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Abstract: Wireless sensor networks (WSNs) encountered
substantial obstacles in contexts characterized by frequent
sensor node failures. Overcoming these obstacles requires
a remedy that not only identifies node failures but also
improves network self-organization. This work introduces
a method that merges the Cuckoo Search Optimization
algorithm (CSO) with the suggested Guided and Effective
Search (GES) algorithm to improve the network’s ability to
self-organize and maintain efficiency during node failures.
The method combines CSO’s search capability for finding
node configurations with GES’ effectiveness in local searches
within the network structure. Together, they establish a
system for fault detection network optimization, and improve
self-organization, ensuring that the network could adapt and
withstand disruptions. Comprehensive simulation results
demonstrated the method’s superiority compared to the
existing methods. The system demonstrates enhancements
in fault detection accuracy, network self-organization, packet
delivery rate, and overall energy efficiency. In addition, the
simulation results highlight the improved performance of
the combined approach compared to the Particle Swarm
Optimization algorithm. Integrating CSO and GES marked
advancement in creating self-organizing WSNs offers relia-
bility and longevity for networks used in critical applications.

Keywords: wireless sensor networks, self-organization, node
failures, time to live, sink node, average task success rate

1 Introduction

Wireless sensor networks (WSNs) are critical for monitoring
various environmental factors and are widely used in appli-
cations such as agriculture, weather tracking, and industrial
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operations [1]. These networks operate autonomously, orga-
nizing themselves and using strategically placed sensor nodes
to gather and transmit data [2]. WSNs control and monitor
aspects such as sound, temperature changes, pollution,
waves, and wind. They are useful in real-time, like in agri-
culture monitoring, weather tracking, and surveillance of
solar plants and factories [3,4].

A wireless sensor is defined as a device with computa-
tional and power provisions for carrying out the process of
interfacing between users and the physical world through a
computer [5]. The core components of a sensor node include a
radio transceiver with an antenna for communication pur-
poses, a microcontroller for processing data received from
sensors, an interface circuit for integrating sensor data
streams, and typically a battery as the power source [6,7].
This setup allows the wireless sensor to capture data efficiently
and bridge the gap between the physical and digital realms [8].

WSNs have substantial problems, especially in con-
texts characterized by frequent sensor node failures, not-
withstanding their usefulness [9]. These failures may arise
due to several conditions, such as battery depletion, hard-
ware faults, and environmental disturbances [10]. Malfunc-
tioning sensor nodes result in the direct transmission of
data to the sink, resulting in energy wastage. Node errors
in WSNs may be categorized into two main groups: soft-
ware faults, which occur when the system software of a
node is incorrectly designed, and hardware faults, which
occur when various hardware components of a node are
broken [11]. If the WSNs can identify and manage defective
nodes and data accurately, then WSNs can offer depend-
able performance and high-quality data to the end users. A
high degree of accuracy is required in the fields like envir-
onment, agriculture, and health [12].

The first issue in WSNs is the extendibility of the
system functionality and efficiency, given high node mor-
tality rates. Certain presented techniques do not possess
aspects such as fault tolerance, adaptability, and the ability
to cope with all dynamism in the network settings. Most of
the architectures involve control dependencies, which are
considerably restrictive in boosting scalability and com-
promising the networks’ stability. Besides, many of these
techniques may require relatively large computational
activity and exchange of messages between nodes, which
can be prohibitive in WSNs.
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The primary challenge addressed in this study is the
efficient distribution of tasks and optimization of paths
within WSNs, especially when faced with node failures.
Conventional methods often struggle to maintain perfor-
mance and resilience under such conditions. This research
aims to overcome these limitations by introducing a self-orga-
nizing framework that seamlessly integrates Guided and
Effective Search (GES) with Cuckoo Search Optimization
(CSO). This innovative approach ensures robust task distribu-
tion and path optimization, maintaining high task success
rates and network resilience even when a significant number
of nodes are disabled, thus simulating real-world scenarios of
hardware failures and environmental disturbances.

This study underscores the importance of self-organi-
zation in creating network structures that can enhance
efficiency independently and effectively tackle challenges.

The key contributions of this research include:
Introducing a combined framework that integrates CSO
and GES for enhanced network performance.
Evaluating the suggested system frameworks in
improving fault detection accuracy, network self-organi-
zation, and task delivery rates.

