Home Some Applications of Fractional Velocities
Article
Licensed
Unlicensed Requires Authentication

Some Applications of Fractional Velocities

  • Dimiter Prodanov EMAIL logo
Published/Copyright: March 9, 2016

Abstract

Fractional velocity is defined as the limit of the difference quotient of the increments of a function and its argument raised to a fractional power. The fractional velocity can be suitable for characterizing singular behavior of derivatives of Hölderian functions and non differentiable functions. Relations to integer-order derivatives and other integral-based definitions are discussed.It is demonstrated that for Hölder functions under certain conditions the product rules deviates from the Leibniz rule. This deviation is expressed by another quantity, fractional co-variation.

Acknowledgments

The work has been supported in part by a grant from Research Fund-Flanders (FWO), contract number 0880.212.840.

Reference

[1] L.F. Abbott, M.B. Wise, Dimension of a quantum-mechanical path. Amer. J. Phys. 49 (1981), 37-3910.1119/1.12657Search in Google Scholar

[2] F.B. Adda, J. Cresson, About non-differentiable functions. J. Math. Anal. Appl. 263 (2001), 721-737.10.1006/jmaa.2001.7656Search in Google Scholar

[3] F.B. Adda, J. Cresson, Quantum derivatives and the Schrödinger equation. Chaos Solitons & Fractals 19 (2004), 1323-133410.1016/S0960-0779(03)00339-4Search in Google Scholar

[4] F.B. Adda, J. Cresson, Fractional differential equations and the Schrödinger equation. Appl. Math. Comp. 161 (2005), 324-34510.1016/j.amc.2003.12.031Search in Google Scholar

[5] F.B. Adda, J. Cresson, Corrigendum to” About non-differentiable functions” [J. Math. Anal. Appl. 263 (2001) 721−737]. J. Math. Anal. Appl. 408, No. 1 (2013), 409-413, doi:10.1016/j.jmaa.2013.06.02710.1016/j.jmaa.2013.06.027Search in Google Scholar

[6] S. Amir-Azizi, A.J.G. Hey, T.R. Morris, Quantum fractals. Complex Systems 1 (1987), 923-938Search in Google Scholar

[7] A. Babakhani, V. Daftardar-Gejji, On calculus of local fractional derivatives. J. Math. Anal. Appl. 270, No. 1 (2002), 66-7910.1016/S0022-247X(02)00048-3Search in Google Scholar

[8] P. du Bois-Reymond, Versuch einer classification der will krlichen functionen reeller argumente nach ihren aenderungen in den kleinsten intervallen. J. Reine Ang. Math. 79 (1875), 21-37.Search in Google Scholar

[9] y. Chen, Y. Yan, K. Zhang, On the local fractional derivative. J. Math. Anal. Appl. 362, No 1 (2010), 17−33; doi:10.1016/j.jmaa.2009.08.01410.1016/j.jmaa.2009.08.014Search in Google Scholar

[10] G. Cherbit, Fractals, Non-integral Dimensions and Applications. John Wiley & Sons, Paris [Chap. Local dimension, momentum and trajectories] (1991),231-238Search in Google Scholar

[11] G. Faber, Uber stetige funktionen. Math. Ann. 66 (1909), 81-9410.1007/BF01450912Search in Google Scholar

[12] K. Kolwankar, A. Gangal, Hölder exponents of irregular signals and local fractional derivatives. Pramana J. Phys. 1, No 1 (1997), 49-6810.1007/BF02845622Search in Google Scholar

[13] K. Kolwankar, J. Vehel, Measuring functions smoothness with local fractional derivatives. Frac. Calc. Appl. Anal. 4, No 3 (2001), 285-301Search in Google Scholar

[14] S. Mallat, W.-L. Hwang, Singularity detection and processing with wavelets. IEEE Transactionson Information Theory 38, No 2 (1992), 617−643; doi:10.1109/18.11972710.1109/18.119727Search in Google Scholar

