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Abstract: Nowadays, different kinds of polymers, in-
cluding ceramics, are electrospun into fibrous materials
with different structures by electrospinning. Generally,
the as-spun ceramic fibers are randomly oriented mem-
branes and brittle without flexibility. Here, we report the
fabrication of flexible SiO2 electrospun yarns using poly
(vinyl alcohol) (PVA) as a template through a conjugate
electrospinning process and calcination. It was found
that the calcined as-spun fibers and yarns are obviously
thinned with PVA component removal. Fourier transform
infrared spectroscopy and energy-dispersive spectro-
scopy examinations suggested that the obtained yarn
after calcination was SiO2 yarn. The SiO2 yarn showed
good flexibility without cracking after 180° bending. The
flexible ceramic yarn may have potential application in
functional textiles.

Keywords: electrospinning, PVA, SiO2, flexibility, nanofi-
brous yarn

1 Introduction

Nowadays, electrospinning is believed to be an effective
and simple method to produce continuous functional
fibrous materials. By electrospinning, different kinds of

materials are electrospun into fibers, including both
organic (1,2) and inorganic (3,4), with diameters ranging
from subnanometers to several micrometers (5). These
organic and inorganic as-spun fibrous materials have
been applied in various fields such as thermal insulated
sponges (6,7), filtration (8–10), stimuli-responsive mate-
rials (11), food packing (12), precursor fibers for carbon
nanofibers (13), reinforced composites (14,15), drug car-
riers (16–18), actuators (19), wound care (20–23), smart
textiles (24–26), and battery relative materials (27–29),
partly due to their porous and designable structures
(30–32).

Generally, electrospun fibrous materials were col-
lected as a nonwoven mesh with fibers randomly ar-
ranged. After a thorough research, it was found that the
structures of the as-spun fiber and fibrous materials may
play important roles in their properties and applications
(30–32). Consequently, more and more attention was
paid to control and design the structures of the electro-
spun fibrous materials by modifying the spinnerets and
collectors (32–35). Specific to the electrospun yarns,
“conjugate electrospinning,” with which two spinnerets
are connected to two opposite polarity high-voltage
supply, was found to be obtained through the electro-
spun fiber yarn in one step (36–39). By conjugate elec-
trospinning, a series of polymer yarns as well as inor-
ganic oxide arrays were fabricated (38–40). However,
flexible inorganic yarns were rarely reported due to the
complex process and brittleness.

Generally, the electrospun inorganic fibers are too
brittle without flexibility. To overcome this disadvantage,
researchers had found that using poly(vinyl alcohol)
(PVA) or polyvinyl pyrrolidone (PVP) as template mate-
rials blended with inorganic salt gel could help to pro-
duce flexible ceramic nanofibrous mats via electrospinn-
ing process and calcination (41–44). Nevertheless, flex-
ible inorganic nanofibrous yarn is still a challenge. This
study reports on the fabrication of flexible SiO2 nanofi-
brous yarn via a conjugate electrospinning process and
calcination. Themorphology, chemical structures, thermal
stability, and flexibility of the prepared yarns are ex-
amined.
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2 Materials and methods

2.1 Materials

PVA (Mw = 66,000), tetraethylorthosilica (TEOS; 98%),
phosphoric acid (H3PO4, 85 wt%), and N,N-dimethylfor-
mamidewere purchased fromAladdin Co., Ltd (Shanghai,
China). Deionized water was made in lab. All the chemi-
cals were used as received without further purification.

2.2 Preparation of electrospinning solutions

PVA was dissolved in deionized water at 11 wt% within a
water bath at 40°C for 4 h and then cooled naturally.
TEOS, H3PO4, and deionized water were mixed with a
weight composition of TEOS:H2O:H3PO4 = 1:1:0.02 ac-
cording to previous studies (41,42) and stirred at room
temperature for 4 h to form a uniform silica gel, as sug-
gested in Figure 1a. Then, the prepared silica gel was
dropped slowly into PVA solutions with a weight ratio
of 1:1 and stirred for another 3 h to obtain the spinning
precursor (41).

2.3 Fabrication of SiO2 yarn

To produce SiO2 yarn, conjugate electrospinning was pro-
cessed with two parallel separated opposite-polarity high-
voltage supply and vertically placed rotating trumpet col-
lector as well as a rotating drum collector, as suggested in
Figure 1b. During the conjugate electrospinning process,

the prepared spinning precursor was loaded into two
5mL syringeswith a flatmetal needle (18G, inner diameter:
0.9mm), and then the two syringes were fixed onto the
syringe pumps with a feed rate of 18mL/min. The needles
were connected to two opposite-polarity high-voltage
supply (−30 kV–0 and 0–30 kV), respectively. The high
voltages were set to be ±16 kV, respectively. The hori-
zontal distance between the high voltage supply to the
collector was set to be about 19 cm, and the vertical dis-
tance between the two collectors was about 20 cm. The
electrospinning process was taken at an ambient tem-
perature of 26°C and a humidity of 56%. The rotating
drum collector was static, however, and the average col-
lected yarn length was about 12 cm.

The collected PVA/silica yarns were placed in a
ceramic ark and then put into the tube furnace. Afterward,
the yarnswere calcined in air with a heating rate of 3°C/min
to 800°C and then kept at 800°C for 6 h to remove the or-
ganic components (41). After natural cooling, the inorganic
SiO2 yarns could be obtained.

