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Abstract

In this paper, we discuss the maximum principle for a time-fractional
diffusion equation

∂α
t u(x, t)=

n∑
i,j=1

∂i(aij(x)∂ju(x, t))+c(x)u(x, t)+F (x, t), t > 0, x ∈ Ω ⊂ R
n,

with the Caputo time-derivative of the order α ∈ (0, 1) in the case of
the homogeneous Dirichlet boundary condition. Compared to the already
published results, our findings have two important special features. First,
we derive a maximum principle for a suitably defined weak solution in the
fractional Sobolev spaces, not for the strong solution. Second, for the non-
negative source functions F = F (x, t) we prove the non-negativity of the
weak solution to the problem under consideration without any restrictions
on the sign of the coefficient c = c(x) by the derivative of order zero in the
spatial differential operator. Moreover, we prove the monotonicity of the
solution with respect to the coefficient c = c(x).

MSC 2010 : Primary 26A33; Secondary 35A05, 35B30, 35B50, 35C05,
35E05, 35L05, 45K05, 60E99

c© 2017 Diogenes Co., Sofia
pp. 1131–1145 , DOI: 10.1515/fca-2017-0060



1132 Yu. Luchko, M. Yamamoto

Key Words and Phrases: Caputo fractional derivative, time-fractional
diffusion equation, initial-boundary-value problems, weak maximum prin-
ciple, comparison principle

1. Introduction

During the last few decades various fractional generalizations of the
classical diffusion equation were introduced and intensely discussed both in
the mathematical literature and in different applications, say, as models for
the so called anomalous diffusion (see e.g. [15] and the numerous references
therein). The mathematical theory of the fractional diffusion equations is
nowadays under remarkable development, but still it is not as complete as
the theory of the partial differential equations of the parabolic type.

One of the recent research topics in this theory is studying the analogies
of the maximum principles known for the parabolic and elliptic types of par-
tial differential equations as well as their applications to analysis of solutions
to the boundary- or initial-boundary-value problems for the fractional par-
tial differential equations. The first publications that should be mentioned
in this connection are the papers [4] and [6], where a kind of a maximum
principle was employed for analysis of some fractional partial differential
equations without an explicit formulation of this principle. In [10], a weak
maximum principle for a single-term time-fractional diffusion equation with
the Caputo fractional derivative was formulated and proved for the first
time. In [12], this principle was applied for an a priori estimate for solu-
tions to the initial-boundary-value problems for a multi-dimensional time-
fractional diffusion equation. The weak maximum principles for multi-term
time-fractional diffusion equations and time-fractional diffusion equations
with the Caputo fractional derivatives of the distributed orders were intro-
duced and applied in [13] and [11], respectively. In [8], a strong maximum
principle for time-fractional diffusion equations with the Caputo derivatives
was established and applied for proving a uniqueness result for a related
inverse source problem of determination of the temporal component of the
source equation term. In [1], [2], and [3] the maximum principles for single-,
multi-term, and distributed order fractional diffusion equations with the
Riemann-Liouville fractional derivatives, respectively, were proved and em-
ployed for analysis of solutions to the initial-boundary-value problems for
linear and non-linear time-fractional partial differential equations. A max-
imum principle for multi-term time-space fractional differential equations
with the modified Riesz space-fractional derivative in the Caputo sense was
introduced and employed in [20]. In [9], a maximum principle for multi-
term time-space variable-order fractional differential equations with the
Riesz-Caputo fractional derivatives was proved and applied for analysis of
these equations. Finally, we mention a very recent paper [14], where a weak
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maximum principle for a general time-fractional diffusion equation which
was introduced in [7], was derived and employed for proving the unique-
ness of both the strong and the weak solutions to the initial-boundary-value
problem for this equation. The general time-fractional diffusion equation
contains both single- and multi-term time-fractional diffusion equations as
well as time-fractional diffusion equation of the distributed order among
its particular cases and is a new object in fractional calculus worth to be
investigated in detail.

In this paper, we revisit the weak maximum principle for the time-
fractional diffusion equation

∂α
t u(x, t)=

n∑
i,j=1

∂i(aij(x)∂ju(x, t))+c(x)u(x, t)+F (x, t), t > 0, x ∈ Ω ⊂ R
n

with the Caputo time-derivative of the order α ∈ (0, 1) and prove it for a
suitably defined weak solution in the fractional Sobolev spaces and without
any restrictions on the sign of the coefficient c = c(x).

