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Abstract: Biomass films with ultraviolet (UV)-shielding
ability have attracted considerable attention. Curcumin
was introduced into castor oil-based polyurethane (CCPU)
as a chain extender, which was melt with polylactic acid
(PLA) as a reinforcement to obtain biomass UV-shielding
film. The excellent UV absorption and antioxidant qualities
of curcumin contributed to the impressive UV-shielding
capacity (97.6% UV radiation absorption) and antioxidant
(51% free radical scavenging) of PLA/CCPU-20 film. In the
scanning electron microscopic images of film fracture,
the mixing of CCPU elastomer into the PLA matrix caused
the blend films to exhibit significant toughening fracture
characteristics compared to the pure PLA film. The excel-
lent thermal stability, low water swelling degree, and low
water solubility of PLA/CCPU blend films were maintained
after CCPU was added to the PLA matrix. Therefore, the
PLA/CCPU blend films can be considered as a potential

# These authors contributed equally to this work.

* Corresponding author: Tao Zhang, Research Center of Graphic
Communication, Printing and Packaging, Wuhan University, Wuhan,
430079, China, e-mail: zt2022dyj@whu.edu.cn

* Corresponding author: Houbin Li, Research Center of Graphic
Communication, Printing and Packaging, Wuhan University, Wuhan,
430079, China, e-mail: lhb@whu.edu.cn

Xuya Fu, Wenshuo Zhang, Yuye Zhong, Ying Li, Xinghai Liu:
Research Center of Graphic Communication, Printing and
Packaging, Wuhan University, Wuhan, 430079, China

Shuliang Fang: China Helicopter Research and Development
Institute, Jingdezhen, 333001, China

Guannan Wang: Food Science Institute, Zhejiang Academy of
Agricultural Sciences, Hangzhou, 310021, China

Yajun Deng: Jimei University, Xiamen Key Laboratory of Marine
Corrosion and Intelligent Protection Materials, Xiamen, Fujian
361021, China

packaging material because of its favorable UV-shielding
properties and film stability.
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1 Introduction

Food and organic industrial products may deteriorate or
age if directly exposed to ultraviolet (UV) light (1-5). Tra-
ditional packaging and coating materials such as rubber,
plexiglas, paints, dyes, and paper often focus only on
mechanical properties and overlook the damage of UV
rays (6), which will greatly affect the beauty and safety
of the product. Research into packaging materials with
UV-shielding capabilities is urgently needed. On the other
hand, functional biomass materials are constantly being
proposed and improved in the hope of replacing traditional
plastics (7,8). The large volume of plastic products used in
the packaging industry per year has accelerated the deple-
tion of fossil resources and caused uncontrollable environ-
mental pollution problems (9,10). Therefore, it is particularly
important to more actively use biomass materials as sub-
strates to prepare UV-shielding blend (composite) films
that can absorb UV radiation.