Demonstrating the framework’s ability to maintain net-
work efficiency and robustness in the presence of node
failures through comprehensive simulations.

The structure of this article is organized as follows:
Section 2 describes related works. Section 3 focuses on
self-organization mechanisms within WSNs. Section 4 pre-
sents the suggested system framework, detailing the com-
ponents and processes involved. Section 5 explains the
proposed framework and includes pseudo-code to illus-
trate its implementation. Section 6 describes the experi-
mental setup and performance metrics. Section 7 presents
the simulation results and the discussion. Finally, Section 8
concludes the article.

2 Related works

In WSNs, several limitations have served as the basis for
the creation of improved approaches. Several current
approaches exhibit deficiencies in fault tolerance, pre-
senting a substantial obstacle in guaranteeing network
operation in the face of node failures in real-world appli-
cations. These flaws result in bottlenecks with centralized
control centers, decreasing scalability and reliability.
However, the existing works fail to address the require-
ments of networks’ different states and abnormal node
issues in complex and dynamic conditions and, therefore,
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have some limitations in their efficiency. Another limitation
that applies to many suggested solutions is that high compu-
tation requirements, together with substantial communica-
tion costs, are not easily achievable in resource-scarce
WSNs. All these constraints advocate for the need to develop
highly scalable, robust, and flexible solutions in WSNs.

Gutiérrez and Ponce presented artificial hydrocarbon
networks in 2019 and applied them, and learned about the
failures of WSN sensor nodes in damp indoor studio envir-
onments [13]. This approach is to usesupervised learning in
which it learns the necessary output from the real sensor
data and the specifications of the web service before it asks
questions concerning temperature and faults in the sensor.
The study reported 94% test data recovery. The next
improvement is to fully comprehend the enhancements
in the dynamic operation algorithm and test it on larger
and more advanced WSNs.

Bista and Choudhary [14] proposed a novel method for
fault detection, utilizing Spearman’s rank correlation coeffi-
cient and K nearest-neighbor algorithm for classification.
Consequently, the ANCDFD model outcompetes the metric
correlation-based distributed fault detection (MCDFD) with
respect to the accuracy of detection and false-positive rates,
proving its essentiality in the analysis of the node status field.

The contribution presented by Palanikumar and
Ramasamy in 2019 [15] was a method of matrix calculus, which
they invented for the identification of nodes in WSNs. The
strategy that they employed included finding the rows and
columns in the faulty nodes in RTPs, which allows for detecting
the multiple faulty node problems and results in delay com-
parisons. This optimized analyzing the network health com-
pared with the time measurements of round trip delay.

Zidi and colleagues [16] demonstrated the application
of support vector machines (SVMs) in recognition of flaws
in WSNs. This seems to be a viable method as SVM was able
to categorize the sensor activities with minimal use of
resources. The technique stands up through the applica-
tion of the statistical learning theory, which states a deci-
sion-making process, the main goal of which is to show the
efficiency of the diagnosis in those areas where accuracy
and speed are required. This approach stands out by
meeting cluster leaders’ requirements not only with the
ease of filtration but also by ensuring exacting detection
rates are concurrently assured.

Jia et al [17] claimed that the LEFD mechanism offers
solutions to mitigate the problems of finite energy sources
while improving the faults of the WSNs. From this new
approach, time and spatial positioning data are being used
to sensibly determine which fault to detect without the need
to correlate neighboring button pushes, and the whole net-
work’s energy is managed. Their method, as opposed to the
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other methods, tackles problems like hardware faults, energy
distribution among nodes, and security breaches. The method
thus provides a solution that is engaging and enhances trans-
mission as well as lowers energy consumption in WSNs.

Satyanarayana et al [18] devised an algorithm that
aims at detecting quiescence in sensor networks (WSNs)
while minimizing cost and maximizing network coverage.
They resolved this in a unique way: they used the relay
nodes as the points for the positioned sensor nodes, which
was different from others; the strategy was a two-stage
process, the intra- and inter-segmentations. The objective
of the approach was the extension of network throughput
by making use of nodes and physical proximity facilitating
better analytics and network administration than the con-
ventional considered ways.

Wu and colleagues [19] proposed a smart method,
called self-organizing map (SOM) trend correlation detec-
tion (TCD) that can be utilized for detecting faults in WSNs.
The technique employed both the SOM and the TCD to
cluster nodes that have the same data correlation, taking
advantage of TCD to find faults quickly in the recognized
groups of individuals. This scheme was capable of
achieving accuracy greater than 95% with respect to out-
lier and random defects in WSN. Unlike existing methods,
SOM TCD provides a fault detection solution that becomes
consistent even when faced with changed rates.

