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Abstract: Because of its low thermal stability and brittle-
ness, both the drawbacks of poly(i-lactide) (PLLA) were
solved by forming stereocomplex (ST) and its copolymer
with poly(butylene adipate-co-terephthalate) (PLLA-PBAT).
In this study, we synthesized PLLA and PLLA-PBAT copo-
lymer by ring-opening polymerization. Both polymers were
blended with poly(p-lactide) to form ST crystals. Multi-
walled carbon nanotubes (MWCNTSs) were added into the
polymer matrix at 5 phr by the solvent casting method. The
surface resistance of the composite was =10° Q, which is
appropriate for electrostatic dissipative purposes. The copo-
lymer and its ST crystallites were confirmed by the peaks
in infrared spectra at 922 and 908 cm ™, respectively. The
PLLA-PBAT copolymer had 60% lower tensile strength
than PLLA and its stereocomplex, but 10% higher elonga-
tion at break. The elongation at break of the PLLA-PBAT
copolymer/MWCNT composite decreased by 17% while its
thermal stability slightly increased when compared to the
unfilled copolymer. The melting temperature for both

* Corresponding author: Yottha Srithep, Manufacturing and Materials
Research Unit, Department of Manufacturing Engineering, Faculty of
Engineering, Mahasarakham University, Mahasarakham, 44150,
Thailand, e-mail: yottha.s@msu.ac.th

Onpreeya Veang-in: Manufacturing and Materials Research Unit,
Department of Manufacturing Engineering, Faculty of Engineering,
Mahasarakham University, Mahasarakham, 44150, Thailand

John Morris: School of Industrial Education and Technology, King
Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520,
Thailand

Darunee Aussawasathien: Plastics Technology Lab, Polymer Research
Unit, National Metal and Materials Technology Center, Pathumthani,
12120, Thailand

Patnarin Worajittiphon: Department of Chemistry, Faculty of Science,
Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence
in Materials Science and Technology, Chiang Mai University, Chiang Mai,
50200, Thailand

ST PLLA-PBAT copolymers, with and without MWCNTs,
was around 225°C, which is 50°C higher than that of the
homocrystals. Moreover, the glass transition temperature
and crystallinity of the ST PLLA-PBAT copolymer also
increased by adding MWCNTSs.
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1 Introduction

Poly(i-lactide) (PLLA) is a biodegradable polymer that can
be processed easily and is already marketed. It is formed
entirely from renewable resources by bio-conversion or
polymerization (1). However, PLLA has structural and phy-
sical limitations, which limit its processing, formability,
and foaming. It has low heat resistance, low toughness
(high brittleness), low melt strength, and a slow crystal-
lization rate (2). Blending PLLA with other polymers can
avoid these constraints. Many researchers have used copo-
lymerizing lactides with other monomers and macromole-
cules or blending PLLA with flexible plasticizers to toughen
the polymer (3). Biodegradable aliphatic polyesters used
to toughen PLLA were polypropylene carbonate (4,5),
poly(butylene adipate-co-terephthalate) (PBAT) (6,7),
poly(e-caprolactone) (8), and poly(butylenes succinate)
(9). PBAT is viable for strengthening PLLA because of its
high toughness and biodegradability (10). The copolymer-
ization reaction of PLLA and PBAT can improve their
compatibility. Na et al. showed that bi-, tri-, and multi-
block copolymers improved the compatibility of many
miscible and partially miscible blending systems (11).
There are two enantiomers of polylactide, PLLA and
poly(p-lactide) (PDLA). Stereocomplex (ST) crystals were
formed when PLLA and PDLA were blended, which have
a melting point of about 225°C or 50°C higher than that
of homocrystallized PLLA or PDLA (12). As a result, the
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mechanical, thermal, and biological degradability proper-
ties of the ST materials were all improved. According to
Jiang et al. (13), the formation of an ST structure consider-
ably raised the melting point, crystallization temperature,
and overall degree of crystallization significantly. Srisuwan
and Baimark (14) presented that the stereocomplexation,
heat resistance, and mechanical properties of PLLA/PDLA-
blended films may be controlled by the molecular weight of
PDLA. The low molecular weight PDLA made complete ST,
fast crystallization, and had good heat resistance, but high
brittleness. Meanwhile, high molecular weight PDLA simul-
taneously improved the mechanical characteristics of the ST
while suppressing stereocomplexation, crystallization, and
heat resistance. Chen et al. (15) devised a workable and reli-
able method for creating a stable continuous PLLA/PBAT
(70/30) mixture at the nanoscale. Because of grafting reactions
and H-bonding contacts between PDLA grafts and PLLA
chains during reactive blending, ST crystals were generated
in situ. Furthermore, they demonstrated that the in situ gen-
erated nucleation agent (i.e, the ST) was responsible for a
large increase in the crystallization rate of the PLLA matrix.
Thus, the ST served as a rigid supporting layer between
phases even above 200°C, leading to noticeably improved
stability in the melt.

