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Abstract: Polyurethane-based retanning agents with anti-
microbial properties were synthesized by the chemical
incorporation of ciprofloxacin (CPFX) units into polyur-
ethane chains. The chemical structures were characterized
by Fourier transform infrared (FTIR) and gel permeation
chromatography (GPC). Then, the retanning agents were
applied in the leather retanning process. Owing to the
conjugation of CPFX into polyurethane chains, the mole-
cular weight increases, further leading to the decrease in
hydroxyl value and increase in particle size. The shrinkage
temperature was improved after retanning. Owing to the
filling of retanning agents in the gap of collagen fibers,
the average thickness of leather increased by 65.8%. The
mechanical properties of leather were visibly improved
because of the large number of —-COOH coordinate with
Cr’* and more hydrogen crosslinking with carboxyl group,
amino group, and hydroxyl group of leather collagen.
Furthermore, leather retanned by these polyurethane-based
retanning agents presented good antimicrobial properties.
The antibacterial activity could be conserved above 89%
even after rinsing for ten times.

Keywords: polyurethanes, antimicrobial, ciprofloxacin,
leather, retanning

1 Introduction

Leather is a collagen fibrous material produced by tan-
ning the collagen fiber network of animal hides and
skins, and its productions can be seen almost everywhere
in our life (1-3). As a natural material, leather can serve
as a carbon and nitrogen source for microbial growth.

* Corresponding author: Saiqi Tian, College of Education, Wenzhou
University, Wenzhou, 325035, China, e-mail: tiansaigi@wzu.edu.cn
Sheng Ding, Jinxing Zhu: College of Education, Wenzhou University,
Wenzhou, 325035, China

Moreover, the collagen fibrous network of leather can
provide suitable temperature, moisture, and oxygen for
the growth and rapid colonization of bacteria. As a result,
the formation of a biofilm will severely reduce the service
life of the leather products (4-6). Hence, it is of great
importance to inhibit bacteria growth on leather.

Antimicrobial properties of leather can be achieved
through retanning process. As one of the significant steps
in leather manufacturing process, retanning process can
overcome some drawbacks of chrome tannage, improve
leather shrinkage temperature, assist dyeing performance,
and more importantly, endow some functional properties
to the final leather, such as antimicrobial, antifouling,
waterproof, fire-retardancy, and so on (7-9). For example,
a chromotropic acid grafted amphoteric polyurethane was
synthesized and then applied in the retanning process of
the aldehyde tanned leather (10). The reaction between
chromotropic acid and formaldehyde occurred between
two naphthalene rings, effectively reducing the free for-
maldehyde content in leather.

Among the retanning agents, hyperbranched polyur-
ethane has attracted increasing attention because of its
novel structures and unique properties. A great number
of active groups in hyperbranched polyurethane can
coordinate with groups of collagen fiber macromolecules
(such as hydroxyl, amino, and carboxyl), and form stable
interaction (11-13). For instance, Ren and coworkers
synthesized a hydroxyl-terminated hyperbranched retan-
ning agent. All the leather samples retanned by it exhib-
ited better tearing strength, tensile strength, cracking
strength, dry rub fastness, and surface properties (12).
Another research found that hyperbranched polymer
retanning agent can effectively improve the shrinkage tem-
perature of hide and chrome uptake (13). In particular, the
structure of hyperbranched polyurethane can be easily
designed by changing the types of raw materials during the
manufacturing process to meet the desired performances
(14,15). For example, a phosphorous polyol and expandable
graphite were incorporated into polyurethane. The obtained
hyperbranched polyurethane not only possesses high phy-
sical performances, but also significantly reduces the release
of contaminative smoke CO and NOx in fires (16). Therefore,
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the antimicrobial moieties can be covalently conjugated into
the chains of hyperbranched polyurethane. However,
to the best of our knowledge, no research has been done
on preparing hyperbranched polyurethane with antimicro-
bial properties for leather retanning.