Umamaheswari and Antony [20] put forward a method
to detect and rectify failures in WSNs by incorporating
binary and non-binary feedback mechanisms. This
approach surpassed monitoring by reducing communica-
tion overhead by 80% and achieved a 95% accuracy rate. It
utilized the AODV routing protocol, bolstered with binary
and non-binary strategies for fault identification and cor-
rection, leading to improved delivery rates, reduced
routing overhead, and minimal end-to-end delays. The
integration of an AES DES encryption algorithm further
enhanced network security against access attempts,
ensuring the secure transmission of data. This strategy
offered a solution for enhancing the resilience of WSNs
in the face of node failures through a blend of fault detec-
tion methods and security protocols.

3 Wireless networks and self-
organization technique
Self-organization plays a role in networks, particularly in

sensor networks, as it is essential for achieving high levels
of reliability and efficiency in dynamic environments [21].
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A self-organization system can adapt dynamically when-
ever the surrounding conditions demand it without any
interference. The origins of self-organization frameworks
can be traced back to physics social groups and the study of
insects [22]. The concept highlights the importance of fault
tolerance and network robustness by leveraging self-orga-
nizing features. These advancements enable decision-
making [23], emphasizing the ability of WSNs to adapt
and maintain connectivity even in the face of node failures.
By integrating self-organization, WSNs exhibit a capacity to
adjust dynamically to changes and disruptions ensuring
service and data integrity crucial for various applications
relying on these networks [24].

4 Suggested system framework

The system framework outlines a structured approach to
construct and maintain a robust and efficient WSN. This
framework leverages the principles of directed graphs for
network construction and incorporates self-organization
mechanisms to dynamically adapt to node failures and
optimize network performance. The following sections
describe the key components of the framework in detail.

4.1 Created sensor network

The construction of a WSN starts with a central node (the
sink node), which serves as the core of the network. Then,
more nodes are gradually added one by one until the limited
number of nodes or the network size (M) is reached.
However, the maximum network size (M) is specified in
this work only for simulation purposes. The parameter M
can be changed to any value. Also, the created network spe-
cifies other parameters, such as the number of connections
for each node, time to live (TTL) for each task, and triggering
conditions for self-organization, as explained below.

Hence, the directed graphs approach, as shown in
Figure 1, is used until there are a total of M nodes in the
network.

4.2 Self-organization in the proposed system
framework

In this work, self-organization is the target aspect, as it
enables the dynamically created network to adapt to node
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Figure 1: Graphical representation of WSN topology.

failures and optimize its performance. In this work, triggering
conditions are set to heuristically decide which algorithm can
be adapted to find the path that can be used for task distribu-
tion, as shown in (algorithm0). The heuristical behavior is to
monitor the dynamic environment (WSN). The process
involves monitoring node failures, triggering optimization
algorithms, and selecting the most efficient paths for task
distribution. Each node i maintains a failure counter C; to
monitor the status of its connected neighbors.

In the proposed framework, the self-organization pro-
cess includes the following (algorithm 0):

Algorithm 0: Embedded self-organization process

Monitor node failures:

Calculate the failure count for each nodei .

C = Zj eneighborhood(i)si

where §; = 1if node j failed, and §; = 0 otherwise.
Triggering self-organization:

If the failure count C; for a node i is at least half of its

neighborhood:

Number of neighborhoods(i)
G = Zg

Else continue using GES.

5 Simulation model scenario

In this section, a detailed description is shown of the com-
bined algorithms CSO with GES. After creating the network,
the node failure problem is simulated in the created frame-
work. Triggering self-organization leads to the use of the
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combined approach, which aims to improve the network’s
throughput, fault tolerance, and task transmission effi-
ciency. A detailed explanation of the proposed scenario,
along with the corresponding pseudo-code, is shown:

Pseudo-code of proposed scenario

1. Start.
2. Construction of the network.
3. Set initial parameters by defining total_tasks, suc-
cess_count, TTL values, number of neighborhoods, and
failure ratio.
4. Task distribution using GES (go to algorithm 1):
For each task:
+ Select source and destination nodes.
o If the destination is active and a path exists:
* Calculate the path length.
* Decrement TTL for each hop.
« If TTL = 0, increment success_count.
5. Monitor node failures and trigger self-organization:
Monitor node failures:
* Calculate the failure count for each node i.
Trigger self-organization:
» If the failure counts C; for a node, i is at least half of its
neighborhood.
+ Evaluate paths using GES: Check paths to avoid failed
nodes.
Optimize paths using CSO (go to algorithm 2): optimize
paths to find the most efficient route free of failed nodes.
* Else, continue using GES.
6. Evaluate network performance.
7. End

5.1 GES

The GES algorithm includes features to enhance task dis-
tribution efficiency under dynamic network conditions
(see Algorithm 1).