[15] L. Nottale, Fractals in the quantum theory of space time. Int. J. Modern Physics A 4 (1989), 5047−5117; doi:10.1007/978-0-387-30440-3_-22810.1142/S0217751X89002156Search in Google Scholar

[16] L. Nottale, Scale relativity and Schrödinger’s equation. Chaos Solitons & Fractals 9 (1998), 1051−1061; doi:10.1016/S0960-0779(97)00190-210.1016/S0960-0779(97)00190-2Search in Google Scholar

[17] L. Nottale, Fractals in the quantum theory of spacetime. In: Mathematics of Complexity and Dynamical Systems, Ed. R. A. Meyers, Springer, New York (2011), 571−590; doi:10.1007/978-1-4614-1806-1_-37Search in Google Scholar

[18] D. Prodanov, Fractional variation of Hölderian functions. Fract. Calc. Appl. Anal. 18, No 3 (2015), 580−602; DOI: 10.1515/fca-20l5-0036; http: //www. degruyter. com/view/j/fca.2015.18. issue-3/ issue-files/fca.2015.18. issue-3.xml 10.1515/fca-2015-0036Search in Google Scholar

[19] D. Prodanov, Regularized and fractional taylor expansions of Holderian functions. Preprint, ArXiv, 1508.06086 (2015Search in Google Scholar

[20] D. Sornette, Brownian representation of fractal quantum paths. European Journal of Physics 11, No 6 (1990), 33410.1088/0143-0807/11/6/004Search in Google Scholar

[21] V. Tarasov, No violation of the Leibniz rule. No fractional derivative. Comm. Nonlin. Sci. Num. Simul. 18, No 11 (2013), 2945−2948; doi:10.1016/j.cnsns.2013.04.001.10.1016/j.cnsns.2013.04.001Search in Google Scholar

[22] W. Trench, Integral Calculus of Functions of One Variable. Trinity University, Chap. 3 (2013), 171-177.Search in Google Scholar

Received: 2015-2-11
Revised: 2015-12-1
Published Online: 2016-3-9
Published in Print: 2016-2-1

© 2016 Diogenes Co., Sofia

Articles in the same Issue

  1. Frontmatter
  2. Editorial
  3. FCAA Related News, Events and Books (FCAA–Volume 19–1–2016)
  4. Research Paper
  5. Smallest Eigenvalues for a Right Focal Boundary Value Problem
  6. Research Paper
  7. High-Order Algorithms for Riesz Derivative and their Applications (III)
  8. Research Paper
  9. Existence and Uniqueness for a Class of Stochastic Time Fractional Space Pseudo-Differential Equations
  10. Research Paper
  11. Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data
  12. Research Paper
  13. Bogolyubov-Type Theorem with Constraints Generated by a Fractional Control System
  14. Research Paper
  15. Numerical Solution of Nonstationary Problems for a Space-Fractional Diffusion Equation
  16. Research Paper
  17. Solving 3D Time-Fractional Diffusion Equations by High-Performance Parallel Computing
  18. Discussion Survey
  19. Physical and Geometrical Interpretation of Grünwald-Letnikov Differintegrals: Measurement of Path and Acceleration
  20. Discussion Survey
  21. Some Applications of Fractional Velocities
  22. Research Paper
  23. Maximum Principles for Multi-Term Space-Time Variable-Order Fractional Diffusion Equations and their Applications
  24. Survey Paper
  25. Atypical Case of the Dielectric Relaxation Responses and its Fractional Kinetic Equation
  26. Research Paper
  27. Operator Method for Construction of Solutions of Linear Fractional Differential Equations with Constant Coefficients
  28. Research Article
  29. On the Existence and Multiplicity of Solutions for Dirichlet’s problem for Fractional Differential equations
  30. Research Paper
  31. Approximate controllability for semilinear composite fractional relaxation equations
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/fca-2016-0010/html
Scroll to top button