Home Classical and Bayesian Estimation of PCI π’žpc Using Power Generalized Weibull Distribution
Article
Licensed
Unlicensed Requires Authentication

Classical and Bayesian Estimation of PCI π’žpc Using Power Generalized Weibull Distribution

  • Sanku Dey , Mahendra Saha EMAIL logo , Shen Zhang and Min Wang
Published/Copyright: February 10, 2025
Become an author with De Gruyter Brill

Abstract

This article focuses on estimating the process capacity index (PCI), π’ž pc , where the underlying distribution is a power generalized Weibull distribution, using maximum likelihood and Bayesian techniques. The π’ž pc index may be used to both normal and non-normal quality attributes. This article aims to accomplish three things: Using the maximum likelihood approach, we first determine the estimator of the PCI π’ž pc . Secondly, the Metropolis-Hastings Algorithm is used to study Bayesian estimation under four loss functions (symmetric and asymmetric). Third, the index π’ž pc ’s 95  confidence intervals are built using Bayesian and four bootstrap techniques. The point estimates of π’ž pc have been evaluated using Monte Carlo simulation in terms of mean square errors (MSEs), four bootstrap methods, and highest posterior density (HPD) credible intervals in relation to their average width (AW) and coverage probabilities (CPs). Using two real data sets – one pertaining to the size of electrical connections and the other to the amount of protein (in g) for adult patients at the Hospital Carlos Van Buren in Valparaiso, Chile – a comparable analysis to that employed in the simulations is conducted in order to illustrate the effectiveness of the suggested methods.

Acknowledgements

The authors thanked the Editor in Chief and the Reviewer for their very careful reading and constructive comments which helped us to improve the earlier version of this article.

References

[1] S. Ali and M. Riaz, On the generalized process capability under simple and mixture models, J. Appl. Stat. 41 (2014), no. 4, 832–852. 10.1080/02664763.2013.856386Search in Google Scholar

[2] R. Alloyarova, M. Nikulin, N. Pya and V. Voinov, The powergeneralized Weibull probability distribution and its use in survival analysis, Commun. Dependability Qual. Manag. 10 (2007), 5–15. Search in Google Scholar

[3] V. Bagdonavicius, L. Clerjaud and M. Nikulin, Power generalized Weibull in accelerated life testing, Preprint 0602, Universie Victor Segalen Bordeaux 2, 2006. 10.1002/0471667196.ess3172Search in Google Scholar

[4] V. Bagdonavicius and M. Nikulin, Chi-squared goodness-of-fit test for right censored data, Int. J. Appl. Math. Stat. 24 (2011), no. SI-11A, 30–50. Search in Google Scholar

[5] V. Bagdonavicius and M. Nikulin, Accelerated Life Models, Chapman and Hall/CRC, Boca Raton, 2002. 10.1201/9781420035872Search in Google Scholar

[6] L. K. Chan, S. W. Cheng and F. A. Spiring, A new measure of process capability: C p ⁒ m , J. Qual. Technol. 30 (1988), 162–175. 10.1080/00224065.1988.11979102Search in Google Scholar

[7] S. W. Cheng and F. A. Spiring, Assessing process capability: A Bayesian approach, IEE Trans. 21 (1989), 97–98. 10.1080/07408178908966212Search in Google Scholar

[8] S. Dey and M. Saha, Bootstrap confidence intervals of the difference between two generalized process capability indices for inverse Lindley distribution, Life Cycle Reliab. Safety Eng. 7 (2018), 89–96. 10.1007/s41872-018-0045-9Search in Google Scholar

[9] S. Dey and M. Saha, Bootstrap confidence intervals of generalized process capability index C p ⁒ y ⁒ k using different methods of estimation, J. Appl. Stat. 46 (2019), no. 10, 1843–1869. 10.1080/02664763.2019.1572721Search in Google Scholar

[10] S. Dey and M. Saha, Bootstrap confidence intervals of process capability index S p ⁒ m ⁒ k using different methods of estimation, J. Stat. Comput. Simul. 90 (2020), no. 1, 28–50. 10.1080/00949655.2019.1671980Search in Google Scholar

[11] S. Dey, M. Saha, S. S. Maiti and C.-H. Jun, Bootstrap confidence intervals of generalized process capability index C p ⁒ y ⁒ k for Lindley and power Lindley distributions, Comm. Statist. Simulation Comput. 47 (2018), no. 1, 249–262. 10.1080/03610918.2017.1280166Search in Google Scholar

[12] B. Efron and R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy, Statist. Sci. 1 (1986), no. 1, 54–77. 10.1214/ss/1177013815Search in Google Scholar

[13] Z. Y. Huiming, Y. Jun and H. Liya, Bayesian evaluation approach for process capability based on sub samples, IEEE International Conference on Industrial Engineering and Engineering Management, IEEE Press, Piscataway (2007), 1200–1203. 10.1109/IEEM.2007.4419382Search in Google Scholar

[14] R. Ihaka and R. Gentleman, R: A language for data analysis and graphics, J. Comput. Graphical Stat. 5 (1996), 299–314. 10.1080/10618600.1996.10474713Search in Google Scholar

