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Abstract: Hyaluronic acid (HA) is a biopolymer present
in various human tissues, whose degradation causes
tissue damage and diseases. The oxidized hyaluronic
acid/adipic acid dihydrazide (oxi-HA/ADH) hydrogels
have attracted attention due to their advantages such as
thermosensitivity, injectability, in situ gelation, and ster-
ilization. However, studies are still scarce in the literature
as microcarriers. In that sense, this work is a study of oxi-
HA/ADH microparticles of 215.6 + 2.7 um obtained by
high-speed shearing (18,000 rpm at pH 7) as cell micro-
carriers. Results showed that BALB/c 3T3 fibroblasts and
adipose mesenchymal stem cells (h-AdMSC) cultured on
the oxi-HA/ADH microcarriers presented a higher growth
of both cells in comparison with the hydrogel. Moreover,
the extrusion force of oxi-HA/ADH microparticles was
reduced by 35% and 55% with the addition of 25% and
75% HA fluid, respectively, thus improving its inject-
ability. These results showed that oxi-HA/ADH microcar-
riers can be a potential injectable biopolymer for tissue
regeneration applications.
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1 Introduction

In the last few decades, minimally invasive protocols
with autologous cells or exogenous products containing
cultivated mesenchymal stem cells (MSCs) have been
used to treat musculoskeletal diseases (1-3). Moreover,
cultured fibroblasts have repaired burnt tissues and wounds
that can undergo regeneration by MSCs (4-6). Natural
polymer-based hydrogels have been widely investigated
for applications in the fields of tissue engineering and regen-
erative medicine. These hydrogels must mimic the structural
support of the native extracellular matrix and allow three-
dimensional attachment, migration proliferation, or addi-
tional differentiation of incorporated cells (7-10).

Hyaluronic acid (HA) is a biopolymer abundant in var-
ious tissues, especially in cartilage and skin. Exogenous HA,
obtained from microbial fermentation, exhibits the same
properties as the endogenous HA and has been widely
used for tissue repair and regeneration (11-15). Moreover,
external HA reposition has been used as an effective ther-
apeutic target in human diseases (16). The highly hydrated
structure of HA, its viscoelastic and viscous properties ben-
efit boundary lubrication, shock absorption, and viscosup-
plementation. These are reasons for the extensive use of HA
to restore the functions of the synovial fluid and damaged
cartilage. Furthermore, signalization via cell receptors pro-
duces anti-inflammatory effects, pain relief, protection, and
restoration of the chondral matrix make HA a disease modi-
fier in osteoarthritis (17-19).

Thus, HA and its synthetic derivatives mimic the nat-
ural physical and structural environment in the living
tissue (20-23). Due to its properties, HA injections with
MSCs in damaged sites promote pain relief, tissue repair,
or regeneration (24,25). Although there is an extensive use
of exogenous HA in musculoskeletal diseases, improve-
ments in functionality need to be confirmed. The flexibility
of HA molecular groups for chemical modifications,
including crosslinking, increases its stability and expands
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its uses as a vehicle for drug delivery or as cell-laden
(26,27). Therefore, new strategies have been investigated
to improve the therapeutic applications of HA.

The partial oxidation of its hydroxyl groups by sodium
periodate introduces highly flexible links causing struc-
tural and rheological changes compared to non-oxidized
HA. Furthermore, the partial oxidation allows crosslinking
with small molecules such as adipic acid dihydrazide
(ADH), a metabolized crosslinker, by click reaction type
(20,28). The oxidized hyaluronic acid/adipic acid dihydra-
zide (oxi-HA/ADH) hydrogels have attracted attention due
to lower viscosity and improved injectability, biocompat-
ibility, thermosensitivity, and in sifu gelation than HA.
Although there are still a few studies, oxi-HA/ADH hydro-
gels carrying cells could be promising for nucleus pul-
posus regeneration (11), post epidural fibrosis surgery
(29), as a drug carrier (30), and with dual effects (drug
delivery and regeneration) in tendinopathies (31). More-
over, studies associating structural properties and bio-
logical performance as a cell microcarrier are still scarce
in the literature, despite this type of materials can effec-
tively promote the growth of cells. For example, Jui-Yang
La obtained functionalized gelatin microparticles with oxi-
HA for corneal cells’ culture (32,33). This is a potential
application because HA does not present enough stability
in simulated body fluids (20). To reduce its degradation
degree, chemical modifications are necessary, in that
sense, when HA is oxidized and crosslinked with ADH,
a stable hydrogel is achieved with promising applica-
tions as a cell microcarrier. Previous studies of our
group investigated the colloidal structural changes on
oxi-HA and modulation of physicochemical properties
of oxi-HA/ADH hydrogels with the oxidation degree
and ADH concentration (20), and its use as controlled
drug delivery when combined with microparticles of
nanoporous silicon (34).