Because of their high electrical and thermal conduc-
tivity, carbon nanotubes (CNTs) have been proposed as
nanofillers in polymer composites. There are three types
of CNTs, single-walled carbon nanotubes (SWCNTs), double-
walled carbon nanotubes (DWCNTS), and multi-walled carbon
nanotubes (MWCNTs) (16). MWCNTs are recognized for their
strengths which range between 2.5 and 3.5 GPa and they are
typically used to enhance the mechanical properties of
polymer composites (17). Unlike SWCNTs and DWCNTS,
MWCNTs with different structures are readily available
commercially. MWCNTs have been widely used as conduc-
tive nanofillers due to their low cost, wide variety, greater
availability, and ease of dispersion (18). Therefore, developing
thin conductive polymer films requires understanding the
effects of the structure and composition of conductive fillers
on the electrical and mechanical properties of the final com-
posite films. MWCNTs have a high aspect ratio, surface area,
Young’s modulus, and excellent electrical and thermal prop-
erties which make them ideal for producing ultra-lightweight
and extremely strong composites (19,20).

Research on PLLA/CNT composites has mainly been
directed at enhancing mechanical properties, crystalliza-
tion, and electrical conductivity. However, the composites
do not possess flexibility and heat resistance (21). In this
work, we report the ST PLLA-PBAT copolymer/MWCNT
nanocomposites, prepared from the PLLA-PBA copolymer,
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PDLA, and MWCNT blends. We examined how the ST for-
mation and MWCNT addition affected the chemical struc-
ture, electrical resistivity, and thermal and mechanical
properties of polymer nanocomposites. First, we enhanced
the flexibility of the PLLA matrix by synthesizing
PLLA-PBAT copolymer (22). After that, the PLLA-PBAT copo-
lymer was blended with PDLA in a 1:1 weight ratio to increase
its thermal properties. Similar to our previous work, the
blending of PLLA with PDLA led to the formation of an ST,
which had a melting temperature of around 225°C, 50°C
higher than that of homocrystallized PLLA or PDLA (12).
The ST copolymer was blended with MWCNTSs to create an
electrostatic dissipative (ESD)-suitable conductive composite
film. To the best of our knowledge, there are no literature
reports on the ST of the PLLA-PBAT copolymer/MWCNT
nanocomposite so far.

2 Materials and methods

2.1 Materials

r-Lactide (98% r-lactide) and PDLA (Luminy® D120) were
received from Total Corbion Thailand Ltd. 1-Dodecanol
(98%) was purchased from Across Co. Ltd. PBAT (ecoflex®
F blend C1200) was sourced from BASF SE, Deutschland.
MWCNTs (HDPlas® MWCNT-0,) were purchased from
Haydale Technologies (Thailand) Co., Ltd. Stannous octanoate
(Sn(Oct),) was provided by Sigma-Aldrich. Chloroform (CHzCl,
AR grade) was obtained from RCI Labscan, Thailand.