[15] M. Kargar, M. Mashinchi and A. Parchami, A Bayesian approach to capability testing based on C p ⁒ k with multiple samples, Qual. Reliab. Eng. Int. 20 (2014), no. 5, 615–21. 10.1002/qre.1512Search in Google Scholar

[16] M. Kashif, M. Aslam, G. S. Rao, A. H. Al-Marshadi and C. H. Jun, Bootstrap confidence intervals of the modified process capability index for Weibull distribution, Arab. J. Sci. Eng. (2017), 10.1007/s13369-017-2562-7. 10.1007/s13369-017-2562-7Search in Google Scholar

[17] D. Kumar and S. Dey, Power generalized Weibull distribution based on order statistics, J. Statist. Res. 51 (2017), no. 1, 61–78. 10.47302/jsr.2017510104Search in Google Scholar

[18] D. Kumar and N. Jain, Power generalized Weibull distribution based on generalised order statistics, J. Data Sci. 16 (2018), no. 3, 621–646. 10.6339/JDS.201807_16(3).00010Search in Google Scholar

[19] V. Leiva, C. Marchant, H. Saulo, M. Aslam and F. Rojas, Capability indices for Birnbaum–Saunders processes applied to electronic and food industries, J. Appl. Stat. 41 (2014), no. 9, 1881–1902. 10.1080/02664763.2014.897690Search in Google Scholar

[20] S. S. Maiti and M. Saha, Bayesian estimation of generalized process capability indices, J. Probab. Stat. 2012 (2012), Article ID 819730. 10.1155/2012/819730Search in Google Scholar

[21] R. Miao, X. Zhang, D. Yang, Y. Zhao and Z. Jiang, A conjugate Bayesian approach for calculating process capability indices, Expert Syst. Appl. 38 (2011), no. 7, 8099–9014. 10.1016/j.eswa.2010.12.151Search in Google Scholar

[22] M. M. Mohie El-Din, A. M. Abd El-Raheem and S. O. Abd El-Azeem, On step-stress accelerated life testing for power generalized Weibull distribution under progressive type-II censoring, Ann. Data Sci. 8 (2021), no. 3, 629–644. 10.1007/s40745-020-00270-4Search in Google Scholar

[23] M. M. Mohie EL-Din, S. E. Abu-Youssef, S. A. Ali Nahed and A. M. Abd El-Raheem, Estimation in step-stress accelerated life tests for power generalized Weibull distribution with progressive censoring, Adv. Stat. 1 (2015), 10.1155/2015/319051. 10.1155/2015/319051Search in Google Scholar

[24] M. Nikulin and F. Haghighi, A chi-squared test for the generalized power Weibull family for the head-and-neck cancer censored data, J. Math. Sci. 133 (2006), 1333–1341. 10.1007/s10958-006-0043-8Search in Google Scholar

[25] M. Nikulin and F. Haghighi, On the power generalized Weibull family: Model for cancer censored data, Metron 68 (2009), 75–86. Search in Google Scholar

[26] C. Park, S. Dey, L. Ouyang, J.-H. Byun and M. Leeds, Improved bootstrap confidence intervals for the process capability index C p ⁒ k , Comm. Statist. Simulation Comput. 49 (2020), no. 10, 2583–2603. 10.1080/03610918.2018.1520877Search in Google Scholar

[27] W. L. Pearn, Y. T. Tai, I. F. Hsiao and Y. P. Ao, Approximately unbiased estimator for non-normal process capability index C N ⁒ p ⁒ k , J. Test. Eval. 42 (2014), 1408–1417. 10.1520/JTE20130125Search in Google Scholar

[28] W. L. Pearn, Y. T. Tai and H. T. Wang, Estimation of a modified capability index for non-normal distributions, J. Test. Eval. 44 (2016), 1998–2009. 10.1520/JTE20150357Search in Google Scholar

[29] W. L. Pearn, C. C. Wu and C. H. Wu, Estimating process capability index C p ⁒ k : Classical approach versus Bayesian approach, J. Stat. Comput. Simul. 85 (2015), no. 10, 2007–2021. 10.1080/00949655.2014.914211Search in Google Scholar

[30] C. Peng, Estimating and testing quantile-based process capability indices for processes with skewed distributions, J. Data Sci. 8 (2010), no. 2, 253–268. 10.6339/JDS.2010.08(2).582Search in Google Scholar

[31] C. Peng, Parametric lower confidence limits of quantile-based process capability indices, J. Qual. Technol. Quant. Manag. 7 (2010), no. 3, 199–214. 10.1080/16843703.2010.11673228Search in Google Scholar

[32] M. Perakis and E. Xekalaki, A process capability index that is based on the proportion of conformance, J. Stat. Comput. Simul. 72 (2002), no. 9, 707–718. 10.1080/00949650214270Search in Google Scholar