Ciprofloxacin (CPFX), a low-molecular-weight anti-
microbial agent, is one of the new generation of fluori-
nated quinolones structurally related to nalidixic acid
(17,18). Its primary mechanism is inhibition of bacterial
DNA gyrase. It is a broad-spectrum antibacterial drug
to which most Gram-negative bacteria are highly suscep-
tible in vitro and many Gram-positive bacteria are sus-
ceptible or moderately susceptible. Blending CPFX with
retanning agents might cause its migration during the fol-
lowing leather manufacturing process (19,20). So, it is better
to chemically incorporate CPFX into chains of retanning
agents. In this study, we aim to endow leather antimicrobial
properties in retanning process. Polyurethane-based retan-
ning agents were prepared by chemically incorporating CPFX
units into polyurethane chains. Then, they were applied in the
leather retanning process. The shrinkage temperature, average
thickness, and mechanical properties of final leather were
measured. Besides, the antimicrobial properties of leather after
retanning were investigated in detail. It was found that these
retanning agents endowed leather with good bacteriostatic
effect on Gram-positive and Gram-negative bacteria.
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2 Materials and methods

2.1 Materials

1,1,1-Tris(hydroxymethyl)propane (TMP), hexamethylene
diisocyanate (HDI), 2, 2-bis(hydroxymethyl)propionic acid
(DMPA), CPFX, and N,N-dimethylformamide (DMF) were
purchased from Shanghai Macklin Biochemical Co., Ltd
(Shanghai, China). Formic acid (HCOOH), sodium formate
(NaCOOH), and sodium bicarbonate (NaHCOs) were
acquired from Aladdin Industrial Corporation (Shanghai,
China). Hexamethylene-1,6-diisocyanate trimer (HDIT) was
supplied by Bayer Co. Ltd (Germany). Other chemicals were
used as received.

2.2 Preparation of polyurethane-based
retanning agents (PUR) and PUR-CPFXs

First, HDIT (0.011 mol), CPFX (0.01 mol), and appropriate
DMF were added into a three-necked separable reaction
flask equipped with a nitrogen inlet. The reaction was
stirred at room temperature until the molar ratio of —-NCO
reached the theoretical value (0.02mol) (21). The mixture
was filtered, and then washed by DMF several times.
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Scheme 1: Preparation of (a) C-HDI and (b) PUR.
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Finally, it was dried at 30°C in the oven. The prepared
isocyanate with two-NCO groups was named C-HDI
(Scheme 1a). TMP (0.001 mol) and isocyanate (0.003 mol)
were added to the mixture to form the branched structures.
HDI was applied as isocyanate in the preparation process.
In the meantime, appropriate DMF was poured in case of
crosslink reaction. Next more TMP (0.003 mol) was charged
into the reactor and kept stirring. After that, isocyanate
(0.006 mol) was added for continued reaction. Subse-
quently, DMPA (0.006 mol) was added to react with the
residual -NCO groups. Then, the DMF was removed at
room temperature by rotary vacuum evaporation under
reduced pressure. The obtained polymer was dissolved in
ethanol and centrifuged at high speed. The supernatant
after centrifugation was evaporated at room temperature
by rotary vacuum evaporation under the reduced pressure,
and the polyurethane-based retanning agents (PUR) were
obtained (Scheme 1b). To acquire PUR with antimicrobial
properties, C-HDI was utilized as isocyanate to replace part
of HDI. Polyurethane-based retanning agents with antimi-
crobial properties were abbreviated as PUR-CPFX-x, and x
represents the weight concentrations of C-HDI used in
Scheme 1b as isocyanate.

2.3 Retanning technology

The wet blue is cattlehide tanned by Cr** of tanning
agents and was retanned according to the technology
reported in our previous work, as listed in Table 1 (22).
PUR and PUR-CPFX were applied to treat the wet blue
with the same technology. All chemicals were used based
on the weight of evenly shaved wet blue.

Table 1: Retanning process

Process Chemicals Weight (%) Time
Weighing
Bleaching Water (35°C) 200 15 min

HCOOH 0.2
Discharging the solution

Neutralizing ~ Water (30°C) 150
HCOONa 1 40 min, pH 4-4.5
NaHCO; 0.4-0.5 60 min, pH 5-5.5
Discharging the solution
Retanning Water (35°C) 100 60 min

PUR/PUR-CPFX 8
Horse up
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2.4 Measurements
2.4.1 Fourier transform infrared (FTIR)

FTIR (Thermo Fisher Nicolet Is5, USA) Spectroscopy mea-
surements were performed, and the spectra of each sample
were acquired at a resolution of 2cm™ in a wavelength
range of 400-4,000 cm™* with 32 scans.