In recent years, functional biomass fillers with
UV-shielding properties have been intensively researched
(11). It was found that the main components of some renew-
able natural resources, such as phenols and ketones (12),
can effectively block UV radiation. Common biomass mate-
rials with UV absorption capacity include lignin (13-15),
amaranth (16), curcumin (17), and grape seed (18). In par-
ticular, curcumin is an easily available hydroxyl-termi-
nated natural compound that can be isolated from the
plant Curcuma longa and used as a phyto-polyphenol pig-
ment, which is safe and nontoxic and has excellent anti-
oxidant and antibacterial properties (19-21). Curcumin is a
diketone natural pigment with both benzene ring and
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ketone carbonyl structures in its molecular structure, and
benefiting from the combined action of adjacent carbon—-
carbon double bonds and carbonyl groups, curcumin can
effectively absorb a wide range of UV rays (22,23). However,
the absorption of UV radiation by curcumin also imposes
limitations on its bioavailability, and curcumin is extremely
unstable under sunlight when used alone (24,25). Surpris-
ingly, the preparation and application of curcumin-based
biomass materials may be a way to alleviate this limitation.
Several studies (26,27) have shown that grafting small mole-
cules onto the backbone or side chains of polymers is an
innovative strategy to obtain the functional polymers. Cur-
cumin can be introduced into polyurethane (PU) molecules
as a chain extender through the reaction of the terminal
hydroxyl group with the isocyanate group (-NCO) without
destroying the benzene ring and ketone carbonyl structure
of curcumin itself (28), which means that the UV-shielding
ability of curcumin can be retained after the chemical cross-
linking (29,30). Curcumin-based PU is an environment-
friendly material that can be greatly used as a blend
component to toughen and modify conventional poly-
mers (31-33). Furthermore, it has been documented that
curcumin can be ideally dispersed during the prepara-
tion of curcumin-based PUs, thus avoiding the problem
of poor utilization of curcumin due to potential agglom-
eration (34) and ensuring that curcumin can be firmly
linked to the PU backbone, which in turn prevent a sig-
nificant migration of curcumin (35-37). Therefore, it can
be inferred that the stability of curcumin in curcumin-
based PUs is also applicable to other blend systems in
which polymers are mixed with curcumin-based PUs.
In the packaging, polylactic acid (PLA)-based mate-
rials with UV-shielding capabilities are also highly antici-
pated (38). PLA is derived from renewable resources (e.g.,
corn), and it is an easily accessible biomass material that
is environment-friendly (39,40). In recent years, PLA has
attracted a lot of attention from researchers because of its
advantages such as excellent transparency, thermoplas-
tics, and nontoxicity (41,42). However, the disadvantages
of pure PLA, such as brittleness, limited ductility, and
photodegradation of the pure PLA film under UV light,
have restricted the promotion of PLA materials in packa-
ging (43). Therefore, it is necessary to obtain PLA-based
packaging, such as functional blend films, to handle the
specific protection needs of different products (44-46).
Blending pure PLA with functional fillers is one of the
promising and effective methods to prepare the PLA-
based blend films with UV-shielding capability (47-49).
Generally, the processing methods of PLA can be divided
into two categories: dry processing and wet processing (50). In
addition, the solution-casting method and melt co-mingling
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molding process are two more mature technological methods.
Considering the disadvantages of the solution-casting method
for the film production (51,52), such as long processing time,
difficulty in controlling the volatilization of harmful solvent,
and unsuitability for the large-scale industrial production, it
may be more reasonable to use a more industrialized method
for the film production. In some studies, melt mixing and
compression molding have been indicated to have the poten-
tial to efficiently produce the PLA/PU uniform blends without
excessive dependence on solvents (53,54). Therefore, pre-
paring a curcumin-based PU and then compounding it with
pure PLA by the melt co-mingling molding process (melt
mixing and compression molding) is a worthwhile attempt
to process UV-shielding films.

In summary, in this article, the PLA-based blend
films containing 5, 15, and 20 wt% castor oil-based poly-
urethane (CCPU) were built by melt mixing and compres-
sion molding to block UV radiation. Furthermore, besides
the desire to obtain better UV-shielding films compared
to the pure PLA film, we also reported in detail the che-
mical properties, optical properties, mechanical proper-
ties, thermal stability, antioxidant activity, and water
contact properties of the PLA/CCPU blend films which
we wish to prepare to evaluate their potential usefulness.

2 Experimental section

2.1 Materials

PLA (Ingeo 4032D, M, = 25,000 g-mol ™) pellets were obtained
from NatureWorks LLC (Minnesota, USA). Prior to melt
compounding, PLA pellets were oven-dried at 80°C for
24h. Castor oil (M, = 933.44 g-mol”!, USP), isophorone
diisocyanate (IPDI, M,, = 222.28 g-mol~!, >99%), and
2,2-diphenyl-1-picrylhydrazyl (DPPH, >97%, HPLC) were pur-
chased from Aladdin (Shanghai, China) Co., Ltd. Curcumin
(CxH006, M,, = 368.38 gmol™, >98%) and 1,4-butanediol
(BDO, M, = 90.12 g-mol ™, >99%) wete obtained from Adamas-
beta. Acetone (>99.5%, AR) and methanol (>99.5%, AR) were
available from Sinopharm Chemical Reagent Co., Ltd. Acetone
was stored in a 4 A molecular sieve for further use. All chemicals
were used without additional purification.