Thus, in this study, we prepared the oxi-HA/ADH as
the whole hydrogel and as microcarriers to investigate
the influence of their structure on cell association of
fibroblast and MSC proliferation. The cell association
inside or outside the whole hydrogel or on the surface
of microcarriers could represent top-down and bottom-
up approaches to the potential formation of microtissues.
The structuring of oxi-HA/ADH in microcarriers enables
the increase of the surface area for cell adhesion, contri-
buting to proliferation. Moreover, we also analyzed
the effects of the injectability alone or mixed with
non-oxidized HA. Therefore, the innovation of this
work is synthesis of oxi-HA/ADH microparticles by
high-speed shearing, and their study as potential cell
microcarriers for tissue regeneration compared with
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oxi-HA/ADH as a whole hydrogel. We consider that
these aspects are the starting point for further studies
on mechanisms involving oxi-HA/ADH and cells.

2 Materials and methods

2.1 Materials and reagents

HA with an average molecular weight of 8.54 x 10° Da was
purchased from Tops Shandong Topscience Biotech Co.
(Rizhao, CH). Sodium periodate (NalO,4), ethylene glycol,
ADH, and sodium bicarbonate (NaHCO3) were purchased
from Sigma-Aldrich Inc. (St Louis, MO, USA). Phosphate
buffered saline (PBS) was supplied by Laborclin Ltda
(Pinhais, Paranda, BR). Dialysis membranes with a nominal
molecular weight cutoff (MWCO) of 12,000-16,000 Da
were sourced from Inlab (Diadema, Sao Paulo, BR).
Fetal bovine serum (FBS) and penicillin—streptomycin
were purchased from Thermo Fisher Scientific (Waltham,
Massachusetts, USA).

The stock cultures of BALB/c 3T3 mouse fibroblasts
(American Type Culture Collection — ATCC-CCL163) were
provided by Sigma-Aldrich Inc. (St Louis, MO, USA). The
human adipose-derived mesenchymal stem cells (h-AdMSCs)
were isolated from the human subcutaneous adipose tissue of
patients undergoing lipo-aspiration at the University Hospital
and isolated and cultured according to a previous pro-
tocol (20).

2.2 Methods
2.2.1 Preparation of oxi-HA

Oxi-HA was synthesized according to the reported proce-
dure (17,35) with modifications. HA with a concentration
of 1% (w/v) was dissolved in double-distilled water at
room temperature, and then an aqueous periodate (NalO,)
solution (10.67%, w/v) was added. The reaction occurred at
room temperature for 24h in a dark environment. The
NalO,4:HA ratio was calculated as NalO, mol per HA dimer
mol. The reaction was stopped by the addition of ethylene
glycol for half an hour. The molar ratio of ethylene glycol to
NalO, was 1:6. The resulting solution was dialyzed with
double-distilled water for 3 days using a semipermeable
membrane (with an MWCO of 12,000-16,000 Da). Finally,
the dialyzed solution was lyophilized, yielding a white fluffy
product.
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2.2.2 Preparation of the substrates
2.2.2.1 Preparation of the oxi-HA/ADH hydrogel

The oxi-HA/ADH hydrogel was obtained according to Franca
et al. (20). Briefly, oxi-HA with a degree of oxidation 65% was
dissolved in a PBS (pH of 7.4, at 4°C) to obtain a final con-
centration of 6% (w/v). Then, an 8% (w/v) ADH solution
was also prepared in PBS at 4°C. The oxi-HA and ADH
solutions were mixed in Eppendorf tubes at a volume ratio
of 4:1 oxi-HA/ADH (400 mL of oxi-HA/100 mL of ADH). The
Eppendorf tubes were submerged in a bath at 0°C for 10 min
to obtain the oxi-HA/ADH hydrogel.