2.4.2 Gel permeation chromatography (GPC)

Gel permeation chromatography was conducted on an
Agilent Technologies 1260 Infinity chromatograph (United
States) to determine the relative molecular weight and poly-
dispersity of the polymers. All the tests were performed at
35°C and tetrahydrofuran (chromatographic grade) was
used as an organic solvent.

2.4.3 Hydroxyl value

Hydroxyl value was measured using the acetic anhy-
dride/pyridine refluxing method (23).

2.4.4 Particle sizes

Particle sizes were obtained by laser particle size analyzer
(Mastersizer 3000E). Each sample was tested three times,
and its average value was taken.

2.4.5 Shrinkage temperature

The shrinkage temperature (Ts) of leather samples was
measured by MSW-YD4 shrinkage meter (Yangguang
Research Institute of Shanxi University of Science and
Technology) according to the Chinese Industrial Standard
(QB/T 2713-2005). Different parts of leathers were tested,
and the average T was calculated.

2.4.6 Thickness
A leather thickness gauge (Dongyan, DY-701) was applied to

test the leather thickness. Different parts of the leather were
tested, and the average thickness value was calculated.

2.4.7 Mechanical properties

Mechanical properties were determined using a universal
testing machine (model tensiTECH, Woodstock, USA).
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Before measurement, samples were dried in an oven for
24 h at 60°C. Each sample was cut into dumbbell-shaped
specimens of 50 mm length and 10 m neck width and
measured with a 50 mm-min~' cross-head speed at 25°C.
Measurements were taken five times for each sample.

2.4.8 Antimicrobial properties

Gram-negative bacterium E. coli (ATCC 29213) and Gram-
positive bacterium S. aureus (ATCC 25922) were used as
the indicator microorganisms to evaluate the antimicro-
bial properties of leather. The measurement process for
the antimicrobial properties of leather retanned by PUR
and PUR-CPFXs is shown in Scheme 2. First, E. coli and
S. aureus were inoculated into three 12 mL bacterial culture
tubes with 3 mL fluid Luria-Bertani (LB) medium, respec-
tively. These bacteria were shaking cultured at 37°C for
15 h. Meanwhile, leather samples retanned by PUR and
PUR-CPFXs were cut into specimens of 20 mm x 20 mm
and sterilized by UV-irradiation for 1h. Afterward, the
concentration of both E. coli and S. aureus bacteria solu-
tion was diluted to 10° CFU-mL ™. Flesh side was selected
as the representative to measure the antimicrobial prop-
erties in this study. Next 50 pL of bacteria solution was
dropped on the flesh layer of each leather sample, respec-
tively, and was covered by sterile PVC film. Then, they
were put into boxes with constant humidity (relative
humidity >90%) and incubated for 24 h at 37°C. After
that, the flesh layer of each sample was washed with
5mL of sterile phosphate buffered saline (PBS) solution.
After washing, each PBS solution was collected and
diluted 10°, 10, 10° times, respectively. Finally, 100 pL
of diluted solution was dropped on the solid LB medium

E. coli/ S. aureus

15h 108 CFU/ mL

e

Bacteria solution

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, — 8
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and put into a constant temperature incubator at 37°C
for 18 h.

3 Results and discussion
3.1 Preparation and characterization

The presence of CPFX moieties in the polymer could be
verified by FTIR analysis (Figure 1). PUR-CPFX-9 was
chosen as a representative example. In the spectra of
PUR and PUR-CPFX-9, absorption peaks at 3,324 cm!
(N-H) and 1,659 cm™ (C=0) were found, which were
attributed to the urethane bond in polyurethane chains.
Besides, peaks at 2,931 and 2,860 cm ™ corresponded to the
stretching vibration of C-H in —CH; and —CH,— (24-26),
respectively. These peaks proved the polyurethane struc-
ture of PUR and PUR-CPFX-9. As for the spectrum of CPFX,
the strong absorption peak at 1,623 cm ™’ can be assigned to
the —COOH (27) and C-F (28), respectively. These two
peaks were found in the spectrum of PUR-CPFX-9, but
not appeared in that of PUR. As a result, the CPFX was
successfully introduced to PUR-CPFX-9.