2.2 Preparation of CCPU

The preparation methods of thermoplastic polyurethane
(TPU) have been reported in several studies (55). In this
article, it was first necessary to obtain CCPU that cross-
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linked curcumin and to retain an excess of —-NCO in the
fabricated samples. Typically, IPDI (27 mmol, 6g) and
castor oil (10.7 mmol, 10g) were added into a three-
necked round-bottomed flask, stirred, and heated at a
temperature of 80°C under nitrogen atmosphere for 2 h.
Next, curcumin (0.8 mmol, 0.3g) was added into the
reaction for 1h to help TPU exhibit a great UV-shielding
ability. At this point, the addition of 5-10 mL acetone can
help curcumin react more completely. Finally, the reaction
was continued for 1h using BDO (5.5mmol, 0.5¢g) as a
chain extender for PU. The resulting viscous fluid was
the CCPU. The nonreactive -NCO in the CCPU was retained
with 9.3 mmol. The CCPU was cooled to room temperature
under vacuum conditions, bottled and sealed, and stored
in 4 A molecular sieve for additional use.

2.3 Fabrication of PLA/CCPU blend films

The pure PLA melt and PLA/CCPU blends containing 5,
15, and 20 wt% CCPU were obtained by melt mixing in
an internal mixer (SU-70; Suyan Science & Technology
Co., Ltd, Changzhou, China). The rotation speed of the
internal mixer was set at 30 rpm, and PLA was mixed with
CCPU at 180°C for 15min. Subsequently, the PLA/CCPU
blends were pressed by a hot presser (R-3212; Wuhan Qien
Science & Technology Development Co., Ltd, Wuhan, China)
at 180°C and 10 MPa for 5 min, and the blend films were
obtained from a mold (100 mm x 10 mm x 0.15 + 0.05 mm)
for characterization. The nomenclature of the PLA/CCPU
blend films was abbreviated as PLA/CCPU-X, where X indi-
cates the weight percentage of CCPU in the blend films
(X includes 0, 5, 15, and 20).

3 Film testing and performance
characterization

3.1 Fourier transform infrared (FT-IR)

The chemical analysis of the PLA/CCPU blend films was
performed in the 4,000-300 cm ™ range using a spectro-
meter (Nicolet iS50, Thermo Scientific, Britain) in attenu-
ated total reflection (ATR) infrared mode.

3.2 Scanning electron microscopy (SEM)

The cross-sectional morphology of the PLA/CCPU blend
films was measured on an SEM (FEI Quanta 200,
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Netherlands). PLA/CCPU blend films that were treated
with two different methods (cryo-fractured and tensile
fracture) and sprayed with gold for 90 s were character-
ized at 5kV under a high-vacuum mode. Images were
captured at 1,000x magnification using SEM.

3.3 Ultraviolet-visible spectroscopy
(UV-Vis)

The UV-shielding ability of the blend films was deter-
mined using an UV-Vis spectrometer (Ultrospec 2000;
Scinteck, UK) in the wavelength range of 200-800 nm.
The size of the film samples for testing was selected as
60 mm x 50 mm x 0.15 + 0.05 mm.

3.4 Transmittance (7) and haze (H)

The T and H of the blend films were estimated using an optical
tester (TH-09; Hangzhou Color Spectrum Technology Co., LTD,
Hangzhou, China), according to ASTM D1003-00 (2000).

3.5 Thermogravimetry analysis (TGA)

The TGA of the blend films (10 mg) was performed in the
range of 25-600°C on a TGA device (STA7300; Hitachi
Limited, Japan), under N, atmosphere, whose flow rate
was set as 20 mL-min~" with a heating rate of 10°C-min".

3.6 Mechanical properties

The tensile properties of the PLA/CCPU blend films were
measured on a universal tensile tester (Instron 3343,
USA), equipped with a 5 KN load cell and with a cross-
head speed set as 1 mm-min~". A suitable film size (55 mm
x 5mm x 0.15 + 0.05mm) was cut, and the distance
between grips was set as 5 mm to test the tensile proper-
ties, according to ASTM D882-12.

3.7 Water contact angle (WCA)

The WCA of the blend films was recorded on an optical,
high-speed, contact angle-measuring system (CAST3,
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KINO, USA), and the images were acquired and evaluated
by built-in software of the machine to estimate the sur-
face wettability of films.

