Home Perturbation methods for nonlocal Kirchhoff–type problems
Article
Licensed
Unlicensed Requires Authentication

Perturbation methods for nonlocal Kirchhoff–type problems

  • Luigi D’Onofrio EMAIL logo , Alessio Fiscella and Giovanni Molica Bisci
Published/Copyright: August 8, 2017

Abstract

This paper deals with the existence of infinitely many solutions for a class of Dirichlet elliptic problems driven by a bi–nonlocal operator uM(∥u2)(−Δ)su, where M models a Kirchhoff–type coefficient while (−Δ)s denotes the fractional Laplace operator. More precisely, by adapting to our bi–nonlocal framework the variational and topological tools introduced in [16], we establish the existence of infinitely many solutions. The main feature and difficulty of our problems is due to the possible degenerate nature of the Kirchhoff term M.


Dedicated to Tania Restuccia on the occasion of her 70th birthday with all our affection and esteem


Acknowledgements

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The manuscript was realized within the auspices of the INdAM – GNAMPA Projects Problemi variazionali su varietà Riemanniane e gruppi di Carnot (Prot_2016_000421) and Teoria e modelli per problemi non locali.

A. Fiscella was supported by Coordenação de Aperfeiçonamento de pessoal de nível superior (CAPES) through the fellowship 33003017003P5–PNPD20131750–UNICAMP/MATEMÁTICA.

L. D’Onofrio was supported by Sostegno alla Ricerca Individuale Universitá degli Studi di Napoli “Parthenope”.

References

[1] G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal. 125 (2015), 699–714.10.1016/j.na.2015.06.014Search in Google Scholar

[2] A. Bahri, H. Berestycki, A perturbation method in critical point theory and applications. Trans. Amer. Math. Soc. 267 (1981), 1–32.10.1090/S0002-9947-1981-0621969-9Search in Google Scholar

[3] S. Baraket, G. Molica Bisci, Multiplicity results for elliptic Kirchhoff-type problems. Adv. Nonlinear Anal. 6, No 1 (2017), 85–93.10.1515/anona-2015-0168Search in Google Scholar

[4] A. Bonnet, A deformation lemma on a C1 manifold. Manuscripta Mathematica81 (1993), 339–359.10.1007/BF02567863Search in Google Scholar

[5] H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer, New York (2011).10.1007/978-0-387-70914-7Search in Google Scholar

[6] C. Bucur, F. Ferrari, An extension problem for the fractional derivative defined by Marchaud. Fract. Calc. Appl. Anal. 19, No 4 (2016), 867–887; 10.1515/fca-2016-0047; https://www.degruyter.com/view/j/fca.2016.19.issue-4/issue-files/fca.2016.19.issue-4.xml.Search in Google Scholar

[7] F. Cammaroto, L. Vilasi, Weak solutions for a fractional equation in with Kirchhoff terms. Complex Var. Elliptic Equ. 61 (2016), 1362–1374.10.1080/17476933.2016.1177029Search in Google Scholar

[8] M. Caponi, P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p–Laplacian equations. Ann. Mat. Pura Appl. 195 (2016), 2099–2129.10.1007/s10231-016-0555-xSearch in Google Scholar

[9] W. Chen, Multiplicity of solutions for a fractional Kirchhoff type problem. Commun. Pure Appl. Anal. 14 (2015), 2009–2020.10.3934/cpaa.2015.14.2009Search in Google Scholar

[10] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136 (2012), 521–573.10.1016/j.bulsci.2011.12.004Search in Google Scholar

[11] A. Fiscella, Saddle point solutions for non–local elliptic operators. Topol. Methods Nonlinear Anal. 44 (2014), 527–538.10.12775/TMNA.2014.059Search in Google Scholar

[12] A. Fiscella, Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator. Differ. Integral Equations29 (2016), 513–530.10.57262/die/1457536889Search in Google Scholar

[13] A. Fiscella, P. Pucci, p–fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 35 (2017), 350–378.10.1016/j.nonrwa.2016.11.004Search in Google Scholar

[14] A. Fiscella, R. Servadei, E. Valdinoci, Density properties for fractional Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 40 (2015), 235–253.10.5186/aasfm.2015.4009Search in Google Scholar