2.2 Synthesis of PLLA and PLLA-PBAT
copolymer

We prepared PLLA and PLLA-PBAT from r-lactide mono-
mers. L-Lactide was dried in a vacuum oven at 50°C, 12h
before use. PLLA was synthesized using 0.1 mol% 1-dode-
canol as an initiator, while the synthesis of the copolymer
PLLA-PBAT required using 0.01 mol% PBAT as an initiator
(lactide 40 g, PBAT 13.7828 g). For the preparation of both
samples, 0.05 mol% Sn(Oct), was used as a catalyst. PLLA
and PLLA-PBAT copolymer were synthesized by ring-
opening polymerization, as shown in Figure 1, under N,
atmosphere at 120°C for 4 h. After the reaction, PLLA and
PLLA-PBAT copolymer were dried overnight in a vacuum
oven at 50°C.
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Figure 1: Synthesis of (a) PLLA and (b) PLLA-b-PBAT by ring-opening polymerization.

2.3 Preparation of ST and MWCNT blends

The synthesized PLLA and PLLA-PBAT copolymer were blended
with PDLA and MWCNTSs (Table 1). PLLA, PLLA-PBAT, and
PDLA were dissolved in CH3Cl (1g of polymer per 10 mL
subjected to magnetic stirring for 3h at =25°C, and then
vibrated in an ultrasonic machine for 1h). After the mate-
rials were dissolved, MWCNTs were added to the solution
and stirred for another 1 h. The resulting mixed solution was
poured onto glass Petri dishes. The films were dried (for 3
days at =25°C) to allow the solvent to evaporate. The final
film thickness was =0.2 mm.

2.4 Characterization
2.4.1 Gel permeation chromatography (GPC)

GPC was used to determine the weight average molecular
weight (M,,) and the number average molecular weight (M)

Table 1: Composition of the prepared films

of the PLLA and PLLA-PBAT copolymer. Approximately,
5mg of the specimen was dissolved in 3 mL of tetrahydro-
furan (THF) and stirred in a water bath (1h, 50°C). A Waters
2414 refractive index detector was used. The GPC column was
eluted using THF at 40°C with a flow rate of 1.0 mL-min". The
monodispersed polystyrene was used for calibration.

2.4.2 Fourier transform infrared spectroscopy (FTIR)

The chemical structures of polymers and their composites
were examined from 400 to 4,000 cm™ using a Perkin-
Elmer Frontier FTIR spectrometer (attenuated total reflec-
tion [ATR] mode).

2.4.3 Proton nuclear magnetic resonance ("H-NMR)

The functional groups in the PLLA-b-PBAT copolymer were
determined from 'H-NMR spectra (Bruker Advanced DPX
at 300 MHz using CDCl; solvent at room temperature) and

Sample PLLA (wt%) PLLA-PBAT copolymer (wt%) PDLA (wt%) MWCNT (phr)
1 PLLA 100 — — —

2 PLLA + SMWCNT 100 — — 5

3 PLLA-PBAT copolymer — 100 — —

4 PLLA-PBAT + 5SMWCNT — 100 — 5

5 ST-PLLA 50 — 50 —

6 ST-PLLA + 5SMWCNT 50 — 50 5

7 ST-copolymer — 50 50 —

8 ST-copolymer + 5SMWCNT — 50 50 5
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tetramethyl silane was used as an internal chemical shift
standard.

2.4.4 Electrical resistivity

The electrical resistivity of the sample (50 mm x 50 mm x 0.2 mm)
was measured using a high resistance meter (Keithley DMM?7510)
at room temperature.

2.4.5 Mechanical properties

Mechanical properties of film samples were tested using a
tensile tester (Texture Analyzer Stable Micro System Model
TAXT Plus) with a cross speed of 2 mmmin, The 15 mm x 50 mm
sample was cut from the prepared film. The Young’s modulus,
tensile strength, and elongation at break were measured at
50 + 5% relative humidity and 25°C. The mean value and
standard deviation were computed from five specimens.

2.4.6 Differential scanning calorimetry (DSC)

The thermal properties of the film samples were deter-
mined using a DSC (4000 PerkinElmer, USA). The sample
(3-5mg) was placed in an aluminum pan and heated at
10°C:min”" from 25°C to 250°C. The homo-melting temperature
(Tpno) and its enthalpy (AHp, jo), the ST melting temperature
(Tmsy and its enthalpy (AHy, ), and the glass transition
temperature (T,) were recorded. The total degree of crystal-
linity (X.) values for both the homo and ST crystals (X, were
calculated (23):

AHp y + AHp o — AH,

X, (%) = = x 100% o))

