Abstract
This article focuses on estimating the process capacity index (PCI),
Acknowledgements
The authors thanked the Editor in Chief and the Reviewer for their very careful reading and constructive comments which helped us to improve the earlier version of this article.
References
[1] S. Ali and M. Riaz, On the generalized process capability under simple and mixture models, J. Appl. Stat. 41 (2014), no. 4, 832β852. 10.1080/02664763.2013.856386Search in Google Scholar
[2] R. Alloyarova, M. Nikulin, N. Pya and V. Voinov, The powergeneralized Weibull probability distribution and its use in survival analysis, Commun. Dependability Qual. Manag. 10 (2007), 5β15. Search in Google Scholar
[3] V. Bagdonavicius, L. Clerjaud and M. Nikulin, Power generalized Weibull in accelerated life testing, Preprint 0602, Universie Victor Segalen Bordeaux 2, 2006. 10.1002/0471667196.ess3172Search in Google Scholar
[4] V. Bagdonavicius and M. Nikulin, Chi-squared goodness-of-fit test for right censored data, Int. J. Appl. Math. Stat. 24 (2011), no. SI-11A, 30β50. Search in Google Scholar
[5] V. Bagdonavicius and M. Nikulin, Accelerated Life Models, Chapman and Hall/CRC, Boca Raton, 2002. 10.1201/9781420035872Search in Google Scholar
[6]
L. K. Chan, S. W. Cheng and F. A. Spiring,
A new measure of process capability:
[7] S. W. Cheng and F. A. Spiring, Assessing process capability: A Bayesian approach, IEE Trans. 21 (1989), 97β98. 10.1080/07408178908966212Search in Google Scholar
[8] S. Dey and M. Saha, Bootstrap confidence intervals of the difference between two generalized process capability indices for inverse Lindley distribution, Life Cycle Reliab. Safety Eng. 7 (2018), 89β96. 10.1007/s41872-018-0045-9Search in Google Scholar
[9]
S. Dey and M. Saha,
Bootstrap confidence intervals of generalized process capability index
[10]
S. Dey and M. Saha,
Bootstrap confidence intervals of process capability index
[11]
S. Dey, M. Saha, S. S. Maiti and C.-H. Jun,
Bootstrap confidence intervals of generalized process capability index
[12] B. Efron and R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Statist. Sci. 1 (1986), no. 1, 54β77. 10.1214/ss/1177013815Search in Google Scholar
[13] Z. Y. Huiming, Y. Jun and H. Liya, Bayesian evaluation approach for process capability based on sub samples, IEEE International Conference on Industrial Engineering and Engineering Management, IEEE Press, Piscataway (2007), 1200β1203. 10.1109/IEEM.2007.4419382Search in Google Scholar
[14] R. Ihaka and R. Gentleman, R: A language for data analysis and graphics, J. Comput. Graphical Stat. 5 (1996), 299β314. 10.1080/10618600.1996.10474713Search in Google Scholar
[15]
M. Kargar, M. Mashinchi and A. Parchami,
A Bayesian approach to capability testing based on
[16] M. Kashif, M. Aslam, G. S. Rao, A. H. Al-Marshadi and C. H. Jun, Bootstrap confidence intervals of the modified process capability index for Weibull distribution, Arab. J. Sci. Eng. (2017), 10.1007/s13369-017-2562-7. 10.1007/s13369-017-2562-7Search in Google Scholar
[17] D. Kumar and S. Dey, Power generalized Weibull distribution based on order statistics, J. Statist. Res. 51 (2017), no. 1, 61β78. 10.47302/jsr.2017510104Search in Google Scholar
[18] D. Kumar and N. Jain, Power generalized Weibull distribution based on generalised order statistics, J. Data Sci. 16 (2018), no. 3, 621β646. 10.6339/JDS.201807_16(3).00010Search in Google Scholar
[19] V. Leiva, C. Marchant, H. Saulo, M. Aslam and F. Rojas, Capability indices for BirnbaumβSaunders processes applied to electronic and food industries, J. Appl. Stat. 41 (2014), no. 9, 1881β1902. 10.1080/02664763.2014.897690Search in Google Scholar
[20] S. S. Maiti and M. Saha, Bayesian estimation of generalized process capability indices, J. Probab. Stat. 2012 (2012), Article ID 819730. 10.1155/2012/819730Search in Google Scholar
[21] R. Miao, X. Zhang, D. Yang, Y. Zhao and Z. Jiang, A conjugate Bayesian approach for calculating process capability indices, Expert Syst. Appl. 38 (2011), no. 7, 8099β9014. 10.1016/j.eswa.2010.12.151Search in Google Scholar
[22] M. M. Mohie El-Din, A. M. Abd El-Raheem and S. O. Abd El-Azeem, On step-stress accelerated life testing for power generalized Weibull distribution under progressive type-II censoring, Ann. Data Sci. 8 (2021), no. 3, 629β644. 10.1007/s40745-020-00270-4Search in Google Scholar
