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Abstract: The crosslinking network and mechanical prop-
erties of Taraxacum kok-saghyz natural rubber (TKNR), a
promising alternative to traditional natural rubber (NR),
have been underexplored. In this work, TKNR, NR, and
their blends (TKNR-NR) were systematically investigated
to reveal their unique crosslinking network and mechan-
ical behaviors. Equilibrium swelling tests were conducted to
measure the crosslinking density (v), molecular weight between
crosslinks (Mc), and swelling ratio (Q). The processing rheolo-
gical properties of Taraxacum kok-saghyz rubber were ana-
lyzed using rubber process analyzer testing. The vulcanization
behavior and mechanical performance were analyzed using
standard mechanical tests, the Mooney-Rivlin equation, tube
model fitting, and dynamic mechanical analysis, thereby elu-
cidating the crosslinking network characteristics of TKNR and
their correlationwithmechanical properties. Results show that
TKNR possesses a higher crosslinking density (v) and a lower
Mc compared to NR, resulting in reduced stiffness and strength
but enhanced flexibility, elongation at break, and storage mod-
ulus. TKNR’s high crosslink density and low molecular weight
between crosslinks increase hardness but restrict chain mobi-
lity, inhibiting strain-induced crystallization and reducing
tensile strength. These differences are attributed to the predo-
minance of physical entanglements (Ge) over chemical cross-
links (Gc) in TKNR, while NR maintains a balanced Gc and Ge.
Blending TKNR with NR yields composites with intermediate
crosslinking network and mechanical properties, achieving a
balance of the two materials’ advantages.

Keywords: Taraxacum kok-saghyz natural rubber, cross-
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1 Introduction

Natural rubber (NR) has played a critical role in various
industrial applications. However, as global dependence
on natural resources increases, the primary source, the
Brazilian rubber tree (Hevea brasiliensis), faces challenges
such as limited planting area, susceptibility to pests and
diseases, and insufficient production capacity. As a result,
finding alternative rubber sources has become a research
focus (1–3). Taraxacum kok-saghyz natural rubber (TKNR),
due to its short growth cycle and high adaptability, has
emerged as a promising alternative to NR (4–8).

The excellent mechanical properties of NR are one of the
key reasons for its widespread use, and these properties are
largely dependent on its crosslinking network structure
(9–11). Parameters such as crosslink density, network mole-
cular weight, and chain segment distribution directly influ-
ence the elasticity, strength, and durability of rubber (12).
Therefore, to improve the application and modification of
TKNR, it is necessary to study the crosslinking network struc-
ture andmechanical properties of TKNR. Due to the existence
ofmultiple functional groups in its molecular structure, TKNR
tends to form a crosslinking network different from that of
NR during vulcanization. These functional groups not only
increase the number of reaction sites but also may change
the chain length between the crosslinking points, thereby
affecting the overall performance of the rubber (13,14).

In recent years, researchers have increasingly focused on
TKNR’s vulcanization process to optimize its mechanical
properties (15,16). Studies have shown that the crosslinking
density of TKNR can be significantly improved by adjusting
the type and dosage of vulcanizing agents, thereby improving
its mechanical strength and durability (17,18). Junkong et al.
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(19,20) demonstrated that non-rubber components (e.g.,
proteins) in TKNR serve as intrinsic reinforcing fillers, signif-
icantly impacting its sulfur-crosslinked rubber’s strain-
induced crystallization and stress-softening behaviors.

Although researchers have done many studies on
TKNR, there are few studies to explore the relationship
between its mechanical properties and its crosslinking net-
work, particularly regarding covalent bonds. In this study,
we assess the crosslinking network parameters of TKNR
through equilibrium swelling tests, with NR as a reference
for comparison. Crosslinking network differences between
TKNR and NR are evaluated from multiple perspectives,
encompassing vulcanization characteristics, static and
dynamic mechanical properties. Further, the mechanical
properties of TKNR, NR, and their blends (TKNR-NR) are
explored to elucidate the relationship with crosslinking
network. By analyzing the influence of parameters such
as crosslinking density, network chain molecular weight,
chain segment distribution, and covalent crosslinking
bonds on mechanical properties, the influence mechanism
on the elasticity, strength, and durability of rubber is
revealed, which provides a theoretical basis for rubber
materials in different applications.

