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Abstract: The foamed polypropylene (PP) composites
were prepared by injection molding process. Fourier’s
law and software were used to calculate and simulate
the internal temperature distribution of PP composites,
respectively, and the influence of the temperature distri-
bution on the foaming quality of foamed PP composites
was further analyzed. The result showed that the calcu-
lative and simulated results of temperature distribution
in different thermal transfer directions had great repro-
ducibility. In different isothermal planes, the temperature
from the nozzle to the dynamic mold gradually decreased.
The isothermal plane with a temperature of 370.36 K had a
better foaming quality, average diameter of cell and cell
density were 28.46 pm and 3.7 x 10 cells-cm >, respec-
tively. In different regions of the same isothermal plane,
the temperature gradually decreased from the center to the
edge. The foaming quality in the region (c) at a temperature
of 335.86 K was ideal, and the average diameter of cell
and the cell density were 26.5 um and 2.39 x 10' cells-cm >,
respectively. This work could provide prediction for improving
the foaming quality of foamed polyolefin composites.
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1 Introduction

Nowadays, the foamed polyolefin composites (1,2) have
attracted increasing attention due to their excellent com-
prehensive properties. Compared with traditional polyolefin
composites, the foamed polyolefin composites possess spe-
cific properties, including good thermal stability, excellent
sound absorption property, low thermal conductivity and
dielectric constant, etc. (2,3). Thus, foamed polyolefin com-
posites have been widely used in transportation, military
industry, aerospace, electronics, daily necessities, and so
on (4). Injection molding process is an effective method
for massive production of foamed polyolefin composites
(5) and has been considered as one of the most common
method for foamed polyolefin composites (6,7). Compared
with general foaming materials (8,9), foamed PP composites
has an ideal environment friendly foam material. However,
there will be thermal loss in the injection molding process,
which will lead to the change in foaming quality of foamed
PP composites. Therefore, it has become a new research
direction to explore the influence of temperature distribu-
tion on the foaming quality of foamed PP composites.
Recently, more and more researchers have focused
on the research of foamed PP composites. Yeh et al.
(10) studied the effect of mold temperature on the struc-
ture of cells for PP/rice husk natural fiber composites.
The result showed that with the decrease in the mold
temperature, the cell density decreased more signifi-
cantly. Wang et al. (5) studied the influence of different
barrel temperatures on the properties of foamed PP com-
ponents. They found that the sample weight and cell
density decreased with increase in the barrel tempera-
ture. Chung et al. (11) used semi-crystalline PP and poly-
styrene (PS) as matrix materials, then studied the effects
of melting temperature and mold temperature on the
weight, specific gravity, and expansionary rate of samples.
The result showed that semi-crystalline PP exhibited the
highest expansionary rate at high melting temperature
and low mold temperature, while PS exhibited the highest
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expansionary rate at medium melting temperature and low
mold temperature. Liu et al. (12) studied the effect of
foaming temperature on the cell structure of ultra-high
molecular weight polyethylene and supercritical carbon
dioxide by foaming process. The result showed that the
cell size and cell density were affected by crystal structure,
temperature, and higher foaming temperature leaded to
larger cell size and lower cell density. Nakano and Shimbo
(13) used a device that allows precise control of tempera-
ture and pressure to obtain samples and discussed the
relationship between the cell density, foaming time, and
foaming temperature. The result showed that the cell den-
sity of foamed PS and polycarbonate (PC) composites
became larger at lowtemperature. The effects of foaming
temperature and mold temperature on the foaming quality
of foamed PP composites had been investigated, and some
significant theoretical results had been obtained. However,
there were few studies on the effect of internal temperature
distribution on the foaming quality of foamed PP composites.
In this study, we investigated the injection molding
process of foamed PP composites using Fourier’s law and
simulation calculations. The effect of the variation in the
temperature field in different regions of the material on the
structure of the vesicles in each micro-region was investi-
gated. This provides a reference for the development of
foamed PP composites with different cell structures.

