Abstract
Recently, G. Rajesh, E.βI. Abdul-Sathar and S. Nair Rohini [G. Rajesh, E.βI. Abdul-Sathar and S. Nair Rohini, On dynamic weighted survival entropy of order Ξ±, Comm. Statist. Theory Methods 46 2017, 5, 2139β2150] proposed a measure of uncertainty based on the survival function called weighted survival entropy of order Ξ±. They have also introduced the dynamic form of a measure called dynamic weighted survival entropy of order Ξ± and studied various properties in the context of reliability modeling. In this paper, we extend these measures into the bivariate setup and study its properties. We also look into the problem of extending the same measure for conditionally specified models. Empirical and non-parametric estimators are suggested for the proposed measure using the conditionally specified model, and the effect of the proposed estimators is illustrated using simulated and real data sets.
Acknowledgements
The authors wish to thank the editor in chief and the anonymous reviewers for their valuable and constructive comments which have improved the contents of the article.
References
[1] M. Abbasnejad, N. R. Arghami, S. Morgenthaler and G. R. Mohtashami Borzadaran, On the dynamic survival entropy, Statist. Probab. Lett. 80 (2010), 1962β1971. 10.1016/j.spl.2010.08.026Search in Google Scholar
[2] E. I. Abdul-Sathar, R. S. Nair and G. Rajesh, Bivariate dynamic weighted failure entropy of order Ξ±, Amer. J. Math. Manag. Sci. (2018), 10.1080/01966324.2018.1483855. 10.1080/01966324.2018.1483855Search in Google Scholar
[3] E. I. Abdul-Sathar, G. Rajesh and K. R. M. Nair, Bivariate geometric vitality function and some characterization results, Calcutta Statist. Assoc. Bull. 62 (2010), no. 247β248, 207β227. 10.1177/0008068320100305Search in Google Scholar
[4] I. A. Ahmad and P. E. Lin, Nonparametric estimation of a vector-valued bivariate failure rate, Ann. Statist. 5 (1977), no. 5, 1027β1038. 10.1214/aos/1176343957Search in Google Scholar
[5] J. Ahmadi, A. Di Crescenzo and M. Longobardi, On dynamic mutual information for bivariate lifetimes, Adv. in Appl. Probab. 47 (2015), no. 4, 1157β1174. 10.1239/aap/1449859804Search in Google Scholar
[6] M. Belis and S. Guiasu, A quantitative-qualitative measure of information in cybernetic systems (corresp.), IEEE Trans. Inform. Theory 14 (1968), 593β594. 10.1109/TIT.1968.1054185Search in Google Scholar
[7] A. Di Crescenzo and M. Longobardi, On weighted residual and past entropies, Sci. Math. Jpn. 64 (2006), no. 2, 255β266. Search in Google Scholar
[8] N. Ebrahimi, S. N. U. A. Kirmani and E. S. Soofi, Multivariate dynamic information, J. Multivariate Anal. 98 (2007), no. 2, 328β349. 10.1016/j.jmva.2005.08.004Search in Google Scholar
[9] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, 3rd ed., Prentice Hall, Englewood Cliffs, 1992. Search in Google Scholar
[10] A. Kundu and C. Kundu, Bivariate extension of (dynamic) cumulative past entropy, Comm. Statist. Theory Methods 46 (2017), no. 9, 4163β4180. 10.1080/03610926.2015.1080838Search in Google Scholar
[11] D. Y. Lin and Z. Ying, A simple nonparametric estimator of the bivariate survival function under univariate censoring, Biometrika 80 (1993), no. 3, 573β581. 10.1093/biomet/80.3.573Search in Google Scholar
[12] S. S. Maya and S. M. Sunoj, Some dynamic generalized information measures in the context of weighted models, Statistica (Bologna) 68 (2008), no. 1, 71β84. Search in Google Scholar
[13] F. Misagh, Y. Panahi, G. H. Yari and R. Shahi, Weighted cumulative entropy and its estimation, 2011 IEEE International Conference on Quality and Reliability (ICQR), IEEE Press, Piscataway (2011), 477β480. 10.1109/ICQR.2011.6031765Search in Google Scholar
[14] N. U. Nair and S. M. Sunoj, Form-invariant bivariate weighted models, Statistics 37 (2003), no. 3, 259β269. 10.1080/0233188031000078024Search in Google Scholar
[15] R. S. Nair, E. I. Abdul-Sathar and G. Rajesh, A study on dynamic weighted failure entropy of order Ξ±, Amer. J. Math. Manag. Sci. 36 (2017), no. 2, 137β149. 10.1080/01966324.2017.1298063Search in Google Scholar