GPC measurement was applied to obtain the mole-
cular weight of PUR and PUR-CPFXs (Table 2). With the
content of CPFX increased, both the M,, and M,, of PUR-
CPFXs gradually increased. Because of the covalent con-
jugation of CPFX into polyurethane chains, the molecular
weight inevitably grew larger. However, the polydisper-
sity was not distinctly influenced after incorporating anti-
microbial moieties. The hydroxyl value decreased when
the molecular weights of the PUR increased. With the

‘ 4
A % /
H 37 °C,200rpm Dilution to y 4

Bacteria solution

Leather
UV-irradiation
1h
PVC

PBS
37 °C
15h
Collect
iluti 37 °C
Dilution, (" g2 ) =L =, ppoto

R 1

Scheme 2: Measurement process for the antimicrobial properties of leather retanned by PUR and PUR-CPFXs.
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o - Table 2: GPC data, hydroxyl value as well as particle size of PUR and
CPFX 8 3 PUR-CPFXs
Sample M, M, M,,/M, [OH]m d (nm)
o (s (s (mg
8 PUR-CPFX-9 mol™) mol™?) KOH-g™?)
c [ . /—”_‘_‘\
-‘*é' PUR 1,856 2,153 116  153.61 33.6
@ = 53 PUR-CPFX-3 1,963 2,316 1.18 132.54 38.4
o @ 22 PUR-CPFX-6 2,046 2,476  1.21 131.04 411
~ [PUR 2 PUR-CPFX-9 2,098 2,497  1.19 126.59 43.9
BN S PUR-CPFX-12 2,173 2,521 1.16 128.49 44.8
N-H
-CH,4 o
-CH, _C-NH-
increased. In summary, owing to the conjugation of CPFX
4000 35'00 30'00 25'00 20'00 15'00 10'00 560 into polyurethane chains, the molecular weight increases,

Wavenumber (cm™)

Figure 1: FTIR spectra of CPFX, PUR-CPFX-9, and PUR.

increase in molecular weights, the number of terminal

further leading to the decrease in hydroxyl value and
increase in particle size.

hydroxyl groups increased simultaneously, but the increasing

extent of the former was more significant than the latter.
Therefore, the hydroxyl value decreased. Besides, with the
increasing content of DPA, the particle size accordingly
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Collagen

3.2 Application in retanning process

As a significant parameter to appraise the hydrothermal
stability of leather (29,30), the Ts of leather before and
after retanning was acquired (Figure 2a). After retanned

Coordination |
0=C

PUR H

%

i H “H—N—

‘\\
c Hydrogen bond
_0, ydrog

PUR C=0O

Coordination ~0

Collagen

Figure 2: (a) T, (b) average thickness of Wet blue and leather retanned by PUR and PUR-CPFXs. SEM images of leather (c) before and
(d) after retanning. (e) Schematic diagram of retanning by PUR.
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by PUR and PUR-CPFXs, the T is obviously increased.
The average thickness of leather was also measured
(Figure 2b). Before the test, the wet blue and retanned
leather were dried at room temperature. The thickness of
leather after retanning by polyurethane was dramatically
increased. Furthermore, the SEM images of leather before
and after retanning are presented in Figure 2c and d,
respectively. Before retanning, the leather fibers were
dense, and only small gaps could be found between col-
lagen fiber bundles. However, evident gaps were investi-
gated, and the fibers were separated from each other after
being retanned. On the one hand, quantities of —OH in
the polyurethane chains can form hydrogen bonds with
the —NH, in the side chains of collagen fibers. On the
other hand, a large quantity of -COOH in PUR can coor-
dinate with Cr** of tanning agents (8). As a result, the
higher crosslinking effectively improved the T of leather
(Figure 2e) (31). Owing to the filling of retanning agents
in the gap of collagen fibers, the average thickness of
leather increased by 65.8%. The mechanical properties
of leather before and after retanning by PUR and PUR-
CPFXs were also measured (Figure 3). The mechanical
properties of leather were visibly improved after retan-
ning. This was on account of the large number of ~-COOH
and —OH in the PUR forming coordination with Cr** and
more hydrogen crosslinking with carboxyl group, amino
group and hydroxyl group of leather collagen (11,32). The
elongation at break is visibly improved due to the out-
standing lubricating and filling of polyurethane between
collagen fibers (22).
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3.3 Antimicrobial properties of retanned
leather