0
W % AHpplend)

where AHp 1. and AHp, g are the melting enthalpies of
homocrystallites and ST crystallites, respectively; AH.. is
the cold crystallization enthalpy, and w is the mass fraction
of PLLA or the ST in the polymer blend; and Hr?l(blend) is the
theoretical value of the melting enthalpy for perfect crys-
tals, calculated from

0 — g0 0
Hm(blend) - Hm,hc X fiw + Hm,st X st (2)

where HY ;.. and HY ; are the enthalpy values for the homo-
crystallites (93.6 J-g™) and the ST crystallites (142 J-g™), respec-
tively. The fi,. and f are the relative amounts of homo and
streocomplex crystallites under non-isothermal conditions
and calculated from:

m,hc

(%) = —————
jiﬂc AHm,hc + AHm,st

% 100% (3)
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AHm st
Fe ) = x 100% @)

mhe AI'Im,st

where AHy, e and AHy, s were obtained from the thermo-
grams as in Eq. 1. The crystallinity of ST crystallites, X, was
then calculated from Eq. 5:

X (%) = X, % f, x 100% )

2.4.7 Scanning electron microscopy (SEM)

The morphology of fractured surfaces was examined using an
SEM technique (TM4000Plus Tabletop Microscope, HITACHI)
at 10kV. The sample was fractured in liquid nitrogen and
sputter-coated with a 20 nm Au layer prior to examination.

2.4.8 Thermogravimetric analysis (TGA)

TGA was performed using a PerkinElmer TGA 4000. The
sample (10-15mg) was heated from 30°C to 600°C with
a heating rate of 20°C'min~' under a N, flow rate of
20 mL-min". The weight loss was recorded and normalized
against the initial weight. The thermal degradation tem-
perature was specified from the decomposition tempera-
ture at 10% weight loss.

3 Results and discussion

3.1 Chemical structure

The GPC results show that the synthesized PLLA had
M,, = 70,932 gmol * and M, = 32,519 gmol . The PLLA-PBAT
copolymer had M,, = 70,932 gmol ™ and M, = 38,853 gmol .
Figure 2(a) shows the FTIR spectra from 500 to 4,000 em™! of
the synthesized PLLA, the PLLA-PBAT copolymer, and their
ST and composites. PLLA shows two peaks at 2,995 and
2,948 cm™, corresponding to asymmetric and symmetric
—CH stretching, respectively. Additionally, PLLA was suc-
cessfully synthesized via ring-opening polymerization in
the presence of C=0 stretching at 1,752 cm™ (24). The peaks
at 2,960 and 2,873cm™ in the FTIR spectrum of PBAT
correspond to the asymmetric and symmetric stretching
vibrations of the CH, groups, respectively. These peaks are
indicative of the aliphatic segments present in the PBAT
polymer structure. The presence of a strongly convoluted
(-C = 0) absorption band at 1,741 cm ™! in the infrared (IR)
spectrum of PBAT suggests that there are multiple types of
carbonyl groups (25). The peak at 729 cm™" in the PBAT IR



DE GRUYTER
(2) 2948 2995 actide
PLLA
1752 2873 \ 2960 PBAT:
;\? N\w’“w'%.,\fﬂjm\/“/l”l PLLA-PBAT copolymef
~ | v ! =
@ E
E W752 ST-PLLA!
-‘E 1174 ST-PLLA+SMWCNT
5 S T-copolyme:;
W ST-copolymer+SMWCNT
MWCNT
~ N\
2849 2919 “<u4p
500 1000 1500 2000 2500 . 3000 3500 4000
Wavenumber (cm')
(b)
| 922 Homocrystal |
/ PLLA
= 1
=
N
o | ]
<
g
= ST-PLLA
i 4
)
w
=
< o
908 ST Crystal

850 880 910 940 970
-1
Wavenumber (cm)

1000

Figure 2: FTIR spectra of (a) PLLA, PLLA-PBAT copolymer, ST polymers,
and polymer/MWCNT composites and (b) the expanded region from 850
to 1,000 cm™ of PLLA and ST-PLLA.

spectrum indicates the presence of out-of-plane bending
vibrations of the phenylene rings, confirming the contribution
of aromatic terephthalate units to the polymer’s structure (26).