2 Materials and methods

2.1 Materials

Taraxacum kok-saghyz (TKS) for TKNR extraction was
obtained from Inner Mongolia Linong Chaohe Seed
Industry Co., Ltd, and NR was sourced from the Jinlian
Processing Division of Hainan Natural Rubber Industry
Group Co., Ltd. Potassium hydroxide (KOH, 90%) was sup-
plied by Guangzhou Chemical Reagent Factory. Pectinase
(500 U/mg), cellulase (400 U/mg), and sodium citrate buffer
(0.5 M, pH 5.5) were purchased from Aladdin Reagent
(Shanghai) Co., Ltd. Zinc oxide (ZnO, AR, 99%), stearic
acid (SA, 95%), 2-mercaptobenzothiazole (MBT, 98%), and
sulfur (S, AR, ≥99.5%) were commercial-grade reagents
supplied by Shanghai Aladdin Biochemical Technology
Co., Ltd. Toluene (AR, ≥99.5%) was provided by
Sinopharm Chemical Reagent Co., Ltd.

2.2 Extraction of TKS rubber

Three hundred grams of cleaned and dried TKS roots were
crushed, boiled in 100°C water for 30 min, and filtered

through a 178 µm (80-mesh) sieve. This process was
repeated three times, yielding dried residue and inulin
from the filtrate. The residue was treated with 60mg
KOH/g dry root in 500mL deionized water at 120°C for
30min, filtered, and acidified to isolate lignin. The residue
was washed, soaked in 2 L deionized water at 4°C over-
night, and re-filtered. It was then mixed with 1.5 L deio-
nized water, pectinase, and cellulase (42 and 27.5 mg·g−1

dry root, respectively) in citrate buffer (pH 5.5). The mix-
ture was stirred at 50°C, 200 rpm for 48–72 h. After centri-
fugation at 4°C, 5,000 rpm for 30 min, the floating rubber
was collected, dried, and stored.

2.3 Sample preparation

NR, TKNR, and TKNR-NR (NR:TKNR = 1:1) blends (150 g
each) were individually plasticized using a two-roll mill
(KY-3220D-160, Dongguan Kaiyan Machinery Technology
Co., Ltd, China). SA (0.75 g), ZnO (9 g), and MBT (0.75 g)
were sequentially added, followed by the incorporation
of S (5.25 g) to complete the compound formulation. The
compound was subjected to vulcanization testing using a
rotorless vulcaniometer, after which it was cured in a plate
vulcanizing press according to the vulcanization para-
meters to obtain the final vulcanized rubber.

2.4 Testing and characterization

2.4.1 Vulcanization characteristics

The vulcanization characteristics of the compound rubber
were evaluated following the GB/T 9869-2014 standard
using a rotorless rheometer (MDR-2000E, Wuxi Liyuan
Electronic Chemical Equipment Co., Ltd, China) at 145°C.
From the resulting vulcanization curve, minimum torque
(ML), maximum torque (MH), torque difference (ΔH =

MH–ML), scorch time (t10), and optimal vulcanization time
(t90) were measured.

2.4.2 Characterization of the rheological properties

The rheological properties were characterized using an
rubber process analyzer Elite rheometer (TA Instruments,
USA) through frequency and strain sweeps. For the frequency
sweep, a strain of 7% was applied over a frequency range of
1–1,500 cpm (1–25 Hz) at a testing temperature of 60°C. For the
strain sweep, a frequency of 1 Hz was maintained at 60°C,
with a strain range of 1–1,000%.
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2.4.3 Crosslinking parameters

The equilibrium swelling method was used to measure and
calculate the swelling ratio (Q), molecular weight between
crosslinks (Mc), and crosslink density (v) of the samples
(21–24). The calculation methods are described in Eqs. (1)–(3):
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In the above equations,ms is the mass of the solvent in
the swollen gel, mr is the mass of the rubber sample in the
swollen gel, ρs is the density of the solvent, and ρr is the
density of the rubber sample.
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In Eq. 2 φr is the volume fraction of the polymer in the
swollen gel, defined as 1/Q; Vs is the molar volume of the
solvent; and χs is the Huggins constant.
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In this context, the values used are as follows: ρr =

0.930 g·cm−3, ρs = 0.886 g·cm−3,Vs = 106.9 cm3·mol−1, and χs = 0.39.

2.4.4 Conventional mechanical properties

(1) Conventional mechanical parameters: Type I dumbbell
samples were prepared according to GB/T 528-2009 and tested
on a universal testing machine (ETM103C, Shenzhen Wante
Testing Equipment Co., China) at a tensile speed of
500mm·min−1 to obtain stress–strain curves, tensile strength,
elongation at break, and constant strain stress.