The antimicrobial properties of retanned leather were
evaluated using Gram-negative bacterium E. coli and
Gram-positive bacterium S. aureus according to the pre-
vious reports (33-36) (Figure 4). Both E. coli and S. aureus
grew well in the flesh layer of leather retanned by PUR.
However, no bacterial colony was found in the medium
with the PBS solution after washing flesh layer of leather
retanned by PUR-CPFXs. After incorporated into polyur-
ethane chains, the antibacterial properties of CPFX were
reserved but not destroyed. The CPFX units in retanning
agents effectively inhibited bacterial DNA gyrase. This
result showed that the PUR-CPFX retanning agents endowed
leather with good bacteriostatic effect on Gram-positive and
Gram-negative bacteria (37,38). Nowadays, antimicrobial
resistance has been a growing problem in microorganisms.
It is of great importance to fabricate antimicrobial polymers
by incorporating micromolecular antibacterial agents into
polymer chains.

Compared with low-molecular-weight antimicrobial
agents, antimicrobial polyurethane-based retanning agents
are seldom leached out from the leather because of their
interaction with collagen fibers, which promises their long-
lasting function. In this study, E. coli and S. aureus were
selected as indicators to quantitatively investigate the
long-lasting antibacterial property of leather retanned by
PUR-CPFXs. PUR-CPFX-9 was chosen as a representative
example. As could be seen in Figure 4c, leather retanned
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Figure 3: (a) Tensile strength and (b) elongation at break of Wet blue and leather retanned by PUR and PUR-CPFXs.
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Figure 4: Antibacterial activity against (a) E. coli and (b) S. aureus of leather retanned by PUR and PUR-CPFXs. (c) Antibacterial efficiency

against E. coli and S. aureus vs rinsing cycle.

by PUR-CPFX-9 displayed excellent antimicrobial proper-
ties against both strains, demonstrating a desirable anti-
bacterial efficiency. It was found that the antibacterial
activity could be conserved even after rinsing ten times,
and the antibacterial efficiency against both strains remained
above 89%. Only a slight decline was found, which could be
due to the loss of retanning agents among collagen fibers.
PUR-CPFX can endow leather products stable antimicrobial
properties.

4 Conclusion

In this study, we designed and synthesized polyurethane-
based retanning agents (PUR-CPFXs) with antimicrobial

properties via chemically conjugating CPFX into polyur-
ethane branched chains. Then, the PUR-CPFX was uti-
lized as retanning agents in the leather manufacturing
process. After the conjugation of CPFX into polyurethane
chains, the molecular weight increases, further leading to
the decrease in hydroxyl value and increase in particle
size. As for wet blue, after being retanned, the shrinkage
temperature is obviously increased. After retanning, the
leather fibers were separated from each other, owing to
the filling of retanning agents in the gap of fibers. Hence,
the average thickness of leather increased by 65.8%. The
mechanical properties of leather were visibly improved after
retanning, on account of the large number of ~-COOH in the
PUR coordinating with Cr>* and more hydrogen cross-
linking with carboxyl group, amino group, and hydroxyl
group of leather collagen. Particularly, leather retanned
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by PUR-CPFX exhibited good antimicrobial properties against
Gram-positive or Gram-negative bacteria. The antibacterial
activity could be conserved above 89% even after rinsing
for ten times. These results suggested the potential applica-
tion of PUR-CPFX as an antimicrobial retanning agent for
leather manufacturing.
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