2.2.2.2 Preparation of the oxi-HA/ADH microcarriers

To achieve the oxi-HA/ADH microcarriers, one of the oxi-
HA/ADH hydrogels obtained in the previous section was
immersed in ultrapure water at pH 7 and was submitted
to high-speed shearing in an Ultra-Turrax® T25 homoge-
nizer (IKA Labortechnik, Germany) for 10 min using a
shear rate of 18,000 rpm. Afterward, the solution was
centrifuged to separate the oxi-HA/ADH microcarriers
by decantation.

2.2.3 Physicochemical characterizations

The morphologies of the oxi-HA/ADH hydrogel and micro-
carriers were obtained by scanning electron microscopy
(SEM) (LEO 440i, Cambridge, England) using a current
and voltage of 50 pA and 10 kV, respectively. The average
pores sizes of the hydrogel were determined by measuring
100 individual pores from three different images using
Image] software. The porosity of the oxi-HA/ADH hydrogel
was measured in a 20 mL volumetric flask using the pro-
cedure according to Zu et al. (36):

B £

Porosity (%) = 100 ( v, Vg] (1)
where V), is the volume of cyclohexane, an inert solvent, in

the pore (cm’) and Vy is the volume of the hydrogel (cm’).
The chemical analysis of the oxi-HA/ADH hydrogel
was performed by Attenuated Total Reflectance Fourier-
Transform Infra-Red Spectroscopy (ATR-FTIR). An FTIR
spectrometer (CARY 630 FTIR Agilent Technologies, USA)
was used in a range between 4,000 and 600 cm™! with
a resolution of 1cm™ (NS = 4). Moreover, the mean
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diameter of the oxi-HA/ADH microcarriers was performed
by laser scattering in a Mastersizer-S (Malvern Instruments,
UK). The particle size analysis was performed with the
hydrogels dispersed in water. The standard deviation
was calculated from ten measurements of the mean dia-
meter. The zeta potential of both kinds of samples was
measured by a ZetaSizer Nano-ZS (Malvern Ltd, Royston,
UK) in distilled water.

2.2.4 Cell culture studies
2.2.4.1 BALB/c 3T3 culture

The BALC/c 3T3 mouse fibroblast cells were grown in
plastic flasks (75cm? with Dulbecco’s modified Eagle
medium (DMEM), supplemented with 10% inactivated
FBS and 1% antibiotic solution penicillin—-streptomycin-
amphotericin (PSA). The cultures were incubated at 37°C
in an atmosphere containing 5% CO,. The medium was
changed every 72 h, and when the culture reached con-
fluence, the subculture was treated with trypsin-EDTA,
until the complete release of the cells. Cells from passages
4-6 were trypsinized and seeded in hydrogel (inside or
outside) at a concentration of 1 x 10* cells/well (well of
1.1cm?). For seeding cells inside the hydrogel, cells were
mixed with the ADH solution before mixing both the solu-
tions (300 mL of oxi-HA/ADH solution/well), then, the
solutions were mixed and the gelation at 0°C for 10 min
was performed according to Section 2.2.2. For seeding cells
outside the hydrogel, cells were cultured on the surface of
the oxi-HA/ADH hydrogel after the gelation was obtained
from 300 mL of oxi-HA/ADH solution/well. For the micro-
carriers, cells were seeded on the surface of the microcar-
riers at a concentration of 2 x 10* cells/well (well of
1.1cm?). Micro-hydrogel particles were obtained from a
300 mL of oxi-HA/ADH solution. After adhesion, 700 pL of
high-glucose DMEM (Thermo Fisher Scientific, Waltham,
MA, USA) was added to the wells, and cells were cultured
in a humidified incubator at 37°C and 5% CO, with the
medium changed every 3 days. The experiment was per-
formed in triplicate (n = 3) for each group.