3.8 Swelling degree (SD) and solubility (S)

The SD and S of the blend films were estimated through
Egs. 1 and 2 (56). In the test, the film samples were first
cut into pieces of a suitable size (1.5cm x 1.5cm) and
dried at 105°C for 24 h (record the weight of the pieces
as W;). Then, the dry pieces were immersed in 40 mL of
distilled water for 24 h, and the filter paper was used to
discard the excess of liquid water before each weight
(record the weight of the pieces as Wgyonen). Finally,
the pieces were dried again at 105°C for 24 h (record the
weight of the pieces as Ws).

I/szollen - VVI

i

SD(%) = ( ) x 100% )
W - Wy
W,

1

S(%) = ( ) x 100% 2

3.9 Antioxidant activity of the films

The antioxidant activity of the blend films was measured
by the DPPH free radical scavenging method (57). First,
DPPH solution was prepared by dissolving 0.004% DPPH
in methanol. Second, 50 mg of samples from each of the
four films (PLA, PLA/CCPU-5, -15, and -20) was taken in
four brown bottles containing 10 mL of DPPH solution and
was incubated in the dark for 30 min, and then, the UV-vis
absorbance of the four incubated solutions at 517 nm was
measured using a UV-vis spectrophotometer (Ultrospec
2000; Scinteck, UK), and the data were recorded as A;.
The DPPH solution without the addition of sample was
used as a control, and it was also tested at the UV-vis
absorbance at 517 nm, and the data were recorded as A,.
Finally, the free radical scavenging rate was calculated
using Eq. 3 to estimate the antioxidant activity of
PLA/CCPU blend films:

Free radical scavenging activity (%)
_ 3
= M x 100% &)
Ao
where Ag and A, represent the absorbance of the control
group and the experimental group, respectively. Ideally,
the test samples should be tested in triplicate.
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4 Results and discussion

4.1 Chemical analysis

The chemical changes in the PLA/CCPU blend films were
investigated by FT-IR-ATR. Spectra for the pure PLA film
and PLA/CCPU blend films were collected as references to
identify any differences. FT-IR spectra (Figure 1a) indi-
cate that the N-H stretching vibration of CCPU, centered
at around 3,421 cm}, exhibited a significant blue shift
from 3,421 to 3,483 cm™. This is due to the interaction
with the stretching vibration of the PLA ester O—H group
and the CCPU ester N-H group (58). The stretching vibra-
tion of the PLA ester C=0 groups at 1,758 cm ™ can be clearly
identified from these PLA/CCPU blend films. Additionally,
the amide bands (i.e., C=0 stretching) at 1,636 cm™ are
also clearly visible in all of the PLA/CCPU blend films. The
presence of these characteristic bands associated with amide
groups confirms the existence of CCPU in the PLA/CCPU
blend films (59). Notably, the PLA/CCPU blend films showed
a significant absence of the —NCO absorption band at
2,268 cm™! (Figure 1b), which indicates that IPDI has
been totally reacted in the melt mixing. The absorption
peak at 2,268 cm ™! of CCPU in the FT-IR spectra is attrib-
uted to the unreacted —-NCO during the process of CCPU
preparation, which is consistent with the fact.

Based on the aforementioned results, the reaction
mechanism of synthetic CCPU is illustrated schematically
in Figure 1c. Castor oil reacted with excess IPDI to form a
short-chain molecular structure, and then curcumin and
BDO were added for chain extension to obtain CCPU.

4.2 UV protection

Figure 2a gives the UV-vis light spectra of the PLA/CCPU
blend films in the wavelength range of 200-800 nm.
Figure 2b illustrates a comparative experiment in which
the fluorescence anti-counterfeiting features on the bank-
note were covered by four different films (PLA, PLA/CCPU-5,
-15, and -20), and then irradiated with ultraviolet light
(UVB, 310 nm). The purpose of the experiment was to
determine whether ultraviolet light could pass through
the PLA/CCPU blend films by observing the clarity of the
anti-counterfeiting marks. In the UV-vis light spectra, the
pure PLA film shows a significant T to visible light and UV
light. However, with the addition of CCPU, the PLA/CCPU
blend films gradually attained a better UV-shielding ability,
which exhibited the inhibition enhancement of films’ UV
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Figure 1: (a) FT-IR spectra of the CCPU and four films (PLA, PLA/CCPU-

5, -15, and -20). (b) FT-IR spectra near the wavenumbers at 2,268 cm™.