Algorithm 1: Task distribution using GES

Start

Set ‘total_tasks’ to 100. Initialize ‘success_count’ to 0.

For each task in ‘total_tasks’

Select source and destination:

Set the source to “Sink”.
Choose a destination node randomly from
nodes in graph G.
Check if the status of the selected destination
node is active or not.
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Algorithm 1: Task distribution using GES

Check path existence, length, and TTL:

If there is a path from source to destination in G:
Calculate the shortest path length between
the source and destination.

For each hop along the path to the Destination
decrement TTL by 1 NEW_TTL = TTL -1)
Evaluate task success within TTL limits:
Check IF (NEW_TTL = 0), then increment suc-
cess_count by 1.
End

5.2 Cuckoo swarm optimization (CSO)

The CSO algorithm was used to find optimal solutions to com-
plex problems by mimicking the brood parasitism behavior of
cuckoos. In WSNs, CSO optimizes network paths and enhances
task transmission efficiency by iteratively evaluating and
improving path fitness using the following fitness function:

1

Fitness (P;) = I +KE
i R

M
where L; is the length of path i (number of hops), F; is the number
of failed nodes along path i, and k is a penalty factor that increases
the impact of failed nodes on the fitness score, especially in the
presence of node failures. This algorithm enhances the self-orga-
nization and fault tolerance of WSNs, ensuring robust and effi-
cient operation in dynamic environments.

Algorithm 2: Optimizing network paths with CSO

Start
Initialize paths with ‘initial_paths’.
Identify the path with the best fitness, marking this as
‘best_path’ and recording its fitness as ‘best_fitness’.
For each path in paths:
If the current path is not valid:
Generate a new path new_path from the current path
If new_path is valid:
Calculate the fitness of new_path.
If new_path’s fitness is better than the current
path’s fitness:
Update the current path in ‘paths’ with
‘new_path’.
Update the fitness score for this path
If new_path’s fitness is also better than
‘best_fitness”:
Update best_path with new_path.
Update best_fitness with new_path’s fitness.
end

Node failure in self-organized sensor networks = 5

6 Experiments

The experiments were crafted to evaluate the efficacy of
the self-organization technique introduced in this work.
This framework technique combines GES with CSO after
heuristically deciding which path to follow in order to
enhance task distribution.

6.1 Experimental setup

The WSN was represented using a directed graph termed
G, consisting of (M) nodes, and the communication links
between them were set as a setting parameter (N). To
initiate tasks, a dedicated node called the “Sink” served
as the hub for data collection, which is the first node in
the network, and the network gradually expanded its size
to 100 nodes and then to 200 nodes. Both of these two WSN
sizes were studied and analyzed, adhering to a connec-
tivity rule that limited each node to a maximum of N con-
nections. This network setup was designed to simulate
real-world WSN structures while maintaining a level of
complexity.

6.2 Task dispatching process

Tasks were dispatched from the “Sink” hub node to other
nodes within the network through a series of simulations
that managed the transmission of tasks. The effectiveness
of these transmissions depended on factors such as the
paths taken, the operational status of the destination
nodes, and compliance with TTL restrictions.

6.3 Modeling node failure problem

Simulating a node failure in the proposed WSN is a real-
world challenge like hardware failures or environmental
disturbances. In this scenario, 25% of the network nodes
were intentionally disabled at random to show the pro-
blem of having unconnected paths (node falling). This
approach triggered the self-organization technique to
decide which algorithm is to be used to solve task distribu-
tion and path optimization. Evaluation of the network’s
resilience and effectiveness under such a problem is
explained below.



6 =—— Nabaa G. Adiel et al.