2.2.4.2 h-AdMSC culture

The h-AdMSCs were cultured in DMEM, containing 15 mM
HEPES buffer, L-glutamine, pyridoxine hydrochloride, 3.7 g
NaHCOs, and supplemented with 10% FBS and 1% PSA.
Cells from passages 4—6 were trypsinized and seeded in
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microcarrier at a concentration of 2 x 10* cells/well. After
adhesion, 700 pL of low-glucose DMEM (Thermo Fisher
Scientific, Waltham, MA, USA) was added to the wells,
and cells were cultured in a humidified incubator at 37°C
and 5% CO, with the medium changed every 3 days. The
experiment was performed in triplicate (n = 3) for each
group.

2.2.4.3 Cytotoxicity assays

For cytotoxicity assays, BALB/c 3T3 cells were distributed
in 24-well plates using a density of 5 x 10* cell.mL™" and
were incubated at 37°C at 5% CO, for 24 h. Later, the cells
were treated with different concentrations (0-5 mg-mL™)
of oxi-HA dispersion or ADH solution for 72 h. oxi-HA/ADH
hydrogel was also cultured with cells for 72h. After incu-
bation, the medium was removed, wells were washed with
PBS, and 200 pL of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) solution (1mg-mL™) was
added to each well. The plate was incubated for 3h at
37°C, MTT solution was removed, and the formazan crystal
was solubilized in 1 mL of dimethyl sulfoxide (DMSO). The
plate was shaken for 5min, and the absorbance of each
well was read using an Infinity M200Pro spectrophot-
ometer (Mannedorf, Switzerland). The measured absor-
bance at A = 570 nm was normalized to the value obtained
for the control: cells were cultured without samples (37).

2.2.4.4 BALB/c 3T3 and h-AdMSC proliferation kinetics

Cell growth was assessed by MTT (Sigma-Aldrich,
St Louis, MO, USA) assays (37). Samples were incubated
with MTT for 4 h at 37°C with predetermined days. Then,
MTT was replaced with DMSO, the samples were left in an
orbital shaker for 30 min, and the absorbance was mea-
sured at 570 nm. The experiments were conducted in tri-
plicate (n = 3) for each group.

2.2.5 Extrusion force

The force required to extrude the hydrogels was deter-
mined by loading the hydrogels and their gel/fluid dis-
persions in 1 mL plastic syringes with 30-gauge needles.
The measurements were performed in TA.XT.plus Texture
analyzer (Stable Micro Systems, Vienna Court, UK) (load
cell 50 kg) at 25°C at a 5.0 mm-min~" extrusion rate.

DE GRUYTER

2.2.6 Statistical analysis

Cell culture and extrusion force tests were performed in
triplicate and data from each assay were analyzed statis-
tically by analysis of variance with subsequent Tukey
post-hoc test using the OriginLab software; p-values of
0.05 or less were considered statistically significant.

3 Results

3.1 Cytotoxicity of hydrogel precursor
components

Table 1 shows the influence of the concentration of oxi-
HA and ADH solutions on cell cytotoxicity as assayed by
MTT. The results revealed nonpotential cytotoxicity over
3 days (72 h) for both solutions according to the standard
values: cell viability was higher than half maximal inhi-
bitory concentration (ICso) in both the cases. However,
there was a significant decrease in cell viability for oxi-HA
dispersion at higher concentrations (above 0.5mgmL™).
These results confirm the biocompatibility of the hydrogel
precursor components.