(2) Cyclic strain incremental stretching: Type I dumb-
bell samples, prepared as per GB/T 528-2009, were incre-
mentally stretched to 100%, 200%, 300%, 400%, and 500%
strain at a rate of 500 mm·min−1, with each cycle unloaded
to zero stress before the next increment.

(3) Tear strength: Tear resistance of rectangular vulca-
nized rubber samples was tested following GB/T 529-2008
on a universal testing machine at a displacement rate of
500 mm·min−1.

(4) Shore A hardness: Shore A hardness was measured
in accordance with GB/T 531.1-2008 using a Shore A durom-
eter (0–100 HA, Yueqing Aidebao Instrument Co., China).

2.4.5 Dynamic mechanical analysis (DMA)

DMA was conducted on a Q800 DMA (TA Instruments, USA)
under a nitrogen atmosphere, with a strain of 0.1%,

frequency of 10 Hz, temperature range from −80°C to
80°C, and heating rate of 3°C·min−1.

3 Results and discussion

3.1 Analysis of rubber crosslinking network
structure

The crosslinking network parameters of vulcanized NR,
TKNR, and their blend (TKNR-NR) are shown in Table 1.
According to Table 1, NR exhibits a lower effective cross-
linking density (v), along with a higher swelling volume (Q)
and network chain molecular weight (Mc), compared to
TKNR. These differences are attributed to intrinsic varia-
tions in their molecular structures. Specifically, TKNR con-
tains a greater number of reactive sites or functional
groups, which facilitate crosslink formation during vulca-
nization, thereby increasing its crosslinking density. In
contrast, the more ordered molecular structure of NR
limits the availability of crosslinking sites.

Additionally, the higher reactivity of TKNR promotes
the formation of a denser crosslinking network. However,
this results in shorter segments between crosslinks,
leading to a lower molecular weight. Furthermore, the
non-rubber components in TKNR act as vulcanization
accelerators, enhancing crosslinking reactions and further
increasing the crosslinking density (25). However, these
non-rubber components may also disrupt the arrangement
and crystallinity of rubber chains, leading to an increase in
the swelling volume. The rapid crosslinking reactions of
TKNR result in a more compact crosslinking network,
whereas the slower crosslinking of NR, dominated by its
longer chains, produces a network with higher molecular
weights between crosslinking points but a lower overall
crosslinking density. The crosslinking network parameters
of the TKNR-NR blend fall between those of the two indi-
vidual rubbers, reflecting a partial balance of the reactivity
and structural characteristics of TKNR and NR.

Table 1: Crosslinking network structure parameters of vulcanized
rubber

Sample Swelling
volume (Q)

Molecular weight
between crosslinks
(Mc) (g·mol−1)

Crosslink
density (v)
(mol·cm−3)

NR 5.41 9,452 97.33
TKNR-NR 5.02 7,373 124.77
TKNR 4.33 5,255 175.07
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3.2 Vulcanization characteristics analysis

The vulcanization characteristics of the compounded rub-
bers are summarized in Table 2, with the corresponding
vulcanization curves presented in Figure 1 Compared to
TKNR, NR exhibits higher values for minimum torque
(ML), maximum torque (MH), and torque difference (ΔM).
These results indicate that NR forms a denser and more
rigid crosslinking network. In contrast, TKNR shows lower
ML, MH, and ΔM values, suggesting its looser crosslinking
network. This difference is attributed to the higher number
of reactive sites and functional groups in TKNR, which
promote the formation of shorter crosslinks during the
vulcanization process (26). The parameters of the TKNR-
NR blend fall between those of the individual rubbers,
indicating a balanced crosslinking network that integrates
the characteristics of both NR and TKNR.

Furthermore, TKNR exhibits a longer scorch time (t10)
and vulcanization time (t90), reflecting a slower vulcaniza-
tion process. In contrast, NR and the TKNR-NR blend show
shorter t10 and t90 values, suggesting a faster crosslinking
process. The slower crosslinking rate in TKNR contributes
to a higher crosslinking density (v) and a lower molecular
weight between crosslinks (Mc), whereas NR displays the
opposite trend.

3.3 Conventional mechanical properties of
vulcanizates

Figures 2 and 3 present the results of the frequency sweep:
(a) storage modulus (G′) and (b) loss factor (Tanδ) and the
strain sweep: (a) storage modulus (G′) and (b) loss factor
(Tanδ), respectively, for NR, TKNR, and their blend (NR-
TKNR). The differences in their rheological behavior can
be attributed to variations in the crosslinking networks
and molecular structures. In the frequency sweep, NR
exhibited the highest and most stable G′, reflecting its
strong elasticity and resistance to deformation under
high frequencies. Its low Tanδ indicates minimal viscous
behavior, suggesting high purity and strong chain interac-
tions, contributing to excellent frequency responsiveness.