Table 1: Simulation parameters

Parameter Value
No. of nodes 100, 200
TTL 2,5 8
Task rate 100

No. of connections 4,5
Failure rate 25%, 40%

6.4 Performance metrics

The performance of the proposed framework was assessed
using key metrics that reflect the network’s efficiency and
resilience, particularly in the presence of node failures.
The primary metrics used to measure performance were
the average task success rate (ATSR) and average delay.
The ATSR measures the ratio of successfully delivered
tasks to the total number of tasks dispatched from the
Sink node, as shown in Equation (2).

_ Success_count

= 2
ATSR Total_tasks @

The average delay is defined as the average number of
hops taken for a task to reach its destination from the
source. This metric is significant, as it reflects the efficiency
of the routing protocol in terms of the time taken to deliver
tasks. It is given by Equation (3):

>, Hops;
N )

Average delay = &)

where Hops; represents the number of hops for the i-th
successfully delivered task, and N is the total number of
successfully delivered tasks.

TTL=2
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7 Simulation results and discussion

The simulation, as outlined in Table 1, concentrated on eval-
uating the effectiveness of the combined algorithm known as
GES alongside CSO under various network setups. It delved
into the impact of changing the number of neighbors per
node from four to five on the network’s performance in
task completion and its resilience to node failures.

Figure 2 illustrates the average success rates for GES,
CSO, and combined strategies across three TTL values (2, 5,
and 8) with a 25% node failure rate and a maximum
number of 4 neighbors per node. Altogether, the combined
strategy excelled in the performance of both GES and CSO
concerning robustness and distribution of tasks. As the TTL
value increased, the success rates improved for all strate-
gies, with the combined strategy maintaining the highest
performance. This indicates the combined strategy's effec-
tiveness in leveraging both GES and CSO strengths,
ensuring optimal path selection and fault tolerance.

To expand the simulation, the number of neighbor-
hoods was increased to 5, as shown in Figure 3.

Increasing the number of neighbors from 4 to 5 led to
raising the average success rates for all values of TTL and
all strategies. Thus, all the GES, CSO, and combined strate-
gies experienced an increased number of successful tasks
due to the improved network connectivity.

For TTL = 2, the success rates increased substantially
with the additional neighbors. The combined strategy, in
particular, showed remarkable improvement, indicating
its robustness in handling low TTL values even under
node failures.

For TTL = 5, the trend of improvement continued. The
combined approach nearly reached a 100% success rate

TTL=5 TTL=8

100 1 mmm GES No Failure
GES With Failure
(SO No Failure
€SO With Failure
B combined No Failure
combined With Failure

80 75.80

60

54.38 .69

51.85
47.82

0.67
40

Average Success Rate
Average Success Rate

20

98.08
93.08

85.87 86.45

81.78
8.48
4.37

8.90

2.41
9.50

Average Success Rate

GES Cso

Strategy

combined GES

Cso
Strategy

combined GES €S0 combined

Strategy

Figure 2: Simulation results with TTL = 2, 5, and 8, neighbors = 4, and 25% failure.
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100

80

Average Success Rate

TTL=2 TTL=5 TTL=8
W GES No Failure 99.97 100.00
GES With Failure 94.99 95.00
(SO No Failure
€SO With Failure 87.94 88.00
= combined No Failure 2.41
combined With Failure 79.99 8.28
75.16 2.35 2.42
69.92 = :
o 8.61 o
8 3.58 8
9.47
60 6.27 8 3
2.14 Y Y
3 -
n 0}
& &
o o
40 ] ]
2 2
20
0
GES Cso combined GES Cso combined GES Cso combined
Strategy Strategy Strategy

Figure 3: Simulation results with TTL = 2, 5, and 8, neighbors = 5, and 25% failure.

with no failures, demonstrating its superior ability to
maintain network performance with increased connec-
tivity. The GES and CSO strategies also showed significant
improvements, with better handling of node failures.

For TTL = 8, the results further confirmed the benefits
of higher connectivity. All strategies performed better with
5 neighbors compared to 4, with the combined strategy
consistently achieving the highest success rates. The
improvement in the success rate under failure conditions
for the combined approach was particularly notable, indi-
cating its enhanced fault tolerance.

The combined strategy leveraged both GES for task
distribution and CSO for path optimization, resulting in

100.00 99.97

100

80

72.53
68.87

Algorithm
= combined No Failure
combined With Failure
= PSO No Failure
PSO With Failure

40

Average Success Rate

20

combined
Strategy

Figure 4: Comparison of average success rates for hybrid method
and PSO.

shorter and more reliable paths even in the presence of
node failures.