[15] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94 (2014), 156–170.10.1016/j.na.2013.08.011Search in Google Scholar

[16] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Mathématiques & Applications (Berlin), Vol. 13, Springer-Verlag, Paris (1993).Search in Google Scholar

[17] X. Mingqi, G. Molica Bisci, G. Tian, B. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p–Laplacian. Nonlinearity29 (2016), 357–374.10.1088/0951-7715/29/2/357Search in Google Scholar

[18] G. Molica Bisci, V. Rădulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems. With a Foreword by Jean Mawhin. Encyclopedia of Mathematics and its Applications, 162 Cambridge University Press (2016).10.1017/CBO9781316282397Search in Google Scholar

[19] G. Molica Bisci, D. Repovš, Higher nonlocal problems with bounded potential. J. Math. Anal. Appl. 420 (2014), 167–176.10.1016/j.jmaa.2014.05.073Search in Google Scholar

[20] G. Molica Bisci, D. Repovš, On doubly nonlocal fractional elliptic equations, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26, (2015), 161–176.10.4171/RLM/700Search in Google Scholar

[21] G. Molica Bisci, F. Tulone, An existence result for fractional Kirchhoff-type equations. Z. Anal. Anwendungen. 35 (2016), 181–197.10.4171/ZAA/1561Search in Google Scholar

[22] G. Molica Bisci, L. Vilasi, On a fractional degenerate Kirchhoff–type problem. Commun. Contemp. Math. 19 (2017), 23pp.10.1142/S0219199715500881Search in Google Scholar

[23] N. Nyamoradi, Multiplicity of nontrivial solutions for boundary value problem for imppulsive fractional differential inclusions via nonsmooth critical point theory. Fract. Calc. Appl. Anal. 18, No 6 (2015), 1470–1491; 10.1515/fca-2015-0085; https://www.degruyter.com/view/j/fca.2015.18.issue-6/issue-files/fca.2015.18.issue-6.xml.Search in Google Scholar

[24] P. Piersanti, P. Pucci, Entire solutions for critical fractional p–Kirchhoff equations. Publ. Mat. 61, No 2 (2017), 26 pp.Search in Google Scholar

[25] H. Prado, M. Rivero, J.J. Trujillo, M.P. Velasco, New results from old investigation: a note on fractional m-dimensionale differential operators. The fractional Laplacian. Fract. Calc. Appl. Anal. 18, No 2 (2015), 290–306; 10.1515/fca-2015-0020; https://www.degruyter.com/view/j/fca.2015.18.issue-2/issue-files/fca.2015.18.issue-2.xml.Search in Google Scholar

[26] P. Pucci, S. Saldi, Critical stationary Kirchhoff equations in ℝN involving nonlocal operators. Rev. Mat. Iberoam. 32 (2016), 1–22.10.4171/RMI/879Search in Google Scholar

[27] P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional p–Kirchhoff equations. Adv. Nonlinear Anal. 5 (2016), 27–55.10.1515/anona-2015-0102Search in Google Scholar

[28] P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in ℝN. Calc. Var. Partial Differential Equations54 (2015), 2785–2806.10.1007/s00526-015-0883-5Search in Google Scholar

[29] B. Ricceri, A multiplicity result for nonlocal problems involving nonlinearities with bounded primitive. Stud. Univ. Babȩs-Bolyai Math. 55 (2010), 107–114.Search in Google Scholar

[30] R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity. Contemp. Math. 595 (2013), 317–340.10.1090/conm/595/11809Search in Google Scholar

[31] R. Servadei, E. Valdinoci, Variational methods for non–local operators of elliptic type. Discrete Contin. Dyn. Syst. 33 (2013), 2105–2137.10.3934/dcds.2013.33.2105Search in Google Scholar

[32] M. Xiang, B. Zhang, X. Guo, Infinitely many solutions for a fractional Kirchhoff type problem via fountain theorem. Nonlinear Anal. 120 (2015), 299–313.10.1016/j.na.2015.03.015Search in Google Scholar

Received: 2017-3-14
Revised: 2017-5-5
Published Online: 2017-8-8
Published in Print: 2017-8-28

© 2017 Diogenes Co., Sofia

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2017-0044/html
Scroll to top button