Conversely, TKNR demonstrated a lower and more vari-
able G′, implying a looser molecular structure, resulting
in weaker elasticity and increased viscosity (higher Tanδ).

In the strain sweep, NR maintained a high G′ and low
Tanδ at low strains, robust elasticity and a high elastic
limit, ideal for high-resilience applications. In contrast,
TKNR displayed a lower G′ and higher Tanδ, highlighting
more pronounced viscous characteristics and a tendency
for plastic deformation under strain. As strain increased,
TKNR’s G′ grew slowly, while its Tanδ rose sharply, empha-
sizing its low elasticity and strong viscoelastic properties.
The NR-TKNR blend demonstrated intermediate behavior,
with G′ and Tanδ values positioned between NR and TKNR
across both frequency and strain sweeps. This indicates a
balanced viscoelastic performance, suitable for applica-
tions requiring both elasticity and damping.

3.4 Conventional mechanical properties of
vulcanizates

The stress–strain curves of the vulcanizates are shown in
Figure 4, and their conventional mechanical properties are

Table 2: Vulcanization characteristics of compounded rubbers

Sample Minimum torque
(ML, dN·m)

Maximum torque
(MH, dN·m)

Torque difference
(ΔM = MH–ML, dN·m)

Scorch time
(t10, min)

Vulcanization
time (t90, min)

NR 0.32 5.54 5.22 1.19 11.06
TKNR 0.16 4.20 4.04 2.16 13.33
TKNR-NR 0.19 5.11 4.92 1.45 11.58

Figure 1: Curing curves of the rubber compounds.
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summarized in Table 3. As evident from Figure 4 and Table 3,
NR exhibits higher 100% and 300% moduli as well as greater
tensile strength, attributed to its more denser and more
robust crosslinking network. In contrast, TKNR demonstrates
lower tensile strength but higher elongation at break, which
is related to its more flexible network structure and a higher
density of reactive sites. These characteristics result in a
faster crosslinking rate for TKNR, which limits effective net-
work entanglement and leads to reduced tensile strength but
increased elongation at break. The NR-TKNR blend exhibits
moderate tensile properties and modulus values, indicating
that the blending creates a balanced network structure. Addi-
tionally, TKNR shows slightly higher tear strength and slightly
lower hardness compared to NR, indicating that its network

can endure substantial force before tearing while main-
taining greater flexibility. Meanwhile, NR displays higher
hardness and comparable tear strength, confirming its stiffer
and more resilient network. The NR-TKNR blend retains
intermediate values for these properties, highlighting the
synergistic effect of combining the rigidity of NR with the
flexibility of TKNR.

To further investigate the dynamic behavior of the
materials under tensile loading, incremental strain cyclic
tensile tests were performed, and the results are shown in
Figure 5. NR exhibits higher stress at equivalent strain
levels compared to TKNR and the TKNR-NR blend. This
behavior is attributed to NR’s more robust and dense cross-
linking network, as evidenced by the higher stress values

Figure 2: Frequency sweep results for NR, TKNR, and NR-TKNR: (a) storage modulus (G′) and (b) loss factor (Tanδ).

Figure 3: Strain sweep results for NR, TKNR, and NR-TKNR: (a) storage modulus (G′) and (b) loss factor (Tanδ).
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in its curve, indicating greater energy storage and release
during deformation cycles (27). In contrast, TKNR exhibits
lower stress at comparable strain levels, indicating a more

flexible crosslinking network. The TKNR-NR blend demon-
strates intermediate stress–strain behavior, reflecting a
balanced network structure that integrates the strengths
of both NR and TKNR.

Figure 5a highlights the Mullins effect, characterized
by a progressive reduction in tensile stress at equivalent
strain levels in subsequent cycles. This phenomenon is
evident as the tensile stress decreases with each successive
cycle (28,29). After approximately five cycles, the stress
response stabilizes, signifying stress softening. The hyster-
esis loss, determined by integrating the area within each
tensile loop, is presented in Figure 5b. The results reveal
that TKNR exhibits the highest energy loss, followed by NR-
TKNR, while NR demonstrates the lowest energy dissipa-
tion. This elevated energy loss in TKNR is attributed to its
denser crosslinking network and lower molecular weight
between crosslinks, leading to greater energy dissipation
as heat during deformation. In addition, TKNR contains a
more extensive physical entanglement network, leading to
higher energy dissipation during stretching. Compared to
chemical networks, this structure is more fragile, as weak
bonds are preferentially broken under strain. Meanwhile,

Figure 4: Stress–strain curves of the vulcanized rubber samples.