The rest of this paper is organized as follows. In Section 2, the problem
that we are dealing with as well as our results are formulated. Section 3 is
devoted to a proof of a key lemma that is a basis for the proofs of all other
results. The lemma asserts that the solution mapping {a, F} −→ ua,F (a
and F denote an initial condition and a source function of the problem
under consideration, respectively, and ua,F denotes its weak solution) pre-
serves its sign. In Section 4, the key lemma and the fixed point theorem
are employed to prove the maximum and comparison principles and some
of their corollaries. Finally, some conclusions and remarks are formulated
in the last section.

2. Problem formulation and main results

In this paper, we deal with the following initial-boundary-value problem
for the single-term time-fractional diffusion equation

∂α
t u(x, t)=

n∑
i,j=1

∂i(aij(x)∂ju(x, t))+c(x)u(x, t)+F (x, t), x ∈ Ω ⊂ R
n, t > 0,

(2.1)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (2.2)

u(x, 0) = a(x), x ∈ Ω (2.3)

with 0 < α < 1 and in a bounded domain Ω with a smooth bound-
ary ∂Ω. In what follows, we always suppose that aij ≡ aji ∈ C1(Ω),

1 ≤ i, j ≤ n, c ∈ C(Ω), and there exists a constant μ0 > 0 such that∑
i,j=1 aij(x)ξiξj ≥ μ0

∑n
i=1 ξ

2
i for all x ∈ Ω and ξ1, ..., ξn ∈ R, i.e., that
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the spatial differential operator in equation (2.1) is a uniformly elliptic one.
The fractional derivative ∂α

t u in (2.1) is defined in the Caputo sense by

∂α
t u(x, t) =

1

Γ(1− α)

∫ t

0
(t−s)−α∂su(x, s)ds, x ∈ Ω, t > 0, u ∈ C1[0, T ].

In [5], the Caputo fractional derivative ∂α
t was extended to an operator

defined on the closure Hα(0, T ) of 0C
1[0, T ] := {u ∈ C1[0, T ]; u(0) = 0}

in the fractional Sobolev space Hα(Ω). In what follows, we regard ∂α
t u in

(2.1) as this extension with the domain Hα(0, T ) (see [5] for details). Thus
we interpret the problem (2.1)–(2.3) as the fractional diffusion equation
(2.1) subject to the inclusions{

u(·, t) ∈ H1
0 (Ω), t > 0,

u(x, ·) − a(x) ∈ Hα(0, T ), x ∈ Ω.
(2.4)

According to the results presented in [5], for any initial condition a ∈ L2(Ω)
and any source function F ∈ L2(Ω × (0, T )), there exists a unique weak
solution ua,F ∈ L2(0, T ;H2(Ω)∩H1

0 (Ω))∩Hα(0, T ;L
2(Ω)) to (2.1) subject

to the inclusions (2.4). For 1
2 < α < 1, in view of the Sobolev embedding

the solution u belongs to the functional space C([0, T ];L2(Ω)) and satisfies
the initial condition (2.3) in the L2-sense.

The focus of this paper is on the weak maximum principle for the
equation (2.1), which says that the inequalities F (x, t) ≥ 0, (x, t) ∈ Ω ×
(0, T ) and a(x) ≥ 0, x ∈ Ω yield the inequality u(x, t) ≥ 0, (x, t) ∈
Ω×(0, T ) for the weak solution to the initial-boundary value problem (2.1)-
(2.3) defined as in [5].

A maximum principle for the strong solution to the initial-boundary
value problem (2.1)-(2.3) was first proved in [10] under the assumption
that

c(x) ≤ 0, x ∈ Ω.

Moreover, the case of an inhomogeneous Dirichlet boundary condition

u|∂Ω×(0,T ) = b(x, t)

was also considered in [10], but in this paper, for the sake of technical
simplicity, we assume the homogeneous boundary condition u|∂Ω×(0,T ) = 0
although our method can be applied for the case of an inhomogeneous
boundary condition, too.

The main result of this paper is a proof of the weak maximum princi-
ple for the equation (2.1) with any c ∈ C(Ω) without the non-negativity
condition c(x) ≤ 0, x ∈ Ω. As it is known, the weak maximum principle
for the partial differential equations of the parabolic type is valid with-
out any condition on the sign of the coefficient c = c(x) (see e.g. [17] or
[19]). The proof of this fact uses the properties of the exponential function
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and reduces the case of a bounded coefficient c = c(x) to the case of a
non-negative coefficient. This technique does not work in the case of the
fractional diffusion equation (2.1) and thus we were forced to invent a new
and more complicated proof method.