The FTIR spectra of the PLLA-PBAT copolymer exhibit
only strong peaks at 1,714 and 1,752 cm ™", corresponding to
the ester group (-C=0) stretching vibrations of the inter-
action between PLLA and PBAT (27). Malinowski et al. (28)
also reported that the FTIR spectrum of the PLLA-PBAT
copolymer shows the CH-plane benzene ring vibration at
729 cm™, which is absent in pure PLLA (29). This result
confirmed that the synthesis conditions and the initiator
generated the PLLA-PBAT copolymer via ring-opening
polymerization.

Then, we blended the PLLA and PLLA-PBAT copo-
lymer with PDLA to create the ST structure. The FTIR
spectra of ST samples show peaks at similar positions to
those of pure PLLA and PLLA-PBAT copolymer. However,
the FTIR peak shifted from 922 to 908 cm™ for the ST for-
mation (Figure 2b). The 922 cm™ band is assigned to the
PLLA homocrystallite (30), whereas the peak at 908 cm™*
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corresponds to the ST crystallite (31). Moreover, in the ST
sample, the carbonyl (C=0) stretching was observed at
1,744 cm ™.

In addition, the polymer/MWCNT composite samples
showed intense bands near 3,442 cm™, equivalent to the OH
carboxyl group stretching vibrations. The 2,992-2,888 cm™
band corresponds to the C-H bond symmetric stretching in
carbonaceous material and the 1,641-1,548 cm™ range is
assigned to the C=0 bond (32). Moreover, the copolymers
with MWCNTs had no other new peaks (32); thus, blending
MWCNTs into the copolymer did not lead to significant che-
mical interactions, i.e., any change in the nanocomposite
properties resulted from physical interactions alone.

The 'H-NMR spectra of PLLA, PBAT, and PLLA-PBAT
copolymer are shown in Figure 3. The spectrum of pure
PLLA shows signals at 5.16 (peak 1) and 1.56 (peak 2) corre-
sponding to the methine proton (CH) and methyl proton
(CH,) of the lactic acid units (33). For PBAT, the signals at
the signal of aromatic protons appearing at 8.09 ppm (peak
6) indicate the phenylene structure of the CH in the benzene
ring, and 2.34 ppm (peak 3) and 1.67-1.69 ppm (peak 8) were
assigned to the outer and inner CH, groups, respectively. In
the BT unit, the outer and inner methylene protons were
observed at 4.38-4.46 ppm (peak 5) and 1.66 ppm (peak 8),
respectively. For the BA unit, the CH, groups in adipic acid
appear at 4.11-4.17ppm (peak 4), 2.34 ppm (peak 3), and
1.69 ppm (8). Additionally, the methylene protons of the
butanediol units close to the terminal -OH of the macro-
initiator were assigned to 3.65-3.75 ppm (peak 10) (34). How-
ever, after the ROP of the PLLA-PBAT copolymer, the
3.67-3.75 ppm peak vanished entirely in the spectrum of
PLLA-b-PBAT, and the PLLA-related new proton signals
were also observed at 5.09 and 1.49 ppm (22,35). This showed

‘ ‘ BA unit | " BT unit ‘
o 2 6
)h,/ ! P 7 :
b 2 1 i0 e~
] PLLA PBAT ’
A
GJL_A
9 8 7 6 5 4 3 2 1 0

Figure 3: "H-NMR spectra of (a) PLLA, (b) PBAT, and (c) the PLLA-PBAT
copolymer.
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that the hydroxyl groups of PBAT had started the 1-lactide in
the ring-opening polymerization, showing that the PLLA-PBAT
structure had been formed.

3.2 Electrical properties

Figure 4 shows the electrical resistivity plot of polymer/MWCNT
composite films. The materials without MWCNTSs did not con-
duct electricity, and they were effective insulators (36). The
composites showed a significant increase in conductivity
with the addition of 5 phr of MWCNTs. Notably, the compo-
site with 5phr of MWCNTs had a surface electrical resis-
tance of =10° Q, similar to those of films used in the ESD
application in the range of 10°~10° Q (37). Note that 5 phr of
MWCNTs had the lowest content, which induced the elec-
trical conductivity of polymer composites for ESD use. When
>5 phr of MWCNTSs were added to the system, the composite
film could not be formed. These results demonstrated that
the electrical resistivity of the films and a higher content
of MWCNTSs resulted in lower electrical resistivity (higher
conductivity). In the case of copolymer/MWCNT blends,
the resistivity of the polymer with MWCNTs at 5 phr was
similar, which means that the polymer type does not affect
the electrical properties of the composite.