2 Materials and methods

2.1 Materials

PP T-30s was supplied by Anhui Fengyuan Co., Ltd, with
the melt mass flow rate (MFR) of 3.2 g per 10 min. Low-den-
sity polyethylene (LDPE) 2426H was supplied by Lanzhou
Petrochemical Co., with the MFR of 1.8 g per 10 min.
Azodicarbonamide (AC) was gained from Shenzhen Jiaxinhao
Plastic Products Co., Ltd. Zinc stearate [Zn(St),] was sup-
plied by Wenzhou Jia Da Plastic Additives Co., Ltd. Zinc
oxide (ZnO) was supplied by Xiangyun County Hongxiang
Co., Ltd. Montmorillonite (MMT) was supplied by Wuhan
Hanhong Chemical Plant.

2.2 Sample preparation
2.2.1 Preparation of PP/MMT blend

The PP and MMT were dried at 60°C for 8 h before pro-
cessing. MMT was added to PP at 3 wt% on a twin-screw
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extruder (CTE20, Coperion Koryo Nanjing Machinery Co.,
Ltd, Nanjing, China) for obtaining the masterbatch, and
the parameters of the extrusion process were as follows:
temperature of 175-185°C, screw speed of 100 rpm, feeding
speed of and 10 rpm.

2.2.2 Preparation of foaming agent masterbatch

AC and LDPE were dried at 60°C for 4 h before the pro-
cess. Afterwards, they were blended in a torque rhe-
ometer (XSS-300, Shanghai Kechuang Rubber & Plastic
Machinery Equipment Co., Ltd), with a LDPE/AC weight
ratio of 90/10 (14). The temperature was set to 110°C.

2.2.3 Preparation of foaming auxiliary masterbatch

ZnO and Zn(St), were dried at 60°C for 4 h before proces-
sing. ZnO and Zn(St), were evenly mixed at a mass frac-
tion ratio of 5:1, then added to 94 parts of PP and evenly
mixed (15). The foaming auxiliary masterbatch was pre-
pared by twin screw extrude (CTE20, Coperion Koryo
Nanjing Machinery Co., Ltd, Nanjing, China). The tem-
perature of each section of the extrude from hopper to
the nozzle was set from 175°C to 185°C. The screw rotation
speed was 100 rpm and the feeding speed was 10 rpm.

2.2.4 Preparation of foam

The PP/MMT blend was dried at 80°C for 8 h. Then, the
PP matrix, the foaming masterbatch and the foaming
auxiliary masterbatch were uniformly mixed at 85:10:5
mass fraction ration (16). The foamed samples were
prepared by the injection molding machine (EM120-V,
Zhende plastic machinery Co., Ltd) and the temperature
from hopper to nozzle was set from 165°C to 190°C. The
technique parameters are shown in Table 1.

2.2.5 Slice of samples

First, the foamed sample was obtained by injection molding,
The thickness of foamed spline is larger than that of
unfoamed spline, and the thickness difference is 0.5 mm.
Uniform slicing were made along the thickness direction of
the foamed sample (Figure 1a). Then, the different iso-
thermal planes of the samples (Figure 1b) and different
regions of the same isothermal plane (Figure 1c) were
obtained with a self-made cutter.
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Table 1: Foamed polypropylene composites injection molding technique parameters

Injection pressure (bar) Mold temperature (°C)

Melting temperature (°C)

Injection speed (%) Cooling time (s7%)

50 35.6 190

95 30

According to the order of slices, the different iso-
thermal planes of the sample were set as follows: melting
plane (S-0), isothermal plane (S-1), isothermal plane
(S-2), isothermal plane (S-3), isothermal plane (S-4),
and dynamite mold plane (S-5), and the temperatures
were set as to, ty, b, t3, t4, and ts, respectively.

For different regions of the same isothermal plane,
region (a), region (b), region (c), and region (d), and their
respective symmetrical regions, region (b'), region (c'),
and region (d') were set. The temperatures set were t,,
tps, tes ty, by, te, and tg, respectively. Since t, = t, to = te,
and t4 = tg, region (a), region (b), region (c), and region
(d) were investigated.

2.3 Characterization
2.3.1 Scanning electron microscopy (SEM)

SEM (TM-4000Plus, Hitachi Scientific Instruments Co.
Japan) was used to observe the morphology of the sam-
ples. Take the cut sample on the conductive adhesive,
spray gold for 40s, give the material conductivity, and
then place the sample in the SEM for surface morphology

post-foaming

B

test. The average size and distribution of cell size in the
samples were analyzed with Nano-Measure software
(Media Cybernetic, Rockville, MD, USA), and the distri-
bution of cell size could be denoted with a distribution
coefficient (S,), as shown by Eqgs. 1-4 (17,18).