Let us now denote the solution to the initial-boundary value problem
(2.1)-(2.3) defined as in [5] by ua,F and formulate our results.

Theorem 2.1. Let a ∈ L2(Ω) and F ∈ L2(Ω × (0, T )). If F (x, t) ≥ 0
a.e. (almost everywhere) in Ω × (0, T ) and a(x) ≥ 0 a.e. in Ω, then
ua,F (x, t) ≥ 0 a.e. in Ω× (0, T ).

Let us mention that in [10] the maximum principle was stated point-
wise (i.e., for all points from Ω × [0, T ]) for the strong solution under the
assumption that c(x) ≤ 0, x ∈ Ω. In Theorem 2.1, the maximum principle
is formulated for the weak solution and our proof is based on the fixed point
theorem and the property that the solution mapping {a, F} −→ ua,F pre-
serves its sign on the set of the weak solutions and thus the non-negativity
of the solution is valid almost everywhere and not pointwise.

Theorem 2.1 immediately yields the following comparison property:

Corollary 2.1. Let a1, a2 ∈ L2(Ω) and F1, F2 ∈ L2(Ω × (0, T ))
satisfy the inequalities a1(x) ≥ a2(x) a.e. in Ω and F1(x, t) ≥ F2(x, t) a.e.
in Ω×(0, T ), respectively. Then ua1,F1(x, t) ≥ ua2,F2(x, t) a.e. in Ω×(0, T ).

Corollary 2.1 can be employed among other things to remove the con-
dition c(x) ≤ 0 from the formulation of the strong maximum principle for
the fractional diffusion equation that was derived in [8].

Let us now fix a source function F = F (x, t) ≥ 0 and an initial condition
a = a(x) ≥ 0 and denote by uc = uc(x, t) the weak solution to the initial-
boundary-value problem (2.1)-(2.3) with the coefficient c = c(x). Then the
following comparison property is valid:

Theorem 2.2. Let c1, c2 ∈ C(Ω) satisfy the inequality c1(x) ≥ c2(x)
in Ω. Then uc1(x, t) ≥ uc2(x, t) in Ω× (0, T ).

One of the useful consequences from Theorem 2.2 is given in the fol-
lowing statement:

Corollary 2.2. Let n ≤ 3 (Ω ⊂ R
n), the initial condition a ∈ L2(Ω)

satisfy the inequality a(x) ≥ 0 a.e. in Ω, a 
≡ 0, and the source function
be identically equal to zero, i.e., F (x, t) ≡ 0, x ∈ Ω, t > 0. Then the
weak solution u to the initial-boundary-value problem (2.1)-(2.3) satisfies
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the inclusion u ∈ C((0, T ];C(Ω)) and for each x ∈ Ω the set {t : t >
0 ∧ u(x, t) ≤ 0} is at most a finite set.

3. Solution mapping and its properties

Let us define an operator A in L2(Ω) by the relation

(Av)(x) = −
n∑

i,j=1

∂i(aij(x)∂jv(x)) − c(x)v(x), x ∈ Ω

with D(A) = H2(Ω) ∩H1
0 (Ω) and assume that the inequality

c(x) < 0, x ∈ Ω (3.1)

and the conditions on the coefficients aij formulated at the beginning of
Section 2 are satisfied. By ‖ · ‖ and (·, ·) we denote the standard norm
and the scalar product in L2(Ω), respectively. Then it is known that the
operator A is self-adjoint and positive definite in L2(Ω) and therefore its
spectrum consists of discrete positive eigenvalues 0 < μ1 ≤ μ2 ≤ · · · which
are numbered according to their multiplicities and μn → +∞ as n → +∞.
Let ϕn be an eigenvector corresponding to the eigenvalue μn such that
(ϕn, ϕm) = 0 if n 
= m and (ϕn, ϕn) = 1. Then it is also known that the
system {ϕn}n∈N of the eigenvectors forms an orthonormal basis in L2(Ω)
and for any γ ≥ 0 we can define the fractional powers Aγ of the operator
A by the following relation (see e.g. [16]):

Aγv =
∞∑
n=1

μγ
n(v, ϕn)ϕn,

where

v ∈ D(Aγ) :=

{
v ∈ L2(Ω) :

∞∑
n=1

μ2γ
n (v, ϕn)

2 < ∞
}

and

‖Aγv‖ =

( ∞∑
n=1

μ2γ
n (v, ϕn)

2

) 1
2

.