Table 3: Mechanical properties of the vulcanized rubber

Sample Tensile
strength
(MPa)

Elongation at
break (%)

100%
Modulus
(MPa)

300%
Modulus
(MPa)

500%
Modulus
(MPa)

Tear
strength
(kN·m−1)

Hardness
(HA)

NR 20.18 865 1.43 2.33 4.24 26.24 36
TKNR 17.92 900 0.87 2.01 4.02 26.52 34
NR-TKNR 19.63 843 1.36 2.17 5.19 26.47 35

Figure 5: Cyclic tensile tests: (a) incremental strain cyclic tensile curves and (b) hysteresis loop areas during the incremental strain cyclic tensile
process.
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molecular chains in the physical entanglement network
undergo disentanglement, exhibiting a stronger “sacrificial
bond” effect and resulting in greater energy dissipation.
Notably, an anomaly was observed at 500% strain, where
NR showed the highest energy loss. This phenomenon can
be attributed to substantial damage to NR’s long-chain
crosslinks under high strain, causing pronounced network
disruption and increased energy dissipation.

The tensile data were analyzed using the modified
Mooney-Rivlin equation and the tube model, enabling the
determination of key network parameters. These include
the contributions of physical entanglements (Ge) and che-
mical crosslinks (Gc) (the network composition during the
crosslinking process is illustrated in Figure 6), the onset
strain of crystallization (αu), and structural characteristics
such as effective crosslink density (υc), molecular weight
between crosslinks (Mc), average number of chain seg-
ments between consecutive crosslinks (N), the fluctuation
range of chain segments within the tube (d0), and the
average number of chain segments between consecutive
entanglements (ne) (30–34).
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Here, β is set to 1, and L0 and L represent the sample
lengths before and after stretching, respectively. A plot of
σM against f(α) was created, and a linear fit was applied to
the linear region of the curve. The intercept of the resulting
line corresponds to Gc, while the slope represents Ge. The
fitted curve is shown in Figure 7a, and the calculated
values of Gc and Ge are presented in Figure 7b.
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where αm represents the maximum extension ratio, which
is used to calculate the crystallization onset strain αu.

=G A ν k TNc c c B A (8)

Here Ac is taken as 0.67, kB is the Boltzmann constant
(1.380649 × 10−23 J·K−1), T is the absolute temperature
(300 K), and NA is the Avogadro constant. Based on these
parameters, the effective crosslink density νc is calculated.
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where ρ represents the density of rubber, taken as
0.93 g·cm−3. Based on this value, the molecular weight
between cross-links Mc was calculated.
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where Ms represents the molar mass of a single chain seg-
ment, taken as 105 g·mol−1. Based on this value, the average
number of chain segments between consecutive cross-
linking points N was calculated.
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where ns represents the segmental spatial number density,
taken as 5.46 nm−3, and ls is the average Kuhn segment
length, with NR taken as 0.76 nm. Based on these values,
the fluctuation range of the segments within the tube d0 in
the tube model was calculated.

=d l n0 s e

1
2 (12)

Based on these values, the number of chain segments
between consecutive entanglement points ne was calculated.

Figure 6: Composition of the vulcanized crosslinking network.
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The calculated network parameters are summarized
in Table 4, highlighting the distinct crosslinking character-
istics of NR, NR-TKNR blends, and TKNR. NR exhibits a
higher degree of chemical crosslinking, contributing to its
superior strength, whereas TKNR displays greater physical
crosslinking, enhancing its flexibility. These observations
align well with the stress–strain test results. The NR-TKNR
blend demonstrates intermediate values, reflecting a bal-
ance between the chemical crosslinking of NR and the
physical crosslinking of TKNR. Notably, the crystallization
onset strain (αu) in NR-TKNR is higher than that of both NR
and TKNR, indicating a more robust network structure
capable of delaying crystallization and potentially
improving mechanical performance.