[33] G. S. Rao, M. Aslam and R. R. L. Kantam, Bootstrap confidence intervals of C N ⁒ p ⁒ k for inverse Rayleigh and log-logistic distributions, J. Stat. Comput. Simul. 86 (2016), no. 5, 862–873. 10.1080/00949655.2015.1040799Search in Google Scholar

[34] M. Saha, S. Dey and S. S. Maiti, Parametric and non-parametric bootstrap confidence intervals of C N ⁒ p ⁒ k for exponential power distribution, J. Indust. Product. Eng. 35 (2018), no. 3, 160–169. 10.1080/21681015.2018.1437793Search in Google Scholar

[35] M. Saha, S. Dey and S. S. Maiti, Bootstrap confidence intervals of C p ⁒ T ⁒ k for two parameter logistic exponential distribution with applications, Int. J. Syst. Assurance Eng. Manag. 10 (2019), no. 4, 623–631. 10.1007/s13198-019-00789-7Search in Google Scholar

[36] M. Saha, S. Dey and S. Nadarajah, Parametric inference of the process capability index π’ž pc for exponentiated exponential distribution, J. Appl. Stat. 49 (2022), no. 16, 4097–4121. Search in Google Scholar

[37] M. Saha, S. Dey and S. Nadarajah, Parametric inference of the process capability index for exponentiated exponential distribution, J. Appl. Stat. (2021), 10.1080/02664763.2021.1971632. 10.1080/02664763.2021.1971632Search in Google Scholar PubMed PubMed Central

[38] M. Saha, S. Dey and L. Wang, Parametric inference of the loss based index C p ⁒ m for normal distribution, Qual. Reliab. Eng. Int. 38 (2022), 10.1002/qre.2987. 10.1002/qre.2987Search in Google Scholar

[39] M. Saha, S. Dey, A. S. Yadav and S. Ali, Confidence intervals of the index C p ⁒ k for normally distributed quality characteristics using classical and Bayesian methods of estimation, Braz. J. Probab. Stat. 35 (2021), no. 1, 138–157. Search in Google Scholar

[40] M. Saha, S. Dey, A. S. Yadav and S. Ali, Confidence intervals of the index C p ⁒ k for normally distributed quality characteristics using classical and Bayesian methods of estimation, Braz. J. Probab. Stat. 35 (2021), no. 1, 138–157. 10.1214/20-BJPS469Search in Google Scholar

[41] M. Saha, S. Dey, A. S. Yadav and S. Kumar, Classical and Bayesian inference of C p ⁒ y for generalized Lindley distributed quality characteristic, Qual. Reliab. Eng. Int. (2019), 10.1002/qre.2544. 10.1002/qre.2544Search in Google Scholar

[42] M. Saha and S. Dutta, Bayesian and non-Bayesian inference of the process capacity index S p ⁒ k β€² under progressive type-II right censored scheme, Qual. Reliab. Eng. Int. 41 (2025), 449–463. 10.1002/qre.3670Search in Google Scholar

[43] M. Saha, S. Kumar, S. S. Maiti, Y. S. Yadav and S. Dey, Asymptotic and bootstrap confidence intervals for the process capability index C p ⁒ y based on Lindley distributed quality characteristic, Amer. J. Math. Manag. Sci. 39 (2020), 75–89. 10.1080/01966324.2019.1580644Search in Google Scholar

[44] S. Saxena and H. P. Singh, A Bayesian estimator of process capability index, J. Stat. Manag. Syst. 9 (2006), no. 2, 269–283. 10.1080/09720510.2006.10701206Search in Google Scholar

[45] S. Seifi and M. S. F. Nezhad, Variable sampling plan for resubmitted lots based on process capability index and Bayesian approach, Int. J. Adv. Manufacturing Technol. 88 (2017), 2547–2555. 10.1007/s00170-016-8958-9Search in Google Scholar

[46] J. H. Shiau, C. T. Chiang and H. N. Hung, A Bayesian procedure for process capability assessment, Qual. Reliab. Eng. Int. 15 (1999), no. 5, 369–378. 10.1002/(SICI)1099-1638(199909/10)15:5<369::AID-QRE262>3.0.CO;2-RSearch in Google Scholar

[47] J.-J. H. Shiau, H.-N. Hung and C.-T. Chiang, A note on Bayesian estimation of process capability indices, Statist. Probab. Lett. 45 (1999), no. 3, 215–224. 10.1016/S0167-7152(99)00061-9Search in Google Scholar

[48] M. Smithson, Correct confidence intervals for various regression effect sizes and parameters: The importance of moncentral distributions in computing intervals, Educ. Psychol. Meas. 61 (2001), no. 4, 605–632. 10.1177/00131640121971392Search in Google Scholar

[49] V. Voinov, N. Pya, N. Shapakov and Y. Voinov, Goodness-of-fit tests for the power-generalized Weibull probability distribution, Comm. Statist. Simulation Comput. 42 (2013), no. 5, 1003–1012. 10.1080/03610918.2011.654031Search in Google Scholar

Received: 2024-11-23
Revised: 2025-01-10
Accepted: 2025-01-10
Published Online: 2025-02-10

Β© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/eqc-2024-0047/pdf
Scroll to top button