Let us define two other operators, S(t) and K(t), by the relations

S(t)a =
∞∑
n=1

Eα,1(−μnt
α)(a, ϕn)ϕn, a ∈ L2(Ω), t > 0 (3.2)

and

K(t)a =

∞∑
n=1

tα−1Eα,α(−μnt
α)(a, ϕn)ϕn, a ∈ L2(Ω), t > 0, (3.3)
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where Eα,β(z) denotes the Mittag-Leffler function defined by a convergent
series as follows:

Eα,β(z) =

∞∑
k=0

zk

Γ(α k + β)
, α > 0, β ∈ C, z ∈ C.

It follows directly from the definitions given above that AγK(t)a = K(t)Aγa
and AγS(t)a = S(t)Aγa for a ∈ D(Aγ). Moreover, the following norm esti-
mates were proved in [18]:{ ‖S(t)a‖ ≤ C‖a‖,

‖AγK(t)a‖ ≤ Ctα(1−γ)−1‖a‖, a ∈ L2(Ω), t > 0, 0 ≤ γ ≤ 1.
(3.4)

To shorten the notations and focus on the dependence of the time variable
t, henceforth we sometimes omit the variable x in the functions of two vari-
ables, t and x, and write simply u(t) = u(·, t), F (t) = F (·, t), a = a(·), etc.
As it was shown in [5], under the condition (3.1) and for F ∈ L2(Ω×(0, T ))
and a ∈ L2(Ω) the weak solution u to the initial-boundary-value problem
(2.1)-(2.3) satisfies the inclusion u ∈ Hα(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω) ∩
H1

0 (Ω)) and can be represented by the formula

u(t) = S(t)a+

∫ t

0
K(t− s)F (s)ds =: L(a, F )(t), t > 0. (3.5)

Now we paraphrase the result first presented in [10] and formulate it as our
key lemma.

Lemma 3.1. Let the condition (3.1) on the coefficient c = c(x) hold
true. If the initial condition a ∈ L2(Ω) and the source function F ∈ L2(Ω×
(0, T )) satisfy the inequalities

a(x) ≥ 0, F (x, t) ≥ 0 for almost all x ∈ Ω and 0 < t < T, (3.6)

then

L(a, F )(t) ≥ 0, for almost all x ∈ Ω and 0 < t < T. (3.7)

P r o o f. We start with proving the statement that under the condi-
tions (3.1) and (3.6) the inequality (3.7) holds true for a ∈ C∞

0 (Ω) and
F ∈ C∞

0 (Ω× (0, T )). First we prove the inclusions

L(a, F ) ∈ C1((0, T ];C2(Ω)) ∩ C(Ω× [0, T ]) (3.8)
and

∂tL(a, F ) ∈ L1(0, T ;L2(Ω)). (3.9)

Since AγS(t)a = S(t)Aγa for all γ > 0 and a ∈ C∞
0 (Ω) ⊂ D(Aγ), the part

S(t)a of the operator L(a, F ) satisfies the inclusion (3.8) (see Corollary 2.6
in [18]). Moreover, by differentiation of the series that defines the Mittag-
Leffler function we have the relation
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S′(t)a =

∞∑
n=1

(a, ϕn)

(
d

dt
Eα,1(−μnt

α)

)
ϕn

= −tα−1
∞∑
n=1

μn(a, ϕn)Eα,α(−μnt
α)ϕn.

Using the known asymptotics of the Mittag-Leffler function, we readily get
the following norm estimates:

‖S′(t)a‖ ≤ tα−1

( ∞∑
n=1

μ2
n(a, ϕn)

2 C

(1 + μntα)2

) 1
2

≤ Ctα−1‖a‖H2(Ω), t > 0

and thus the estimate ∫ T

0
‖S′(t)a‖dt < ∞,

which verifies that S(t)a satisfies the inclusion (3.9).
Next we have to prove that the second part of the operator L(a, F ), the

function w(t) :=
∫ t
0 K(t− s)F (s)ds, satisfies the inclusions (3.8) and (3.9),

too. Because the Laplace convolution is commutative, we can represent it

as w(t) =
∫ t
0 K(s)F (t− s)ds. Due to the inclusion F ∈ C∞

0 (Ω× (0, T )), we
have

w′(t) = K(t)F (0) +

∫ t

0
K(s)F ′(t− s)ds =

∫ t

0
K(s)F ′(t− s)ds,

and then we arrive at the representation

Aγw′(t) =
∫ t

0
K(s)AγF ′(t− s)ds, t > 0.

By employing the norm estimate (3.4), for any γ > 0 we have the estimates

‖Aγw′(t)‖ ≤ C

∫ t

0
sα−1‖AγF ′(t− s)‖ds

≤C max
0≤t≤T

‖AγF ′(t)‖
∫ t

0
sα−1ds < ∞.