3.2 Physicochemical characterizations of
hydrogel

On the other hand, a general view of the oxi-HA/ADH
hydrogel is presented in Figure 1a. The microscopic image
in Figure 1b shows its internal porous structure, which
presented a porosity of 67 + 3% with a pore size of
105 + 24 pm and a zeta potential of —36 + 3mV. On the
other hand, Figure 1c shows the ATR-FTIR spectrum of the
hydrogel. The presented bands are according to the che-
mical structure of oxi-HA/ADH (Figure 1d) (20,34). Bands

Table 1: Cell cytotoxicity of BALB/c 3T3 (%) exposed to oxi-HA acid
and ADH solution; data are reported as mean + SD for experiments
in triplicate

Solution Concentration (mg-mL™")
0.0 0.25 0.5 1.0 25 5.0
oxi-HA 100 90.2 76.6 76.6 72.4 72.8
+25 +21 +2.6 + 2.4 + 2.6 + 2.5
ADH 100 101.2 99.3 98.3 94.0 94.2
+15 +2.0 +2.9 +3.5 + 3.0 +3.1
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Figure 1: oxi-HA/ADH hydrogel: (a) macroscopic image, (b) surface scanning electron microscopic image, (c) ATR-FTIR spectrum, and

(d) chemical structure.

were detected at 1,010, 1,372, 1,545, and 1,650 cm ™Y, which
can be attributed to the C-OH stretching mode, CH; sym-
metric bending, secondary amide N-H bending, and sec-
ondary amide C=0 stretching, respectively. Moreover,
the band at 2,925cm™ corresponds to C-H stretching
vibration, and the wide band at 3,250 cm™ is attributed
to O-H stretching of the hydroxyl groups.

3.3 Cell assays in the hydrogel

Figure 2 shows the proliferation of BALB/c 3T3 cells
inside and outside the hydrogel for 14 days. The viability
of cells was kept inside the hydrogel because the time in
oxi-HA/ADH solution is short: just 10 min of gelation,
after that, the porous oxi-HA/ADH hydrogel was obtained
and the culture medium was added. The results revealed
nonpotential cytotoxicity over 3 days for the oxi-HA/ADH
hydrogel according to the standard values (ICsq). Besides,
the cells inside and outside the hydrogel showed growth
between the third and the seventh day, while a short
lag phase was observed in the absence of hydrogel after
the third day. After 10 days, the cells inside and outside
the oxi-HA/ADH hydrogel were in the stationary and
decay phase (cell death). It is important to highlight
that cell concentration reached maximum values at dif-
ferent times: 45,780 cells-mL " at Day 14; 31,833 cells-mL ™"
at Day 10; and 40,100 cellsmL™ at Day 3 for the cells
seeded inside, outside, and the control, respectively. On
the other hand, cells inside the hydrogel presented a faster
doubling time of cells compared to cells outside the hydrogel

because matrix promoted cell junctions, which enhance cell-
to-cell communication and interaction; moreover, the por-
osity of hydrogel allows the diffusion of oxygen, nutrients,
ions, and electrical currents (38,39).

3.4 Physicochemical characterizations of
microcarriers

The oxi-HA/ADH microcarriers were obtained by ultra-
turrax® shearing at 18,000 rpm and pH 7 and were char-
acterized by the dynamic light scattering (DLS), zeta
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Figure 2: BALB/c 3T3 proliferation starting inside or outside the oxi-
HA/ADH hydrogel during cultivation for 14 days. Data are reported
as mean + SD for experiments in triplicate. Mean values of the same
group of days with the same letter indicate that there is no signif-
icant difference (p < 0.05) by the Tukey test.
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Figure 3: Microcarriers oxi-HA/ADH hydrogel as microcarriers prepared at 18,000 rpm and pH 7: (a) cumulative hydrodynamic diameter and
volume distribution and (b) surface scanning electron microscopic image.