The average number of chain segments between con-
secutive crosslinks (N), the segmental fluctuation range
within the tube (d0), and the number of segments between
entanglement points (ne) in TKNR are slightly lower than
those in NR, indicating that the crosslinked network struc-
ture of TKNR is marginally less stable than that of NR. This
observation aligns with the energy loss patterns observed
in the cyclic tensile tests. These network parameters corre-
late well with the mechanical properties of the rubbers,
emphasizing NR’s higher stiffness and strength, TKNR’s

greater flexibility and elongation, and the NR-TKNR blend’s
balanced combination of these attributes.

3.5 DMA of vulcanized rubber

The DMA of the vulcanized rubbers are shown in Figure 8.
As shown in Figure 8a, the storage modulus (G′) of NR, NR-
TKNR, and TKNR exhibits distinct trends with temperature
variation. NR demonstrates the lowest G′, TKNR shows
the highest, and NR-TKNR lies between the two. These dif-
ferences reflect the variations in elastic energy storage
capacity among the rubber samples under changing tem-
perature conditions (35). The relatively low G′ of NR indicates
weaker elasticity across a broad temperature range, which
can be attributed to the comparable contributions from both
its physical entanglements (Ge) and chemical crosslinks (Gc).
Consequently, G′ remains low throughout the temperature
variation. In contrast, TKNR, with a greater contribution
from physical entanglements (Ge) and a smaller contribution
from chemical crosslinks (Gc), exhibits a higher initialG′ and a
more pronounced temperature-dependent change. The NR-
TKNR blend shows intermediate properties, combining NR’s
flexibility with TKNR’s higher elasticity.

Figure 7: Mooney-Rivlin equation fitting: (a) fitted curves and (b) calculated Gc and Ge.

Table 4: Network structure parameters of vulcanized rubber

Sample Gc (MPa) Ge (MPa) αu v (mol·m−3) Mc (g·mol−1) N d0 (nm) ne

NR 0.304 0.326 4.38 97.33 9,452 90 1.93 6.43
NR-TKNR 0.234 0.329 5.08 124.77 7,373 70 1.92 6.37
TKNR 0.226 0.340 4.39 175.07 5,255 50 1.89 6.17
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Figure 8b illustrates that NR has the highest loss factor
(Tanδ) peak, TKNR the lowest, and NR-TKNR lies in
between. The Tanδ value reflects the internal friction
and energy dissipation of the material. The high Tanδ
peak in NR indicates greater internal friction and higher
energy loss, which correlates with its lower crosslink den-
sity (v) and higher molecular weight between crosslinks
(Mc). TKNR, exhibiting a higher crosslink density (v) and
lower Mc, demonstrates less internal friction and energy
loss, resulting in the lowest Tanδ peak. The NR-TKNR blend
again shows intermediate values, reflecting moderate
internal friction and energy loss.

Alongside the crosslinking network analysis, the fluc-
tuation range of chain segments within the tube and the
average number of chain segments between consecutive
entanglement points in NR-TKNR are also intermediate,
between those of NR and TKNR. These results underscore
the significant influence of the crosslinking network struc-
ture on the dynamic mechanical properties of rubber
materials: higher crosslink density leads to lower internal
friction and energy loss.

4 Conclusion

This study systematically evaluated the crosslinking network
andmechanical properties of TKNR using vulcanization char-
acterization, equilibrium swelling tests, rheological analysis,
mechanical performance testing, DMA, and simulations based
on the Mooney-Rivlin and tube models. The findings revealed
the distinctive relationship between TKNR’s crosslinking net-
work structure and its performance.

During vulcanization, the higher number of functional
groups and reactive sites in TKNR facilitated a faster vul-
canization process, resulting in the formation of a denser
yet shorter crosslinking network. This structural character-
istic yielded a higher crosslink density (v) and lower mole-
cular weight between crosslinks (Mc) in TKNR compared to
conventional NR. Consequently, TKNR exhibited superior
elongation at break and tear strength, albeit with slightly
lower tensile strength and hardness. However, during
cyclic tensile testing, the denser network led to greater
chain scission and higher energy dissipation. DMA further
demonstrated that, as temperature increased, TKNR dis-
played an enhanced storage modulus (G′) and a reduced
loss factor peak (Tanδ), indicating excellent elastic energy
storage capacity and minimized internal friction losses. The
results of the Mooney-Rivlin and tube model simulations pro-
vided deeper insights into the relationship between TKNR’s
network and performance. TKNR’s crosslinking network fea-
tured a higher level of physical entanglement (Ge) and rela-
tively lower chemical crosslink density (Gc), which collec-
tively contributed to its superior toughness and outstanding
elastic energy storage capability.
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