For a sufficiently large γ > 0, we then apply the Sobolev embedding theo-
rem, and thus arrive at the inclusion

w′ ∈ C((0, T ];C2(Ω))

that implies that the function w = w(t) satisfies both the inclusion (3.8)
and the inclusion (3.9).

The inclusions (3.8) and (3.9) mean that in the case under consideration
the weak solution u = u(t) can be interpreted as a strong solution and we
are now in position to apply the maximum principle for the strong solution
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from [10] to the solution u(t) = L(a, F )(t) and thus conclude that the
inequality (3.7) holds true if a ∈ C∞

0 (Ω) and F ∈ C∞
0 (Ω× (0, T )).

To complete the proof of the lemma, let us suppose that a ∈ L2(Ω) and
F ∈ L2(Ω× (0, T )) be arbitrarily given. Then we can choose the sequences
an ∈ C∞

0 (Ω) and Fn ∈ C∞
0 (Ω × (0, T )) such that an → a in L2(Ω) and

Fn → F in L2(Ω × (0, T )). As we already proved,

L(an, Fn) ≥ 0 a.e. in Ω× (0, T ), n ∈ N. (3.10)

Moreover, it was shown in [5] that L(an, Fn) → L(a, F ) as n → ∞ in
L2(0, T ;H2(Ω)) ∩ Hα(0, T ;L2(Ω)). Hence the inequality (3.10) yields the
inequality L(a, F ) ≥ 0 almost everywhere in Ω× (0, T ) and the proof of the
lemma is completed. �

4. Proofs of the main results

In this section, the proofs of the main results stated in Section 2 are pre-
sented. For the proofs, the fixed point theorem and Lemma 3.1 formulated
and proved in the previous section play a decisive role.

We start with a proof of Theorem 2.1.

P r o o f. Let us set M = maxx∈Ω |c(x)| and introduce an auxiliary

function c0(x) = c(x)− (M + 1). Then c0(x) < 0 on Ω and the boundary-
value problem (2.1)-(2.3) can be rewritten in the form⎧⎪⎪⎨

⎪⎪⎩
∂α
t u(x, t) =

∑n
i,j=1 ∂i(aij(x)∂ju(x, t)) + c0(x)u(x, t)

+(F (x, t) + (M + 1)u(x, t)), x ∈ Ω, t > 0,
u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = a(x), x ∈ Ω.

(4.1)

The weak solution u to the equation from (4.1) with the coefficient c0 by the
unknown function can be represented by the formula (3.5) via the operator
L(a, F ) and we thus arrive at the integral equation for the solution u in the
form

u(t) = L(a, F + (M + 1)u)(t), t > 0. (4.2)

Now the fixed point theorem technique is applied to analyze the equation
(4.2). Let us consider a sequence of functions un defined as follows:

u0 = 0, un+1 = L(a, F + (M + 1)un), n = 0, 1, 2, . . . . (4.3)

We first prove that the sequence un is convergent in L2(Ω × (0, T )). In
fact, denoting un+1 − un, n = 0, 1, 2, . . . by dn+1 we immediately get the
representation

d1(t) = u1(t), dn+1(t) =

∫ t

0
K(t− s)dn(s)ds, n = 1, 2, . . . .
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Let us set M0 = max0≤t≤T ‖u1(t)‖. It follows from the norm estimates
(3.4) that

‖dn+1(t)‖ ≤ C

∫ t

0
(t− s)α−1‖dn(s)‖ds.

Thus we can estimate the norm of d2(t) as follows:

‖d2(t)‖ ≤ CM0
tα

α
.

For the norm of d3(t) we get the estimates

‖d3(t)‖ ≤ C

∫ t

0
(t− s)α−1CM0s

α

α
ds

=C
CM0

α

Γ(α)Γ(α + 1)

Γ(2α+ 1)
t2α =

(CΓ(α))2M0

Γ(2α+ 1)
t2α.