3.3 Tensile properties
Tensile tests were performed on the film specimens of PLLA,

PLLA-PBAT copolymer, ST-PLLA, ST-copolymer, and their
composites with MWCNTs. Figure 5(a)-(c) shows the tensile
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Figure 4: Surface resistivity of various polymers and their MWCNT
composites.

DE GRUYTER

strength, modulus of elasticity, and elongation at the break
of the tested samples, respectively.
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Figure 5: Tensile properties of as-prepared films: (a) tensile strength,
(b) modulus of elasticity, and (c) elongation at break.
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PLLA had a lower tensile strength of 31 MPa, Young’s
modulus of 5,300 MPa, and an elongation at break of 31%
compared to those of ST-PLLA (39 MPa, 5,400 MPa, and
191%). The mechanical properties of ST PLLA were higher
than those of PLLA due to increased bonding between
PLLA and PLDA. This result was consistent with that of
Tsuji et al. (38) stating that the mechanical properties of
ST PLLA films were superior to those of PLLA films. The
micro-phase structure difference was generated in the ST
of PLLA as a result of dense chain packing in the amor-
phous region (strong interaction between L- and D-units).
Meanwhile, the PLLA-PBAT copolymer showed an increase
in elongation but a decrease in strength and modulus. The
tensile strength of PLLA was almost 60% higher than that of
the PLLA-PBAT copolymer because of the higher flexibility of
PBAT. Ming et al. (39) investigated the reaction occurring
between PLLA and PBAT during blending. The formation
of the PLLA-PBAT copolymer improved compatibility, which
increased the chain extension of PLLA and PBAT. The addi-
tion of MWCNTs into all samples showed an increase in
tensile strength and modulus (210%) along with a slightly
lower elongation at break. Andrews and Weisenberger (40)
reported that as MWCNT increased, elongation at break decreased,
leading to lower ductility in the polymer matrix. The as-prepared
composite samples showed decreased elongation at break,
according to the high stiffness behavior of MWCNTs, indi-
cating the decrease in ductility of polymer/MWCNT compo-
sites. The decrease in elongation at break was also attributed
to the partially miscible dispersion of nanotubes in the
polymer matrix (41). This will be covered in more detail in
the section on morphological analysis.

3.4 Thermal properties

Figure 6(a) and (b) shows the first heating thermograms of
the film samples. The Ty, Ty, and % X, of each specimen are
recorded in Table 2. As shown in Figure 5(a), the PLLA has
two thermal steps: (1) a T, = 47°C and (2) an endothermic
fusion step (T;,) with a maximum at =170°C. The T, and T, of
the PLLA-PBAT copolymer decreased to =45°C and =165°C,
respectively, compared to the PLLA homopolymer. This
might be attributed to the formation of hydrogen bonds
between the polymer chains, which gradually enhanced
molecular flexibility. Moreover, the molecular chains of
PLLA were widened by PBAT, resulting in the reduction of
applied energy for molecular motion (42). The addition of
MWCNTs caused a slight increase in T,, Ty, and %X. of
PLLA and PLLA-PBAT copolymer because of the reinforcing
and nucleating effects of nanotubes on both polymers.

Stereocomplex PLLA-PBAT copolymer with multi-walled carbon nanotubes
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Figure 6: First heating thermograms of (a) PLLA, PLLA-PBAT copolymer,
and their composites with MWCNTs and (b) ST-PLLA, ST-copolymer, and
their composites with MWCNTSs.