Vi=1-— (1)
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where n is the number of cells in the SEM image, D; is the
diameter of a single cell (um), D is the average diameter
of cells (um), V¢ is the foaming ratio (%), A is the area of
the image (cm?), p; is the foamed materials’ density
(g-cm ™), p is the unfoamed materials’ density (g-cm>),
and S, is the distribution coefficient of cells (um). The p;
and p were measured with an electronic densimeter
(JM300, Nanjing Technology Co., Ltd).

pre-foaming

Figure 1:

Schematic diagram of slices (a), different isothermal planes (b), and (c) different regions of the same isothermal plane.
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3 Results and discussion

3.1 Calculation and simulation of
temperature distribution

3.1.1 Calculation of temperature distribution

According to the Fourier’s law (19), for a uniformly tex-
tured object, the thermal energy per unit time, Q, was
proportional to the temperature gradient, and the thermal
transfer area, A, was perpendicular to the direction of
thermal flow, as shown in Egs. 5-7.

dt
YL 5
Q AAdx (5)
_Q
q= I (6)
ts 2 b
J.dt: -Hldx @)
to

where Qis the thermal energy (W); q is the heat flux (W-m2);
A is the thermal conductivity of samples (W-m™2K™); % is

the temperature gradient in the X direction, which is the
direction of temperature reduction (Figure 2); t, is the mold
temperature (K); and t5 is the melting temperature (K).
Assuming that the material is homogeneous, the thermal
conductivity value is a constant in the process. The tem-
perature on both sides of the sample is known, thatis, x=0,
t =typ; x=b, and t = ts. It is known that the thermal con-
ductivity is 0.22 W-m K™ (20). The melting temperature t,
is 463K, and the mold temperature t; is 308.6 K. The
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thermal transfer distance b; from S-0 to S-5 is 4.5mm
(Figure 3a), and the thermal transfer distance b, from the
center to edge is 5 mm (Figure 3b).

Using the above Egs. 5 and 6, the thermal fluxes
g1 =7,548.5 W-m~and g, = 2,728 W-m 2 could be calculated,
respectively, and the temperature values of the different iso-
thermal planes and the different regions of the same iso-
thermal plane could be calculated by Eq. 7, as shown in
Figure 4.

Figure 4 showed the calculative values of temperature
distribution for PP composites. It could be seen that the
temperature of isothermal plane from nozzle to dynamic
mold plane gradually decreased from 432.12 to 339.48 K
(Figure 4a). The main reason for this phenomenon was
that the thermal loss between the nozzle and dynamic
mold plane gradually increased during the injecting molding
process, which led to the gradual decrease in temperature.
According to Figure 4b, it could be seen that the calculative
values of temperature distribution from the center to edge
gradually decreased on the isothermal plane (S-3), and the
temperature in the central region (a) was the highest with a
value of 370.36 K. The temperature in region (b) was 389 K,
in region (c) was 335.86 K, and in region (d) was 318.3 K. This
was mainly due to the thermal transfer from high tempera-
ture to low temperature.

3.1.2 Simulation of temperature distribution

The solid thermal transfer interface in the software was
used to simulate PP composites (21,22). The cubic
model (Figure 5a) was established with the size of
10 mm x 10 mm x 4.5 mm, and the plane model with the

Temperature (K)

v

a d

Isothermal plane

Figure 2: Schematic diagram of thermal transfer direction of PP composites: (a) different isothermal planes and (b) different regions of the

same isothermal plane.
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b,

Figure 3: Schematic diagram of the parameters of PP composites: (a) different isothermal planes and (b) different regions of the same
isothermal plane.
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Figure 4: Calculation of the thermal transfer direction inside the foamed PP composites: (a) different isothermal planes and (b) different
regions of the same isothermal plane.
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Figure 5: Schematic diagram of the size of the simulation model of PP composites: (a) cubic model and (b) plane model.
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size of 10mm x 10 mm, respectively (Figure 5b). The Figures 6 and 8a show the trends of simulation tem-
thermal conductivity was 0.22 W-m K™ (23), the constant perature and specific simulation values of different iso-
pressure thermal capacity was 1,900 J.kg K™ (24), and thermal planes, respectively. From isothermal planes of
the thermal transfer parameter was 1,225 W-m K™ (25). S-1 to S-4, the simulated temperature gradually decreased
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Figure 6: Simulation temperature results of different isothermal planes of PP composites.
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Figure 7: Schematic of software simulation of the thermal transfer from the center to the edge on the same plane.
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Figure 8: Simulation of the thermal transfer direction inside the PP: (a) different isothermal planes and (b) different regions of the same
isothermal plane.