Proceeding as above and applying the principle of mathematical induction
we finally obtain the norm estimate

‖dn(t)‖ ≤ (CΓ(α))n−1M0

Γ((n− 1)α + 1)
t(n−1)α, 0 < t < T, n ∈ N.

Hence

max
0≤t≤T

‖dn(t)‖ ≤ (CΓ(α)Tα)n−1M0

Γ((n − 1)α + 1)
, n ∈ N.

Because un − u0 = un =
∑n

k=1 dk, let us investigate the convergence of
the series

∑∞
k=1 dk. By the quotient convergence rule and using the known

asymptotic behavior of the Gamma function, we get

lim
k→∞

(
(CΓ(α)Tα)kM0

Γ(kα+ 1)

)(
(CΓ(α)Tα)k−1M0

Γ((k − 1)α+ 1)

)−1

= lim
k→∞

CΓ(α)TαΓ((k − 1)α+ 1)

Γ(kα+ 1)
< 1,

so that the series
∑∞

k=1 dk(t) and thus the sequence un are both conver-
gent in C([0, T ];L2(Ω)). According to construction of the sequence un, it
converges to the fixed point of the integral equation (4.2), i.e., to the weak
solution u of the initial-boundary-value problem (4.1).

Let us now show the non-negativity of u. Because of the condition (4.3)
and taking into account the inequalities a(x) > 0, F (x, t) ≥ 0, Lemma 3.1
yields the inequality u1(x, t) ≥ 0 in Ω × (0, T ). Then F (x, t) + (M +
1)u1(x, t) ≥ 0 in Ω × (0, T ) and we can apply Lemma 3.1 to the solution
representation (4.3) with n = 1 and obtain the inequality u2(x, t) ≥ 0 in
Ω×(0, T ). Repeating these arguments, we arrive at the inequality un(x, t) ≥
0 in Ω×(0, T ) for all n ∈ N. Since un → u in C([0, T ];L2(Ω)), the inequality
u(x, t) ≥ 0 holds true in Ω × (0, T ) for the weak solution u of the of the
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initial-boundary-value problem (4.1), too. The proof of Theorem 2.1 is
completed. �

We proceed with a proof of Corollary 2.1.

P r o o f. Let us denote ua1,F1 − ua2,F2 by y. The function y = y(x, t)
is thus the weak solution to the following initial-boundary-value problem⎧⎨
⎩

∂α
t y(x, t) =

∑n
i,j=1 ∂i(aij(x)∂jy(x, t)) + F1(x, t)− F2(x, t), x ∈ Ω, t > 0,

y(x, t) = 0, x ∈ ∂Ω, t > 0,
y(x, 0) = a1(x)− a2(x), x ∈ Ω.

According to the conditions posed in Corollary 2.1, the inequalities F1(x, t)−
F2(x, t) ≥ 0 and a1(x)− a2(x) ≥ 0 hold true in Ω× (0, T ). Then Theorem
2.1 implies that y(x, t) = ua1,F1(x, t) − ua2,F2(x, t) ≥ 0 almost everywhere
in Ω× (0, T ). Thus the proof of the corollary is completed. �

Now a proof of Theorem 2.2 is presented.

P r o o f. First we introduce an auxiliary function z = uc1 −uc2 that is
the weak solution to the following initial-boundary-value problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂α
t z(x, t) =

n∑
i,j=1

∂i(aij(x)∂jz(x, t)) + c1(x)z(x, t)

+(c1(x)− c2(x))uc2(x, t), x ∈ Ω, t > 0,
z(x, t) = 0, x ∈ ∂Ω, t > 0,
z(x, 0) = 0, x ∈ Ω.

(4.4)

Because the inequalities F (x, t) ≥ 0 and a(x) ≥ 0 hold true in Ω×(0, T ) and
in Ω, respectively, Theorem 2.1 yields that uc2(x, t) ≥ 0 in Ω×(0, T ). Hence
(c1(x) − c2(x))uc2(x, t) ≥ 0 in Ω × (0, T ). Applying now Theorem 2.1 to
the initial-boundary-value problem (4.4) leads to the inequality z(x, t) =
uc1(x, t) − uc2(x, t) ≥ 0 in Ω × (0, T ) and the proof of Theorem 2.2 is
completed. �

Finally, we give a proof of Corollary 2.2.