To further validate the effectiveness of the proposed
combined strategy, more simulations were run and com-
pared to Particle Swarm Optimization (PSO).

The results presented in Figure 4 show the signifi-
cantly improved performance of the hybrid approach
under the specific conditions with a TTL value of 5, 100
nodes, a maximum of 5 neighborhoods, and a 25% node
failure rate.

Under these conditions, the combined strategy demon-
strates higher performance, consistently outperforming
PSO. This notable improvement is attributed to the com-
bined strategy's superior capability in optimizing transmis-
sion paths. The combined strategy creates more reliable
and efficient paths than PSO by using the global search
power of CSO and the precise local search power of GES.
This leads to a lot more tasks being completed successfully
and better network performance.

To enhance the accuracy of the specified combined
strategy, the simulation was expanded to include 200
nodes, and the results were compared to those of 100 nodes
with a failure rate of 40%. The results, as depicted in
Figure 5, show the performance of the combined strategy
under this condition.

Based on the simulation results for network sizes of
100 and 200 nodes, a detailed comparison and discussion
can be derived as follows:

Path improvement: The combined algorithm has
demonstrated a notable ability to enhance pathfinding
and maintain high task success rates, even under increased
node failures and larger network sizes.
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Success Rate by Network Size (TTL=5)
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Figure 5: Comparative success rate analysis of combined algorithm and PSO with varying network sizes.

Failure resilience: Despite a significant node failure
rate of 40%, the combined algorithm effectively main-
tained an average success rate close to 80-100% across
both 100 and 200 node network scenarios. This indicates
a robust path optimization mechanism that can dynami-
cally adapt to network disruptions and continue to find
viable paths for task delivery.

Scalability: In networks scaling from 100 to 200 nodes,
the combined algorithm showed minimal degradation in
success rates. It maintained near-perfect task delivery in
no-failure scenarios and high success rates in failure sce-
narios, demonstrating its capability to scale effectively
with network size.

The algorithm consistently surpassed the PSO algo-
rithm in terms of task delivery in both scenarios with

100 and 200 nodes. This superior performance indicates
that the combined algorithm is adept at handling the com-
plexity and increased path lengths inherent in larger net-
works, ensuring that the maximum number of tasks are
delivered successfully.

The average delay was also measured, and the results
are shown in Figure 6.

As shown in Figure 6, in the case of the 100 nodes in the
network, the combined algorithm with failures kept lower
average delays than the PSO algorithm. This trend was
further pursued with the network size increased to 200 nodes,
and the net of the whole combined algorithm revealed the
ability to handle the larger networks and failure rates.

The delay analysis also embodies this feature where
the combined algorithm was proven to exhibit lesser delay
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Success Rate by Network Size and Algorithm
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Figure 6: Comparative success rate and delay analysis of combined algorithm and PSO with varying network sizes.

across different networks’ sizes than the other comparable
algorithms, displaying its efficiency in task distribution and
delay reduction. These results declare the combined algo-
rithm’s superior performance in enhancing network resi-
lience and efficiency.

8 Conclusion

Due to the highly challenging environment, there is the
necessity of implementing two fundamental measures:
resilience and efficiency for WSNs. This research presents
a new integrated architecture that combines GES with CSO
to address the limitations of conventional task transmis-
sion and fault tolerance. The conclusions fully correspond
to the potentialities of a comprehensively and self-orga-
nized high-level system capable of surmounting the pro-
blems inherent to real-life application.

In the middle of the tumult caused by node failures,
the GES-CSO algorithm stood out as a very dependable
solution. It skillfully managed the intricacies of networks
with 100 and 200 nodes, continuously achieving excellent

success rates despite a 40% node failure rate. This persis-
tence is seen in its consistently high success rate, sustaining
almost flawless performance. The GES-CSO combined
approach surpassed the PSO method and established a
higher benchmark for network efficiency.

Delving deeper, the analysis of average delay unveiled
the algorithm’s prowess in minimizing latency. The com-
bined strategy ensured swift task delivery, keeping delays
to a minimum even as the network scaled in size and
complexity. Such efficiency in reducing delays underscores
the framework’s adeptness at optimizing network paths
and maintaining seamless operation.

This article does not just present an algorithm but
offers a vision of future-proof WSNs that are resilient, scal-
able, and efficient.
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