DE GRUYTER

Influence of temperature distribution on the foamed polypropylene composites

20% 4 S-1 Fliy
/ \
$ 15%- / \
> / \ 7]
=
% / \
10% <
£ 10% / \
2 b
= / A
< 5%+
g / N
7
0% T 'H. .[——l' r—-" 10kV 11.3mm x200 M
0 5 10 15 20 25 30 35 40 45 50 55 60 65
Cell size(um)
5%4G.)  —
~ 20%- L, TN
3 / \
z
Pl | ]
=
g / L
S
E 10%4 / \
3 “ I \
S %4 7/ ﬂ
0% j, - - - - - | - |. ~—r > — 106V 10.3mm x200M
15 20 25 30 35 40 45 50 55 60 65
Cell size(um)
30%4 -3 _
25%+ -
g 1 o
% 20%- / \
§ y \
=
g 15%- /
S
£ 10% d 5
o= 04
3 /
9
7
- ] —
en" L) T T L T T T U T 10kV 10.9mm x200 M
5 10 15 20 25 30 35 40 45 50 55
Cell size(um)
S-4 _/T
20%- 7 !
S 1 \
%' 15% / A\
d ([ »
E 10%- N
2 \
_>
- /
= 5% 2
0% r_l. " . . ! . ! '| 10kV 10.3mm x200 M 200pm
10 15 20 25 30 35 40 45 50 55 60

Cell size(um)

Figure 9: Foaming quality of foamed PP composites in different planes.

—_7



Xin Yang et al.

404
T— a
354 T~ =
L \\_/
§ 304 -
2 s /
g
2 204
§ 154
3 104
g 10
54
0 T T T T
s-1 S-2 S-3 S-4

Isothermal Plane

Average cell size(um)

DE GRUYTER

-

3.5x10"4

3x10" 4

N

2.5%10"4

2x10" 4
1.5x10" J
1x10" <

5x10°4

7 7 .
S-1 S-2 S-3 S-4

Isothermal Plane

Figure 10: Parameters of the cell structure of different planes of PP foamed composites: (a) cell density and (b) average cell diameter.

b

Figure 11: The schematic of the foaming process with adjustable
volume: (a) injection process and (b) open mold.

from 432.12 to 339.91K (Figures 6 and 8a). Figure 7 shows
the trends of simulated temperature in different regions of
the same isothermal plane. It could be seen that the simu-
lated temperature in central region (a) was the highest with
avalue of 370.68 K, and gradually decreased from the central
region to other regions. The simulated temperature in region
(d) was the lowest with a value of 321.66 K (Figures 7 and 8b).
The simulated results were consistent with the calculative

10kV 11.3mm x20 M

results in Section 2.1.1. The calculated and simulated results
provide a basis for improving the foaming quality of foamed
PP composites.

3.2 Effect of temperature distribution on
foaming quality of foamed PP
composites

3.2.1 Effect of foaming quality of foamed PP composites
on different isothermal planes

Figure 9 shows the cell distribution and cell morphology
of the foamed PP composites in different isothermal planes.
It could be seen that the cell size of S-1, S-2, S-3, and S-4
were mainly concentrated among 30-45, 25-30, 25-30, and
30-40 pm, respectively. The cell diameter of S-3 was rela-
tively concentrated and evenly distributed. Figure 10 shows
the cell structure parameters of foamed PP composites with
different isothermal planes. From isothermal planes of S-1

Figure 12: Structure of cells in different regions of the same isothermal plane.
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Figure 14: Structural parameters of the cells in different regions of the same isothermal plane for the PP foam: (a) cells density and

(b) average cell diameter.