P r o o f. Under the condition c(x) ≤ 0, the statement of the corol-
lary was already proved in [8]. Let us show that the corollary holds true
also without this condition. According to [18], the weak solution u to the
initial-boundary-value problem (2.1)-(2.3) belongs to the functional space
C((0, T ];H2(Ω)). For n ≤ 3, the Sobolev embedding theorem implies that
H2(Ω) ⊂ C(Ω) and thus we get the inclusion u ∈ C((0, T ];C(Ω)).

Let us denote by u the weak solution to the initial-boundary-value
problem (2.1)-(2.3) with a coefficient c ∈ C(Ω) by the unknown function
and with zero source function F = F (x, t) ≡ 0 and by v the weak solution
to (2.1)-(2.3) with the coefficient c − ‖c‖C(Ω) by the unknown function
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and with zero source function F = F (x, t) ≡ 0. Because the inequalities
a(x) ≥ 0 and c(x)−‖c‖C(Ω) ≤ 0 hold true, for v we can employ the results

proved in [8] that say that for an arbitrary but fixed x ∈ Ω there exists an
at most finite set Ex such that

v(x, t) ≤ 0, t ∈ Ex. (4.5)

Since c(x) ≥ c(x) − ‖c‖C(Ω) in Ω, Theorem 2.2 leads to the inequality

u(x, t) ≥ v(x, t) that together with the inequality (4.5) completes the proof
of Corollary 2.2. �

5. Conclusions and remarks

In this paper, we proved a weak maximum principle for the weak solu-
tion to an initial-boundary-value problem for a single-order time-fractional
diffusion equation without a restriction on the sign of the coefficient c =
c(x) by the unknown function as well as some of its important consequences.
A result of this kind is well-known for the elliptic and parabolic type par-
tial differential equations and for them the case of a bounded coefficient
c = c(x) is easily reduced to the case of a non-positive coefficient by con-
structing an auxiliary function with an exponential factor. However, this
technique does not work for the fractional diffusion equation. Instead, we
reduced the problem with an arbitrary continuous coefficient to an integral
equation for the solution to the problem with a negative coefficient and
applied the fixed point theorem for the investigation of this equation.

From the maximum principle that we proved under weaker conditions
compared to those formulated in the already published papers (see the
introduction for a short overview of the relevant publications), a series of
important consequences can be derived. In particular, we proved that the
solution mapping {a, F} −→ ua,F (a and F denote an initial condition and
a source function of the problem under consideration, respectively, and ua,F
denotes its weak solution) preserves its sign. Moreover, the monotonicity
of the solution with respect to the coefficient c = c(x) by the unknown
function has been shown. This solution property can be used among other
things to characterize the set of the points where the the weak solution can
be non-positive.

It is worth mentioning that several other important results can be de-
rived by the same arguments as we employed in the proof of Theorem 2.1.
Let us briefly discuss one of them, namely, the maximum principle for a
coupled system of the time-fractional diffusion equations with the fractional
derivatives of the same order α (0 < α < 1) in the form
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∂α
t

⎛
⎜⎝

u1(x, t)
...

uN (x, t)

⎞
⎟⎠ = Δ

⎛
⎜⎝

u1(x, t)
...

uN (x, t)

⎞
⎟⎠

+

⎛
⎜⎝

p11(x) · · · p1N (x)
...

...
...

pN1(x) · · · pNN (x)

⎞
⎟⎠
⎛
⎜⎝

u1(x, t)
...

uN (x, t)

⎞
⎟⎠+

⎛
⎜⎝

F1(x, t)
...

FN (x, t)

⎞
⎟⎠ , x ∈ Ω, t > 0.

We assume that the inequalities pij(x) ≥ 0 hold true for i 
= j a.e. in Ω.

Then the inequalities Fk(x, t) ≥ 0 a.e. in Ω×(0, T ) and uk(x, 0) ≥ 0 a.e.
in Ω for k = 1, ..., N yield the non-negativity of all solution components:

uk(x, t) ≥ 0 a.e. in Ω× (0, T ) for k = 1, ..., N .

Our method can be also employed for derivation of the maximum principles
for more general fractional differential equations like e.g. the multi-term
time-fractional diffusion equations, the diffusion equations of the distribute
order and even for the general diffusion equations that were introduced and
studied in [7] and [14]. These problems are worth to be considered and they
will be studied elsewhere.
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