(c) Schematic diagram illustrating possible reaction mechanism of CCPU.

light T in the light wavelength range of 200-400 nm. Mean-
while, the UV light (UVB, 310 nm) could not pass through
the PLA/CCPU-20 blend film, and the fluorescence anti-
counterfeiting features of banknote have failed lighting
by UV light in the comparative experiment (see Figure 2b,
PLA/CCPU-20); it is proven that the addition of CCPU could

enhance the UV-shielding ability of the PLA/CCPU blend
films (60). In general, electronic excitation will be induced
within curcumin structure when curcumin is exposed to
solar radiation (61). In photochemical studies of UV radia-
tion absorption, on the one hand, the electronic excitation
energy is rapidly converted into vibrational energy at the
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Figure 2: (a) The UV-vis spectra of the PLA/CCPU blend films (PLA, PLA/CCPU-5, -15, and -20). (b) Demonstration of UV-shielding effect by

the PLA/CCPU blend films.

conjugated carbon—carbon double-bond structure and dis-
sipated to the surroundings in the form of heat without
damaging the curcumin structure (62,63); on the other
hand, the hydrogen atom in hydroxyl group on the benzene
ring of curcumin will transfer to the carbonyl group driven
by the excitation of electrons, which may be another reason
why the excitation energy of electrons is absorbed (64,65).

In conclusion, the enhanced UV-shielding capability
of the PLA/CCPU blend films is attributed to the increased
content of CCPU in the PLA/CCPU blends, and the core
reason is the absorption of UV radiation by the conju-
gated carbon-carbon double-bond structure of curcumin
as well as a combination of other reasons.

4.3 Optical properties

Light T and H are two important indicators for judging
film’s optical properties (66). Figure 3a clearly shows the
variation of the PLA/CCPU blend films of light T and H
(PLA, PLA/CCPU-5, -15, and -20). In the test results, the
pure PLA film has high light T and low H. The PLA/CCPU
blend films exhibited an H characteristic because of the
different refractive index between PLA and CCPU (67).
Moreover, with the increase of CCPU content, the H char-
acteristics of the films became more pronounced. The
magnified image of the PLA/CCPU blend films (Figure 3b)
revealed that the increase of CCPU particles in the PLA
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Figure 3: (a) The light Tand H of the PLA/CCPU blend films. (b) The images of four films taken by electron microscopy (PLA, PLA/CCPU-5, -15,

and -20).
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Figure 4: SEM images of the PLA and PLA/CCPU blend films’ cross-section, which used different methods for treating films (treated with

cryo-fracture (a—d); treated with tensile fracture (e-h)).

matrix caused the particles to be closer to each other,
leading to the aggregation of particles, which resulted
in an increasing number of light-scattering microregions
that covered a wider area in the PLA/CCPU blend films.

4.4 Microstructural analysis

Figure 4 provides the fracture cross-sectional images of
the PLA/CCPU blend films by SEM for two different

(a)

40

——PLA
——PLA-CCPU-5
——PLA-CCPU-15
——PLA-CCPU-20

Tensile stress (MPa)

Strain (%)

(b),,

Tensile stress (MPa)

treatments. One of the SEM views is a cross-sectional image
of the blend films treated with cryo-fracture (Figure 4a—d),
and the other is treated with tensile fracture (Figure 4e-h).
The morphological structure and toughness effect of the
PLA/CCPU blend films can be effectively studied. In the
SEM images of Figure 4e, the smooth fracture surface
observed in the pure PLA film after tensile failure indicates
a typical brittle mode fracture of PLA (68). Compared with
the pure PLA film, the fracture surface of the PLA/CCPU
blend films becomes rougher when the CCPU content
reached 5-20 wt%. Moreover, the PLA matrix of the blend
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Figure 5: The tensile testing of four films (PLA, PLA/CCPU-5, -15, and -20): (a) stress—strain curves and (b) tensile strength and strain
histogram to clearly observe the trend of mechanical properties of the PLA/CCPU blend films.
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films appeared clearly twisted fibers (marked by the red
thick arrows) arising from the fracture cross-section, and
the PLA fibrous phase (marked by the green thin arrows)
induced by the CCPU phase, which together indicate the
characteristics of toughened fracture of the PLA/CCPU
blend films (69). Meanwhile, we do not observe an obvious
separation between the continuous phase (PLA) and the dis-
persed phase (CCPU) in the SEM images of the PLA/CCPU
blend films treated with cryo-fracture (Figure 4f-h). It is
indicated that the PLA and CCPU have a great interfacial
compatibility (70).