[16] J. Navarro, Y. del Aguila and J. M. Ruiz, Characterizations through reliability measures from weighted distributions, Statist. Papers 42 (2001), no. 3, 395β402. 10.1007/s003620100066Search in Google Scholar
[17] J. Navarro, S. M. Sunoj and M. N. Linu, Characterizations of bivariate models using some dynamic conditional information divergence measures, Comm. Statist. Theory Methods 43 (2014), no. 9, 1939β1948. 10.1080/03610926.2012.677925Search in Google Scholar
[18] B. O. Oluyede and M. Terbeche, On energy and expected uncertainty measures in weighted distributions, Int. Math. Forum 2 (2007), no. 17β20, 947β956. 10.12988/imf.2007.07082Search in Google Scholar
[19] A. G. Pakes, J. Navarro, J. M. Ruiz and Y. del Aguila, Characterizations using weighted distributions, J. Statist. Plann. Inference 116 (2003), no. 2, 389β420. 10.1016/S0378-3758(02)00357-9Search in Google Scholar
[20] G. Rajesh, E. I. Abdul-Sathar and K. R. Muraleedharan Nair, Bivariate extension of residual entropy and some characterization results, J. Indian Statist. Assoc. 47 (2009), no. 1, 91β107. Search in Google Scholar
[21] G. Rajesh, E. I. Abdul-Sathar, K. R. Muraleedharan Nair and K. V. Reshmi, Bivariate extension of dynamic cumulative residual entropy, Stat. Methodol. 16 (2014), 72β82. 10.1016/j.stamet.2013.07.006Search in Google Scholar
[22] G. Rajesh, E. I. Abdul-Sathar and R. S. Nair, Bivariate weighted residual and past entropies, J. Japan Statist. Soc. 46 (2016), no. 2, 165β187. 10.14490/jjss.46.165Search in Google Scholar
[23] G. Rajesh, E. I. Abdul-Sathar and S. Nair Rohini, On dynamic weighted survival entropy of order Ξ±, Comm. Statist. Theory Methods 46 (2017), no. 5, 2139β2150. 10.1080/03610926.2015.1033552Search in Google Scholar
[24] C. R. Rao, On discrete distributions arising out of methods of ascertainment, SankhyΔ Ser. A 27 (1965), 311β324. Search in Google Scholar
[25] M. Rao, Y. Chen, B. C. Vemuri and F. Wang, Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory 50 (2004), no. 6, 1220β1228. 10.1109/TIT.2004.828057Search in Google Scholar
[26] A. RΓ©nyi, On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University California Press, Berkeley (1961), 547β561. Search in Google Scholar
[27] M. M. Sati and H. Singh, Bivariate dynamic cummulative residual Tsallis entropy, J. Appl. Math. Inform. 35 (2017), no. 1β2, 45β58. 10.14317/jami.2017.045Search in Google Scholar
[28] C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379β423, 623β656. 10.1002/j.1538-7305.1948.tb01338.xSearch in Google Scholar
[29] C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Statist. Phys. 52 (1988), no. 1β2, 479β487. 10.1007/BF01016429Search in Google Scholar
[30] K. Zografos and S. Nadarajah, Survival exponential entropies, IEEE Trans. Inform. Theory 51 (2005), no. 3, 1239β1246. 10.1109/TIT.2004.842772Search in Google Scholar
Β© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Quality Analysis in Acyclic Production Networks
- Bivariate Dynamic Weighted Survival Entropy of Order πΌ
- Optimal Design of Reliability Acceptance Sampling Plan Based on Sequential Order Statistics
- A New Method of Estimating the Process Capability Index with Exponential Distribution Using Interval Estimate of the Parameter
- Developing a Flexible Methodology for Modeling and Solving Multiple Response Optimization Problems
- On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey
Articles in the same Issue
- Frontmatter
- Quality Analysis in Acyclic Production Networks
- Bivariate Dynamic Weighted Survival Entropy of Order πΌ
- Optimal Design of Reliability Acceptance Sampling Plan Based on Sequential Order Statistics
- A New Method of Estimating the Process Capability Index with Exponential Distribution Using Interval Estimate of the Parameter
- Developing a Flexible Methodology for Modeling and Solving Multiple Response Optimization Problems
- On the Reliability for Some Bivariate Dependent Beta and Kumaraswamy Distributions: A Brief Survey