to S-4, the cell size first decreased and then increased, while
the cell density first increased and then decreased (Figure 10a
and b). According to the result of calculation and simula-
tion, the temperature decreased gradually from the iso-
thermal planes of S-1 to S-4, and increased the polymer
melt viscosity, strength of melt, strengthened the ability
to hinder cell growth and reduced the cell growth, and
made the average cell diameter smaller and the cell density
larger. However, the average diameter of cells increased
gradually from S-3 to S-4, and the cell density decreased
with the increase in cell size. The main reason was that few
cells would be produced at the nozzle during injection
molding process, and when the resin was ejected from
the nozzle, the formed cells deformed due to the migration
of resin (26). For different isothermal planes, when the melt
touched the mold (Figure 11), the surface tension of the cells
did not drag the stretched cells back into a circle and the
cells cooled and shaped rapidly (27,28). It could be observed
that the cell size of the isothermal plane (S-4) was larger.

3.2.2 Effect of foaming quality of foamed PP composites
on different regions of the same isothermal plane

From the influence of temperature distribution of dif-
ferent isothermal planes on the foamed PP composites,
it could be seen that the foaming quality on the iso-
thermal plane at 370.36 K was ideal. Therefore, the influ-
ence of foaming quality of foamed PP composites on dif-
ferent regions of the same isothermal plane is explored,
and the results are shown in Figures 12-14.

Figures 12 and 13 show the cell distribution diagram
and cell morphology diagram of different regions of the
same isothermal plane for foamed PP materials. It could
be seen that the cells’ size in region (a) were mainly con-
centrated among 30-40 um, in region (b) among 25-35 um,

in region (c) among 25-30 pm, and in region (d) among
30-35 um, and the cells’ diameter in region (c) were rela-
tively smaller and the cells uniformity were relatively
greater. Figure 14 shows the parameters of cell structure
for the foamed PP composites in different regions of the
same isothermal plane. On the same isothermal plane,
the cell density first increased and then decreased, while
the cell size first decreased and then increased. The foaming
quality in region (a) was poor, and the average cell diameter
and cell density were 31.5um and 1.6 x 10 cells-cm>,
respectively. The foaming quality in region (c) was better,
and the average cell diameter and cell density were 26.5 pm
and 2.39 x 10™ cells.cm >, respectively. According to the results
of calculation and simulation, the temperature decreased gra-
dually from different regions of the same isothermal plane
from region (a) to region (d), and increased the polymer melt
viscosity, melt strength, strengthened the ability to hinder cell
growth and reduced the cell growth, and made the average cell
diameter smaller and the cell density larger (28,29). At the
same time, in the injection molding process, the cells from
the nozzle were deformed due to the migration of the resin.
For different regions of the same iso-thermal plane, when the
melt contact with both sides of the mold (Figure 11), then the
cells cooled rapidly so that the surface tension of the cells did
not drag the stretched and deformed cells back to the round
(27-30). It could be observed that the cell size in the region
(d) was larger.

4 Conclusion

1. Fourier’s law and software were used to calculate
and simulate the internal temperature distribution
of PP composites, the temperature gradually decreased
from nozzle (S-0) to dynamic mold plane (S-5) in dif-
ferent isothermal planes, that is, from 463 to 308.6 K. On
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the same isothermal plane, the calculative temperature
decreased gradually from the center to the edge of the
isothermal plane, and the temperature in the center
region (a) was the highest with a value of 370.36 K.

2. Software simulation showed that the simulated tem-
perature decreased gradually from S-1 to S-4 iso-
thermal plane, from 432.12 to 339.91K. For different
regions of the same isothermal plane, the simulated
temperature decreased gradually from the central region
to other regions. The simulated temperature in the cen-
tral region (a) was the highest with a value of 370.68 K,
and the simulated temperature in the central region (d)
was the lowest with a value of 321.66 K. The simulated
results were consistent with the calculated results.

3. Among the different isothermal planes, the isothermal
plane with a temperature of 370.36 K (S-3) had a better
foaming quality, the average cell diameter and cell
density were 28.46 um and 3.7 x 10" cells-cm >, respec-
tively. In different regions of the isothermal plane at
335.86 K, the foaming quality in region (c) was more
desirable, the average cell diameter and cell density
were 26.5 um and 2.39 x 10" cells-cm >, respectively.
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