4.5 Mechanical properties

The representative stress—strain curves of the PLA/CCPU
blend films with different contents of CCPU are shown in

(@)
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Figure 5a. Pure PLA film shows a typical brittle fracture pat-
tern in stress—strain curves, while the PLA/CCPU blend films
exhibited a distinct yielding process after CCPU loaded.
In Figure 5b, the elongation at break of four films (PLA,
PLA/CCPU-5, -15, and -20) displayed a regular increasing
trend from 1.22% to 4.74%, which shows a bit toughness
improvement of the PLA film. The SEM images of their films
of tensile fracture surface may also explain these mechanical
testing results.

4.6 Thermal properties

Figure 6 shows the TGA and DTG thermograms to analyze
the thermal stability of all PLA/CCPU blend films (PLA,
PLA/CCPU-5, -15, and -20). In Figure 6a, all the blend
films had a good stability (<0.8 wt% loss) between 0°C
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Figure 6: TG curves of the PLA/CCPU blend films (PLA, PLA/CCPU-5, -

Temperature (°C)

15, and -20): (a) TGA, (b) the local magnification of TGA thermogram

(220-350°C), (c) the local magnification of TGA thermogram (350-550°C), and (d) DTG.
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and 250°C, which provided compelling evidence that the
PLA/CCPU blend films satisfy the common requirement of
heat treatment.

In the range of 220-300°C, all blend films that con-
tain the CCPU present a slow mass-losing process com-
pared to the pure PLA film, all due to the common reason
that in this work the CCPU does not have structural water
and the PU bonds will start to disintegrate at 220°C
(71,72). Meanwhile, in Figure 6b, the thermal stability of
CCPU at the initial stage of decomposition was estimated
using the temperature at which the PLA/CCPU blends lost
5wt% (Ts5) (73). In the results, it was determined that the
blend films that contained more CCPU had a stronger
thermal instability due to the lower temperature of
Ts for the PLA/CCPU-20 film (Ts-PLA/CCPU-20/307°C
< 314°C < 319°C < 324°C). Between the 220 and 360°C
range, the addition of CCPU continues to constitute a
negative effect of enhanced thermal instability on the
PLA/CCPU blend films.

However, the cross-linking of small amounts of cur-
cumin on the PU backbone was demonstrated to intensify
the thermal stability of PUs (74), as seen in Figure 6c
for Ty (temperature at which 90 wt% of the blend film
was lost), where the curcumin had retarded the thermal
degradation of CCPU in the PLA/CCPU blend films due to
the presence of benzene ring (Too-PLA/CCPU-20/394°C >
383°C > 376°C > 373°C). In Figure 6d, pure PLA film and
the PLA/CCPU blend films showed a maximum weight
loss near 364°C, which may be related to the degradation
with the PLA and the CCPU chains (75). With increasing
temperature, the PLA or the CCPU that fabricated with a
type of aliphatic isocyanate (IPDI) and aliphatic polyol
(castor oil) both showed an almost complete degradation
at 600°C (76). However, it can be seen in the enlarged view

(a)

PLA-CCPU-5

PLA-CCPU-15 PLA-CCPU-20

92.438°

Melt-blended PLA/curcumin-cross-linked polyurethane film =—— 9

of Figure 6c that the PLA/CCPU blend films still have a
mass residue close to 1%, which may be due to the residue
of curcumin. This result is similar to another study that
curcumin remained nearly 40% residual of mass at 600°C
(21), which indirectly reflects that the curcumin was added
in very small amounts inside the PLA/CCPU-20 film.

In summary, melting the CCPU with PLA could result
in a UV-shielding films with favorable thermal stability,
and the thermal stability of the PLA/CCPU blend films is
influenced to a degree by the amount of CCPU added and
the amount of curcumin added. Fortunately, despite
these effects, the PLA/CCPU blend films still have an
excellent thermal stability, and it is still possible to pro-
cess and apply these films at high temperatures.

