to €, and then w. j converges strongly to uy in H3(€2)
as € — 0.

In fact, using the same I'y, above, we can also define the minimax value
for the auxiliary functional I, (see (B.I])) by

B : Alglﬁk iggf*(u), k=2,3,---.
Here, choosing R > 0 sufficiently large if necessary, we point out that
Lemma [3.2] also holds for I,.. Then from a Zs version of the Mountain Pass
Theorem (see Theorem 9.12 in [22]), for each k > 2, 5 > 0 is well defined
and
B — oo, as k — oo.

Since
€]
Ie(u) < I*(U) + ?
holds for any € € (0,2 — (), by the definition of ¢ j and S}, we have
Q
Ce .k < ﬁk + |2_*|

Therefore, for fixed k > 2, ¢, is uniformly bounded for e € (0,2 — (),
i.e., there exists C' = C(f,2) > 0 independent on ¢, such that ¢, < C
uniformly for €. Since u. j is a nodal solution of (23]) and I.(uc k) = ¢,
one concludes that

*

S p— * 2 2 -
%/ |(—A)S/2u€7k\2da; < / \u&k\%_edm = 2*(876)057,% <C, (3.5)
1 Jo ) s—€—2

which implies that [|uc k| #5(0) < C uniformly with respect to . Denote
We | = Es(us,k)'
Then, wey is a solution of (2.4) satisfying |lwex|[m; ) < C uniformly
with respect to €. So we can apply Theorem 2] and obtain a subsequence
{we,, k}nen, such that
we, x — wy, strongly in Hg (C)
for some wy, € Hj 1 (C). We set

up = trowyg.
Then,
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Ug, | — Uy strongly in Hj(§2)

by the trace inequality and also c., 1 — c;. Thus uy is a solution of (1))
and I(ux) = c. Moreover, since u.,, j is sign-changing, similar to Step 1,
by Lemma 2.1 we can show that wuy is still sign-changing.

Step 3. We are in a position to prove that the functional has infinitely
many sign-changing critical points. Recalling that ¢ is non-decreasing with
respect to k, we distinguish two cases:

Case I. There exist 2 < by < --- < k; < ---, satisfying ¢, < -+ <
Cpy <o

Case II: There is a positive integer [ such that ¢, = ¢ for all £ > [.

Obviously, in Case I, problem (LI)) has infinitely many sign-changing
solutions such that I(u;) = cy,, thus we are done. So we assume in the
sequel that Case II holds. From now on, we suppose that there exists a
0 > 0, such that I(u) has no sign-changing critical point u with

I(u) € [c—d,¢) U (c,c+ ).
Otherwise, the result follows.
We claim that

v(K2) > 2,

where K, := {u € H3(Q) : I(u) = ¢, I'(u) = 0} and K2 = K. N Q. Ifit is
true, I(u) has infinitely many sign-changing critical points and thus we are
done. Here we borrow some ideas used in [11]. Arguing by contradiction,
suppose that

y(K2) =1

(note that K2 # (). Moreover, we assume K2 contains only finitely many
critical points, otherwise the proof is completed. As a consequence, K2 is
compact. Clearly, 0 ¢ K2. Thus there exists a open neighborhood N in
HE(Q) with K2 C N such that v(N) = ~v(K2?).

Define

U, :=I-Y([c — 6,c¢+6]) \ N.
Now we claim that for € > 0 small, I, has no sign-changing critical point
in U.. Indeed, if not, we suppose that there exist ¢, — 0 and u,, € U,
satisfying I (u,) = 0, with u # 0, and u,, ¢ N. Obviously,
I, (uy) € [c —d,c+ 6.
Then, similar to (3.5]), one can obtain that |[up||z3@) < C uniformly with
respect to n. Set

wy, = Fg(uy).



1160 L. Li, J. Sun, S. Tersian

By Lemma 2] w,, is a solution of (2.4)) satisfying ||w,,|| Hy (0 < C' uni-
formly with respect to n. Therefore, by Theorem 2. we obtain, up to a
subsequence, that
wp, — w strongly in H{ 1(C)
for some w € Hj ; (C). We set
u = trow.
Clearly, u,, — u strongly in H{(€2). Thus
I'(u) =0, I(u)€lc—0dc+6] and u¢ K2
But w is still sign-changing, a contradiction.

From the above observation, one can easily show that for any € > 0
small, there exists a constant a, > 0 such that

I IL(w)|| > ae, foru e I7'([c—d,c4+6]) \ (NUW).

Then, as in [I1], standard techniques show that for ¢ > 0 small enough,
there exists an odd homeomorphism n € C'(H§(), H5(2)) such that n(u) =
u for u € I¢2° and

NI UW \N) Cc ISP UW. (3.6)
See for example the proof of Theorem A.4 in [22] and also Lemma 5.1 in
20].
| ]Now fix k > [. Since cck,ccp+1 — cas € — 0, we can find an € > 0
small, such that

0 0
Ce,ka C€,k+1 S (C - Z7c + Z)
By the definition of ¢, j11, we can find aset A € I'yy1, A = h(BRNE,\Y),
where h € Gy, m > k+ 1, v(Y) <m — (k + 1), such that

1) 1)
I (u) < cop1 + 15¢ty

5
for any u € AN @, which implies, A C I§+2 U W. Then by (B.6), we have
ot
n(A\N)C I 2UW. (3.7)
Let Y =Y Uh~Y(N). Then Y is symmetric and open, and
YT) < AV) + A N) Sm— (k4 1) +1=m— k.

Therefore one can obtain that A := n(h(Br N E, \Y)) € Ty, by (2°) and
(3°) above. Consequently, by (3.7,

1)
cep<supl. < sup L. <c—,
Ao a(AN)NQ 2
which contradicts to

C, >c— —.
e,k 4
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Hence the proof is completed and the functional I has infinitely many sign-
changing critical points. (]
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