potential, and SEM techniques (Figure 3). Using the DLS,
the hydrodynamic diameter and volume distribution of
particles were determined (Figure 3a). The average dia-
meter of particles was 215.6 + 2.7 um. The monodispersity
can be explained due to the neutral pH because the struc-
ture of HA at pH 7 presents random coil conformation
(40). At acidic pH, for example, HA shows a mixed struc-
ture (random coil + double helix), which could generate
polydispersity. Regarding the zeta potential, microcar-
riers presented a value of —-17.8 + 1.9 mV. In that sense,
particles could agglutinate because only particles that
possess zeta potentials of more than +30mV or less
than -30 mV present enough strong repulsion forces for
a good stability (41).
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On the other hand, the synthetized oxi-HA/ADH micro-
carriers are shown in the SEM image of Figure 3b. Micro-
particles presented an irregular shape, a size of around
100 pm and no pores on their surface. The higher size
obtained by DLS could be due to the agglutination of par-
ticles, as suggested by the zeta potential results.

3.5 Cell assays on the microcarriers

To study the oxi-HA/ADH as cell microcarriers, BALB/c
3T3 and h-AdMSC cultures were performed. Figure 4
shows the proliferation of BALB/c 3T3 (Figure 4a) and

(b)

140000 -] [ h-AdVSC cells
000 [ Microcarriers + h-AdMSC cells
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60000

40000

Cell density (cells/mL)

20000

0-
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Figure 4: (a) BALB/c 3T3 and (b) h-AdMSC proliferation on the microcarriers during cultivation for 14 days in supplemented DMEM medium,
assessed by MTT assay. Data are reported as mean + SD for experiments in triplicate. Mean values of the same group of days with the same
letter indicate that there is no significant difference (p < 0.05) by the Tukey test.
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Figure 5: Influence of the fluid phase fraction of HA on the extrusion
force of the oxi-HA/ADH microcarriers. Data are reported as

mean + SD for experiments in triplicate. Mean values with the same
letter indicate that there is no significant difference (p < 0.05) by the
Tukey test.

h-AdMSC (Figure 4b) cells with and without the oxi-HA/ADH
microcarriers. In both cultures, although the lag phase
was longer, the growth of both cells was higher on the
microcarriers. This lag phase can be explained because
on microcarriers a small number of cells are attached on
the surface and the cell signaling could be delayed. On
the other hand, h-AdMSCs without microcarrier pre-
sented a strong decay phase after Day 7, and BALB/c
3T3 cells without microcarrier showed a soft decay
phase since Day 3.

3.6 Extrusion tests

Figure 5 shows the average forces required to extrude the
microcarriers through a syringe equipped with a 30GY2
needle. The extrusion to force pure microcarriers, without
any fraction of fluid phase (HA), was around 6.5 N. How-
ever, the addition of 25% and 75% HA fluid reduced the
extrusion force by 35% and 55% approximately, which
avoids side effects such as pain, discomfort, bruising,
bleeding, or edema (42,43).

4 Discussion

Nowadays, it is well known that HA plays an essential
role in tissue repair and regeneration associated with the
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resident or in vitro cultured cells, in addition to biological
components such as growth factors. HA combines bene-
ficial properties as a scaffold for tissue engineering such
as biocompatibility, chemical modifications, and bio-
degradability. Furthermore, chemical crosslinking promotes
stability in biological medium, and surface modifications can
modify cell adhesion and the regenerative potential of resi-
dent or seeded cells. The rheological properties such as
injectability could benefit the applications in minimally inva-
sive therapies.

The partial oxidation of HA and crosslinking with
ADH could provide modulation of structural changes
with beneficial physicochemical and rheological proper-
ties, and improving the properties of the conventional
non-oxidized HA. In this work, we hypothesized that
oxi-HA/ADH with controlled properties could be an
effective approach for cell expansion, tissue repair,
and regenerative purposes. However, partial oxida-
tion results in reactive aldehyde groups that make
ADH crosslinking feasible, while free aldehyde groups
from incomplete ADH reaction can be cytotoxic to
cells (44). Aldehyde-modified polymers, such as oxi-
HA, also showed a dose-dependent effect on cell via-
bility in macrophages and mesothelial cells (26-28).
Therefore, we initially investigated the concentration-
dependent cytotoxicity of oxi-HA and ADH (Figure 1).
Although above IC 50, concentrations above 3-6% oxi-
HA reduced cell viability. ADH did not present any degree
of cytotoxicity in a large range of concentrations (0.1-8%),
indicating that the crosslinking did not affect cell viability.
Therefore, oxi-HA/ADH concentration up to 3% oxi-HA
and 8% ADH minimizes cytotoxic effects. In the current
study, we used 6% oxi-HA crosslinking with 8% ADH
because of its advantageous physicochemical properties,
as previously investigated (20).