4.7 Interaction with water

Figure 7 illustrates a series of test results of the pure PLA
film and the PLA/CCPU blend films’ interaction with dis-
tilled water. Figure 7a shows the WCA details of four films
(PLA, PLA/CCPU-5, -15, and -20). The WCA value of the
PLA/CCPU blend films compared with that of the pure
PLA film was increased from 75.62° (PLA) to 92.43°
(PLA/CCPU-20) after the CCPU blended with the PLA
matrix. On the one hand, the hydrophobic property
of the benzene ring on curcumin molecule helped the
PLA/CCPU blend films to form a micro-hydrophobic surface
(77,78). On the other hand, the local cross-linking between
CCPU and the PLA shortens the distance of neighboring
PLA long chains in the interior of the PLA/CCPU blend
films, which is another reason for the larger WCA value
obtained for the PLA/CCPU blend films (79).

(b)

PLA-CCPU-20 -
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Figure 7: (a) The WCA value of the PLA/CCPU blend films (PLA, PLA/CCPU-5, -15, and -20). (b) The SD and S of four films (PLA, PLA/CCPU-5,

-15, and -20) in distillation water.
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Figure 8: (a) Reaction mechanism of the DPPH with free radical scavenger. (b) The free radical scavenging activity curves of the PLA/CCPU
blend films (PLA, PLA/CCPU-5, -15, and -20). (c) Discoloration of DPPH solution when the PLA/CCPU blend film was added to the DPPH

solution.

Furthermore, we also tested the water SD and water S
of each PLA/CCPU blend film (PLA, PLA/CCPU-5, -15, and
-20). The test results were used to verify whether the
loading of CCPU would affect the stability of the pure
PLA film in distilled water (80,81). In Figure 7b, the
pure PLA film and the PLA/CCPU blend films both show
low water SD (<0.6 wt%) and low water S (<0.4 wt%).
Therefore, the PLA/CCPU blend films may be applied in
a humid environment, and they have higher potential to
prevent the damage of film’s mechanical properties caused
by water swelling and water S.

4.8 Antioxidant activity

Figure 8a explains the principle of free radical scavengers
capturing individual electrons in DPPH solution. As the
amount of curcumin molecule is increased in the DPPH
solution, more hydrogen radicals are provided from the
curcumin and a higher number of DPPH free radicals are
consequently converted to a stabilized form (DPPH-H)
(82), which presents itself getting a change in solution
color from purple to yellowish (Figure 8c). The degree of
DPPH solution yellowing in the test can indirectly eval-
uate the antioxidant capacity of the PLA/CCPU blend

film. In Figure 8b, the free radical scavenging rate of
PLA/CCPU-20 (curcumin content 0.36 wt%) film was increased
from 28% (pure PLA) to 51% (PLA/CCPU-20). Therefore, a tiny
amount of curcumin was loaded to PU to obtain the CCPU, and
the blended PLA with the CCPU resulted in the formation of the
PLA/CCPU blend films with better antioxidant properties.

5 Conclusion

In this article, the PLA/CCPU blend films were obtained
by melt mixing and compression molding. The UV-shielding
ahility of the PLA/CCPU blend films was significantly better
than that of the pure PLA film, and the UV ray-blocking rate
of the PLA/CCPU-20 film nearly achieved 97.6%. The SEM
images showed that when 20 wt% CCPU was added into the
PLA matrix, the fracture surface of the PLA/CCPU blend
films presented a ductile fracture characteristic, and the
elongation at break of four films (PLA, PLA/CCPU-5, -15,
and -20) displayed a regular increasing trend from 1.22%
to 4.74%. Due to the addition of CCPU and the core reason
that curcumin has excellent antioxidant properties, the
PLA/CCPU-20 film also showed a strong free radical scaven-
ging rate (51%). Meanwhile, the PLA/CCPU-20 film con-
tinues to maintain a great thermal stability and moisture
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resistance (WCA: 92.438°, SD: 0.4%, S: 0.1%) compared to
the pure PLA film. Owing to the combined qualities of the
PLA/CCPU blend films, such as UV-shielding, thermal sta-
bility, moisture resistance, flexibility, and anti-oxidation, the
PLA/CCPU blend films may suppose to be potentially packa-
ging films.
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