2.4 Characterization

The morphology and the energy-dispersive spectroscopy
(EDS) of the electropsun yarn were examined by a scan-
ning electron microscope (SEM, Phenom Pro; Thermo
Fisher Scientific). The average diameter of the as-spun
fiber was measured through a soft: nano-measurement
of 1.2 with ten yarns. The Fourier transform infrared spec-
troscopy (FTIR) spectra were characterized by a Thermo
Scientific Nicolet iS10 spectrometer. The mechanical pro-
perty of the fabricated yarns (5 cm length) was examined
by a universal testing machine (Instron 3352) with a

Figure 1: Schematic image of the preparation of spinning precursor (a), the fabrication of electrospun yarn by conjugate electrospinning
process (b) and calcination of the as-spun yarn (c).
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speed of 0.02 mm/min. The weight–temperature relation-
ships of the yarns were tested through a thermal gravi-
metric analyzer (TGA/DSC3+, Mettler Toledo).

3 Results

Themorphology of the fabricated yarn is shown in Figure 2.
As can be seen in Figure 2a, the electrospun PVA/silica
yarn with an average diameter of 199.77 ± 13.86 mm and a
linear density of 14.8 tex had a relative uniform twisted
structure with a little hairiness. The enlarged image in
Figure 2c suggested that the electrospun fibers generally
oriented well and had average diameters of about 380 ±
76 nm. After calcination, the yarn showed a more tight
and lightly twisted structure without hairiness, and the
yarn diameter was reduced to 128.96 ± 2.88mm with the
fiber diameters of about 315 ± 110 nm, as suggested in
Figure 2b and d. Based on ten samples, after calcination,
the reduction rate of the yarn diameters was found to be
about 35.1%, while the fiber diameter reduced to about
17.3%. The reduction rate of the fiber diameter was nearly
half of that of the yarns. It could be imagined that both the

neighborhood fibers reduced due to the organic compo-
nent removal after calcination, and then the extra space
was filled by the calcined fibers.

We also examined the elements in the as-spun yarns.
As shown in Figure 2e, there are mainly three elements in
the PVA/silica yarn: carbon, oxygen, and silicon, While,
after calcination, there are mainly oxygen and silicon
elements (Figure 2f), which indicates that the organic
components were removed during the calcination pro-
cess and then only pure SiO2 yarn remained.

Figure 3a shows the FTIR spectra of the prepared
yarns before and after calcination. As can be seen from
the spectra, the fabricated PVA/silica yarn showed typical
PVA absorption peaks at 3,430 cm−1 (–OH), 2,930 cm−1

(–CH2), and 1,720 cm−1 (C]O). There were also Si–O–Si
bond absorption peaks at 1,080 cm−1, 804 cm−1 as well
as the Si–OH bond peaks at 963 cm−1, suggesting the pre-
sence of silica in the as-spun yarn. After calcination, the
PVA absorption peaks disappeared; only Si–O–Si absorp-
tion peaks could be found at 1,130 and 804 cm−1, indi-
cating the calcined yarn was SiO2 yarn. Figure 3b presents
the weight–temperature curve of the prepared yarns be-
fore and after calcination. For the as-spun PVA/silica yarn,
as the temperature increased the yarn weight was reduced

Figure 2: SEM images of the prepared yarns (a) PVA/silica, the PVA/silica fibers (c), the calcined yarn (b), the fibers in calcined yarn (d), as
well as the EDS of the as-spun fibers before and after calcination (e and f), respectively.
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accordingly due to the PVA melt volatilization. When the
temperature exceeded 500°C, the weight reduction was
weakened, since the organic components almost comple-
tely evaporated. For the calcined yarn, the weight did not
seem to change as the temperature increased.

As presented in Figure 4a, the tensile property of the
prepared yarns before and after calcination was tested. It
was found that the PVA/silica yarn showed a maximum
stress of 3.8 MPa and maximum elongation to 0.32%.
Once the PVA/silica yarn was broken, a few continuous
fibers still remained, as suggested in the left inset image
in Figure 4a. However, after calcination, the tensile prop-
erty was obviously reduced to 1.5 MPa stress and about

0.03% strain. Once the calcined yarn was broken, one can
find all the fibers were broken. The decreased strength of
the calcined yarn may result from the brittle individual
SiO2 fiber. Since the organic component PVA was removed
after calcination, the remaining SiO2 formed a fiber with
extremely small-sized crystal grains (41). In some sense,
the SiO2 fiber was not a continuous one. Consequently,
its strength is weakened. Thankfully, the calcined yarn
showed a certain flexibility, as suggested in Figure 4b–d.
The calcined SiO2 yarn could be bent without cracking.
After bending, it could recover to the original form. From
the SEM images before and after ten-circle bending, only a
few fibers were broken, while the whole still retained the

Figure 3: FTIR spectra (a) and the weight–temperature curve (b) of the PVA/silica yarns before and after calcination.

Figure 4: The mechanical property of the prepared yarns (a) with inset images of the broken yarns before and after calcination and the
flexibility of the calcined yarn (b–d) with inset images of bending before and after ten circles.
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yarn structure. The flexibility was believed to result from
the one-dimensional (1D) silica nanofiber with extremely
small-sized crystal grains (41).

4 Conclusions

In summary, we have successfully fabricated PVA/silica
nanofiber yarn through a conjugate electrospinning pro-
cess and then calcined the PVA/silica yarn in air at 800°C
for 6 h to obtain the SiO2 nanofiber yarn. The diameter of
the calcined SiO2 fiber and yarn was reduced up to 17.3
and 35.1%, respectively. The EDS, FTIR as well as the
weight–temperature examination suggested that the cal-
cined yarn was mainly SiO2 yarn. Although the calcined
SiO2 yarn showed a significant weakness in the tensile
property, it had good flexibility due to the extremely
small size of the crystal grains in the nanofiber. Once
the mechanical property was improved, the flexible inor-
ganic yarns could be applied in the functional textiles.
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