[23] M. M. Mohie EL-Din, S. E. Abu-Youssef, S. A. Ali Nahed and A. M. Abd El-Raheem, Estimation in step-stress accelerated life tests for power generalized Weibull distribution with progressive censoring, Adv. Stat. 1 (2015), 10.1155/2015/319051. 10.1155/2015/319051Search in Google Scholar
[24] M. Nikulin and F. Haghighi, A chi-squared test for the generalized power Weibull family for the head-and-neck cancer censored data, J. Math. Sci. 133 (2006), 1333β1341. 10.1007/s10958-006-0043-8Search in Google Scholar
[25] M. Nikulin and F. Haghighi, On the power generalized Weibull family: Model for cancer censored data, Metron 68 (2009), 75β86. Search in Google Scholar
[26]
C. Park, S. Dey, L. Ouyang, J.-H. Byun and M. Leeds,
Improved bootstrap confidence intervals for the process capability index
[27]
W. L. Pearn, Y. T. Tai, I. F. Hsiao and Y. P. Ao,
Approximately unbiased estimator for non-normal process capability index
[28] W. L. Pearn, Y. T. Tai and H. T. Wang, Estimation of a modified capability index for non-normal distributions, J. Test. Eval. 44 (2016), 1998β2009. 10.1520/JTE20150357Search in Google Scholar
[29]
W. L. Pearn, C. C. Wu and C. H. Wu,
Estimating process capability index
[30] C. Peng, Estimating and testing quantile-based process capability indices for processes with skewed distributions, J. Data Sci. 8 (2010), no. 2, 253β268. 10.6339/JDS.2010.08(2).582Search in Google Scholar
[31] C. Peng, Parametric lower confidence limits of quantile-based process capability indices, J. Qual. Technol. Quant. Manag. 7 (2010), no. 3, 199β214. 10.1080/16843703.2010.11673228Search in Google Scholar
[32] M. Perakis and E. Xekalaki, A process capability index that is based on the proportion of conformance, J. Stat. Comput. Simul. 72 (2002), no. 9, 707β718. 10.1080/00949650214270Search in Google Scholar
[33]
G. S. Rao, M. Aslam and R. R. L. Kantam,
Bootstrap confidence intervals of
[34]
M. Saha, S. Dey and S. S. Maiti,
Parametric and non-parametric bootstrap confidence intervals of
[35]
M. Saha, S. Dey and S. S. Maiti,
Bootstrap confidence intervals of
[36]
M. Saha, S. Dey and S. Nadarajah,
Parametric inference of the process capability index
[37] M. Saha, S. Dey and S. Nadarajah, Parametric inference of the process capability index for exponentiated exponential distribution, J. Appl. Stat. (2021), 10.1080/02664763.2021.1971632. 10.1080/02664763.2021.1971632Search in Google Scholar PubMed PubMed Central
[38]
M. Saha, S. Dey and L. Wang,
Parametric inference of the loss based index
[39]
M. Saha, S. Dey, A. S. Yadav and S. Ali,
Confidence intervals of the index
[40]
M. Saha, S. Dey, A. S. Yadav and S. Ali,
Confidence intervals of the index
[41]
M. Saha, S. Dey, A. S. Yadav and S. Kumar,
Classical and Bayesian inference of
[42]
M. Saha and S. Dutta,
Bayesian and non-Bayesian inference of the process capacity index
[43]
M. Saha, S. Kumar, S. S. Maiti, Y. S. Yadav and S. Dey,
Asymptotic and bootstrap confidence intervals for the process capability index
[44] S. Saxena and H. P. Singh, A Bayesian estimator of process capability index, J. Stat. Manag. Syst. 9 (2006), no. 2, 269β283. 10.1080/09720510.2006.10701206Search in Google Scholar
[45] S. Seifi and M. S. F. Nezhad, Variable sampling plan for resubmitted lots based on process capability index and Bayesian approach, Int. J. Adv. Manufacturing Technol. 88 (2017), 2547β2555. 10.1007/s00170-016-8958-9Search in Google Scholar
[46] J. H. Shiau, C. T. Chiang and H. N. Hung, A Bayesian procedure for process capability assessment, Qual. Reliab. Eng. Int. 15 (1999), no. 5, 369β378. 10.1002/(SICI)1099-1638(199909/10)15:5<369::AID-QRE262>3.0.CO;2-RSearch in Google Scholar
[47] J.-J. H. Shiau, H.-N. Hung and C.-T. Chiang, A note on Bayesian estimation of process capability indices, Statist. Probab. Lett. 45 (1999), no. 3, 215β224. 10.1016/S0167-7152(99)00061-9Search in Google Scholar
[48] M. Smithson, Correct confidence intervals for various regression effect sizes and parameters: The importance of moncentral distributions in computing intervals, Educ. Psychol. Meas. 61 (2001), no. 4, 605β632. 10.1177/00131640121971392Search in Google Scholar
[49] V. Voinov, N. Pya, N. Shapakov and Y. Voinov, Goodness-of-fit tests for the power-generalized Weibull probability distribution, Comm. Statist. Simulation Comput. 42 (2013), no. 5, 1003β1012. 10.1080/03610918.2011.654031Search in Google Scholar
Β© 2025 Walter de Gruyter GmbH, Berlin/Boston