In addition, the DSC results of ST samples are shown in
Figure 6(b). A complete formation of ST crystallites (no
homocrystallites) was obtained for all samples with a
melting peak at =222-223°C, higher than that of PLLA
=50°C (43). The Ty, Ty, and % X of ST-PLLA were =222°C,
47°C, and 34%, respectively (Table 2). The T, and % X of
ST-copolymer decreased to =40°C and 17%, respectively,
while the T, was unchanged at =222°C compared to those
of ST-PLLA. Moreover, the T, T, and % X; of ST-PLLA and
ST-copolymer increased in the presence of MWCNTs. The
nanofillers might entail a higher concentration of the
nucleating agent, promoting the formation of more crystal-
lization nuclei and increasing the degree of crystallization.
The DSC profiles exhibited that MWCNTs serve as nucle-
ating agents in polymer nanocomposites (44).

3.5 X-ray diffraction (XRD) analysis

Figure 7(a) and (b) depicts XRD spectra of as-synthesized
samples and their composites. The pure PLLA, PLLA-PBAT
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Table 2: Thermal properties and crystallinities of the prepared samples from the first heating thermograms
Sample Ty (°C) Melting 1 Melting 2 % X % Xt
T he (°C) AHenne (497 Tmst (°C) AHpnst (0°97")
PLLA 47.2 170.0 41.8 — — 44.6 —
PLLA + 5SMWCNT 47.8 174.4 42.4 — — 453 —
PLLA-PBAT copolymer 45.6 165.1 13.5 — — 14.4 —
PLLA-PBAT + 5SMWCNT 46.2 166.2 22.9 — — 24.5 —
ST-PLLA 47.2 — — 222.6 48.3 — 34.0
ST-PLLA + SMWCNT 48.1 — — 223.6 50.1 — 35.3
ST-copolymer 40.5 — — 2224 25.1 — 17.7
ST-copolymer + SMWCNT 437 — — 2271 45.5 — 32.0

copolymer, and their composites (Figure 7a) showed two
major characteristic peaks at 16.7° and 18.8°, corresponding
to the homocrystal peaks of PLLA (45). Figure 7(b) shows
the XRD peaks of ST-PLLA and ST-copolymer at 11.6°, 20.6°,
and 23.5° in good accordance with the previous studies
(46,47). These peaks correspond to ST crystallites being
formed in a triclinic unit cell, in which PLLA and PDLA

(2)
16.7°

&

. CCC

18.8°
23.4° T

Intensity
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i
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w
s
byl 8
[
=)

20
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> ]
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e 4
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Figure 7: XRD profiles of (a) PLLA, PLLA-PBAT copolymer, and their

composites with MWCNTSs. (b) ST-PLLA, ST-copolymer, and their compo-
sites with MWCNTSs.

segments are packed in parallel in a helical conformation
(48). The PLLA-PBAT copolymer and ST-copolymer crystal-
lization peaks were smaller than PLLA and ST-PLLA due to
PBAT hindering crystallization and lowering final crystal-
linity. On the other hand, the crystallinity of composite
samples increased, confirming that MWCNTs contributed
to the production of more crystallization nuclei. This result
corresponds to the DSC analysis (Section 3.4).

3.6 Morphology

The SEM images of the fractured surfaces are shown in
Figure 8(a)-(h). The PLLA and ST-PLLA had smooth and
homogeneous fractured surfaces (Figure 8a and e). They
formed a good continuous phase in a miscible PLLA and
PDLA blend. This led to a typical brittle fracture, consistent
with the previous report (31). In contrast, PLLA-PBAT copo-
lymer and ST-copolymer (Figure 8c and g) showed rougher
surfaces and more ductile behavior than the pure PLLA and
ST-PLLA. This demonstrated that the PLLA toughness was
improved by the PBAT copolymer. Similar to the study of
Srithep et al. (33), the cross-sectional surface of the PLLA copo-
lymer was rougher, implying that the local ductile was gener-
ated during the fracture. This indicated that the copolymer
efficiently improved the interfacial adhesion of PLLA. More-
over, for samples with MWCNTs (Figure 8b, d, f, and h), the
nanotubes were partially dispersed in the polymer matrix due
to the strong van der Waals interaction (49). In the case of the
observed dispersion, it seems that the MWCNTSs are not uni-
formly distributed throughout the polymer matrix, as the pro-
cessing conditions can influence the dispersion outcome (50).
Therefore, the aggregation of MWCNTSs was also observed in
the polymer matrix. This poor dispersion can result in a range
of negative effects. This may reduce the mechanical properties
and hinder the desired electrical and thermal conductivity
properties of polymer/MWCNT composites.
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Figure 8: SEM micrographs of fractured surfaces of (a) PLLA, (b) PLLA + MWCNT, (c) PLLA-PBAT copolymer, (d) PLLA-PBAT copolymer + MWCNT,
(e) ST-PLLA, (f) ST-PLLA + MWCNT, (g) ST-copolymer, and (h) ST-copolymer + MWCNT.