Initially, fibroblast cultivation was performed in
the oxi-HA/ADH hydrogel, with cells inside or outside
hydrogel. Although the culture medium penetration inside
hydrogel was limited by diffusion to the internal micro-
porous structure, cell-seeded inside the matrix proliferated
due to the high surface area of the porous structure; the
hydrogel was completely covered with viable cells after
10 days in culture (Figure 2). It is important to highlight
that in the beginning of the culture, the viability of cells
was kept inside the hydrogel because the time in oxi-HA/ADH
solution was short: just 10 min of gelation, after that, the
porous oxi-HA/ADH hydrogel was obtained and the culture
medium added.

Regarding incremental surface area/mass, microcar-
riers with the same structural properties of hydrogel were
prepared and characterized (Figure 3). The high-speed
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shearing method to obtain the microcarriers was not
completely efficient because microparticles were irre-
gular and tended to agglomerate at least in pairs. SEM
results showed sizes around 100 pm and DLS presented a
mean of 215 um, growth of BALB/c 3T3 and h-AdMSCs
was favored. Both cells on the surface of microcarriers
continued to rise at a slower rate, compared to the porous
hydrogel (Figure 4). But microcarriers favored a higher
cell proliferation in three-dimensional layered growth
and showing potential to formation constructs (micro-
tissues) in comparison with the hydrogel.

In this context, microcarriers represent an advanta-
geous strategy for in vitro expansion of cells in bioreac-
tors for further uses in tissue repair such as wound
healing. Stability was proven up to 14 days of cultivation.
Recent studies compare the performance of top-down
and bottom-up approaches in cell expansion and tissue
formation (45). Conceptually, the bottom-up approach is
based on self-assembly or guiding from smaller compo-
nents or modules as building blocks for supramolecular
structures. Thus, the proliferation of MSCs on the surface
of microcarriers represents a bottom-up approach for
tissue regeneration.

The injectability of the microcarriers containing cells
is essential for therapeutic success in internal tissues such
as bone or cartilage. In that sense, HA is added to reduce
viscosity and injection force of microparticles. However,
the oxi-HA/ADH microcarriers showed low injection force,
even without mixture with the HA fluid (non-oxidized).
Anyway, the mixture reduced the viscosity and injection
force in all concentrations (Figure 5).

The combination of these results indicates that the
microcarriers developed in this study can provide bene-
fits for cell expansion, tissue repair, and the proliferation
of MSCs for tissue regeneration. Furthermore, structura-
tion in microcarriers represents an innovative approach
for specific cell expansion in bioreactors and direct uses
in tissue repair without the need for further separation. In
addition, the oxi-HA/ADH microcarriers also can be used
for the encapsulation of anti-oxidants for better stability
(40). Further studies may investigate the cell capability
for differentiation in a required tissue. Chondrogenic dif-
ferentiation is ongoing in our group.

5 Conclusions

The oxi-HA and ADH are non-cytotoxic, and the oxi-HA/ADH
hydrogel is an amenable environment for being used as cell-
laden. However, when the size of the hydrogel is modified
from a porous macroscopic substrate to microscopic non-
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porous particles, it improves the proliferation of BALB/c 3T3
and h-AdMSCs. The performance of the MSC proliferation on
the surface of oxi-HA/ADH microcarriers represents a pro-
mising bottom-up strategy toward cell differentiation and
the production of microtissues for regeneration in vitro or in
vivo. Also, the improved injectability of oxi-HA/ADH micro-
carriers sheds light on the development of injectability formu-
lations for minimally invasive therapies.
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