3.7 Thermal stability was determined from 30°C to 600°C by TGA. The results
are shown in Figure 9(a) and (b).
The thermal stability of PLLA, PLLA-PBAT copolymer, The thermal degradation of neat PLLA and the

ST-PLLA, and ST-copolymer with and without MWCNTs PLLA/MWCNT composite occurred in one single step.
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Figure 9: TGA thermograms of (a) PLLA, PLLA-PBAT copolymer, and their
composites and (b) ST-PLLA, ST-copolymer, and their composites.

PLLA had a Ty, 0f 278.2°C while the PLLA/MWCNT composite
had a Tige, of 292.8°C, indicating a higher thermal stability of
the composite. Moreover, the PLLA-PBAT copolymer and its
composite showed two degradation steps (Figure 9a). For the
PLLA-PBAT copolymer, PLLA began to degrade at =290°C
(step 1), whereas PBAT degraded at =400°C (step 2), corre-
sponding to the different thermal degradation temperatures
of the PLLA and PBAT phases (51). The thermal stability of
the copolymer/MWCNT composite increased, showing the
MWCNTs strengthened the thermal stability of the copolymer
(52).

As shown in Figure 9(b), the ST-PLLA slowly degraded
with higher thermal stability (220%) than that of the neat
PLLA. The thermal degradation of the ST sample was
improved because the molecular mobility was significantly
reduced as a result of the strong interaction between the
PLLA and PDLA chains (53). The ST-copolymer and its com-
posite exhibited two degradation steps at =350°C (step 1)
and =430°C (step 2). The Tyge, of ST-PLLA and ST-copolymer
composites were 345.0°C and 347.6°C, respectively, which were
higher than those of ST-PLLA (343.9°C) and ST-copolymer

DE GRUYTER

(345.3°C). This result showed that the addition of MWCNTSs to
ST-PLLA and ST-copolymer led to their higher thermal sta-
bility (49). Moreover, composite samples had a significant
increase in the residual mass since MWCNTs decompose at a
temperature higher than 600°C (54)

4 Conclusions

PLLA and PLLA-PBAT copolymer were successfully synthe-
sized by ring-opening polymerization of lactides, using
1-dodecanol and PBAT as initiators, respectively. Stannous
octoate was used as a catalyst for the synthesis of both
polymers. The ST films of PLLA and PLLA-PBAT copolymer
were prepared by the addition of 50 wt% PDLA using
the solution casting method. Moreover, the as-prepared
polymer/MWCNT composite films were obtained via the
solution casting process as well. The toughness of PLLA
was improved by copolymerization with PBAT, according
to the enhancement of elongation at break. Based on the
DSC results, the ST formation assisted in increasing the
melting temperature of PLLA and its copolymer by =50°C.
Furthermore, the homo-crystals of PLLA and the copo-
lymer were completely converted into ST crystals. FT-IR
results demonstrated that the chemical structure of polymers
was unchanged with the addition of MWCNTs. However, the
tensile strength and modulus of polymer/MWCNT composites
significantly improved along with the reduction of elongation
at break. The nanofillers caused an increase in the crystal-
linity and thermal degradation of the polymer/MWCNT com-
posites. The surface resistance of the ST-copolymer with 5 phr
of MWCNTSs was about =10° ©, suitable for ESD applications.
These findings provided a foundation for further investiga-
tion into novel, multifunctional biodegradable polymer
composites with the potential for use in ESD applications.
The final properties of polymer nanocomposites could be
improved by applying suitable compatibilizers or disper-
sing agents or a high-shear-mixing process to enhance
the distribution of nanofillers.
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