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Abstract: There is a lack of information about the geometric
description of radial–axial runner blades. The article aims
to fill this gap using a method that exploits modern differ-
ential geometry for the description and shape modification
of the runner blade. Three-dimensional Euclidean space
with a curvilinear coordinate system serves as a basic mani-
fold object, and the technique of coordinate slice gives the
blade camber surface a submanifold. The camber surface
definition given in the article is suitable for interactive
design and optimization of the shape in a computer pro-
gram optimization loop. Geometric entities and maps can
be viewed as objects and methods of a computer object-
oriented in-house program. The Francis runner blade serves
as an example. Complete blade design contains the camber
surface wrapped up with an airfoil surface, but this is not
dealt with here. Basic knowledge of differential geometry
and spline theory is expected.

Keywords: runner blade, manifold, coordinate slice, curvi-
linear coordinate system, in-house program

Nomenclature

(.,.) Open interval
[.,.] Closed interval
〈.,.〉 Scalar product
BEP Best efficiency point
Bold letter Vector, vector function, or matrix
Ck Continuous up to the k-th derivative
D Runner diameter (m)
gu Tangent vector to isoparametric u-

curve
H Net head (m)

J|g| Jacobi determinant of function g
n Runner speed (min−1)

=n
nD

H
11 0.5 Double reduced runner speed (min−1)

=n
nD

H
sq

0.5

0.75 Specific volumetric runner speed
(min−1 m−1/4)

Q Discharge (m3 s−1)
=Q

Q

D H11 2 0.5 Double reduced discharge (m3 s−1)
R3 Three-dimensional real vector space
|v| Length of vector v
w(x, y, z), w(u, v) Two different functions distinguished

by number of variables
x,u Partial derivative of function x with

respect to variable u

1 Introduction and background

Hydraulic design of a runner can be done in two ways.
Either based on geometrical parameters or based on hydro-
dynamic parameters. The first uses interactive (trial and
error) or optimization methods, while the second is defined
as inverse design. This article is a contribution to the
first one.

Many articles have been published on the topic, but
none of them offer an explicit geometric description of the
blade geometry. Nevertheless, at least brief information
can be found. Over time, as computational fluid dynamics
(CFD) became more and more powerful and available, pro-
cedures gradually advanced from one dimension to three
dimensions. In modern design, CFD simulation techniques
play a crucial part in both the interactive (trial and error)
design process of turbomachinery and its automatic opti-
mization process.

The one-dimensional (1D) procedure is accompanied
by a simpler set of parameters and applications for small
turbines. Chen et al. [1] investigated the minimum blade
passage area at the runner exit (called the port area there),
while the meridional shape of the runner was inferred
from a combination of guide vane loss analysis and experi-
ence. Also, blade inlet and outlet angles were determined
by experience. The port area adjustment, together with the
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blade outlet angle, was applied to correct the outflow angle
to the draft tube, and in this way, efficiency was improved.
All these are for the design operation point. The design
quality is evaluated from averaged pressure differences.

The three-dimensional (3D) method is widely used,
giving more accurate results. A simple application was
presented by Biswakarma and Shrestha [2]. Design is based
on basic information such as the Euler turbine equation
and computation of blade leading and trailing angles from
velocity triangles. Mathematical formulations were written
in MATLAB. A 3D model of the blade is then obtained via the
requirement of equal energy distribution for all streamlines
and subjected to CFD simulation. Another improvement
of the blade shape is then necessary since the runner’s
hydraulic efficiency is 59%. Ayli et al. [3] investigated the
effect of five parameters (runner outlet diameter, inlet and
outlet β-angles, lean angle, and runner speed) on four
medium-specific speed runners. The effect of each separate
parameter variation on performance and efficiency and
finally correlation between rotational speed and flow rate
are presented. This research resulted in a universal charac-
teristic for the varied parameters. Ayancik et al. [4] pro-
ceeded from starting parameters (flow rate, head, and
turbine-specific speed) to an initial shape that was inserted
into an optimization loop. Leading and trailing angles were
determined on five meridional sections. The optimization
also contains a mechanical analysis and output to manufac-
turing. Ayancik et al. [5] improved the previous method. The
optimization loop is complemented by preliminary design
and enhanced by a sub-loop equipped with roughmesh. The
result of the study based on CFD simulation is the effect of
theoretical runner parameters on the design, cavitation, and
efficiency. It is interesting to notice that since the blade pitch
angle was not parameterized, the runner blade for low-spe-
cific speed has rather a strange shape (Figure 3). A more
sophisticated procedure for the design of a large high-speed
Francis turbine combining global and local optimization is
given in Flores et al. [6]. The blade design is included in the
global loop. The 3D optimization was model tested to con-
firm the expected results. The runner blade is described by
one cubic NURBS patch generated by an in-house program.
To manage a higher-order patch automatically would prob-
ably be difficult. This geometric description is rather simple
and lacks the possibility of fine modification.

Other researchers concentrated on the improvement
of existing runners. An even more specialized application is
presented by Takahashi et al. [7], where the existing runner
was redesigned to get an optimized unshrouded version.
The main optimization parameter was the shroud tip clear-
ance and trailing edge shape. Such runners, though having
lower efficiency, are cheaper and suitable mainly for small

hydraulic power plants. A conventional approach to runner
design is presented in Koudelka [8] for high-specific speed
runners used especially in fountain turbines. This proves
that conventional methods can give good results. Only by
runner replacement the turbine reached a hydraulic effi-
ciency of 91%. Reverse engineering for the original runner
was used for the comparison of efficiency and power output
between turbines equipped with old and new runners. Cel-
ebioglu and Kaplan [9] focused in more detail on reverse
engineering and its methodology. The methodology was first
applied to the runner design of a new turbine. ANSYS Bla-
degen® and SolidWorks® were utilized to obtain analyzable
blade geometry from a scanned cloud of points. The geo-
metry was then subjected to CFD analysis to verify that the
geometry and performance results are the same as the actual
cases. The next step was the redesign of the second runner
for improved performance since the power plant utilized
only 70% of its installed capacity. The redesign, performed
by trial-and-error method, resulted in a smaller blade
trailing angle and increased blade thickness distribution.
In this way, the full capacity of water was exploited. Agro-
mayor et al. [10] made the most recent attempt at the
generalization of blade geometry suitable for reverse engi-
neering and possible subsequent CFD analysis. Surfaces
are described by NURBS and several tens of parameters.
The parameters are unfortunately vaguely defined.

We should mention the inverse design method, which
is being developed contemporaneously. It consists namely
of two parts: calculation of the flow field and then the
geometry of the blade. The process is iterative. Blade geo-
metry is determined according to the previously computed
flow field. Then usually, the fully 3D turbulence flow cal-
culation is used as an indispensable tool for evaluation,
optimization of the design outcome, and studying the
design know-how.

A review of the 3D inverse design method and its appli-
cations can be found in Yang et al. [11], while the Kaplan
runner blade design is presented by Krzemianowski [12].
In this case, streamlines in the volume where the blade
operates described by cylindrical coordinates are com-
puted from the velocity vector field. The shape of the blade
is derived from the path line of a fluid element. Application
of the method and boundary conditions are also presented.
The design of the turbine including guide vanes was then
subjected to CFD analysis to find the best efficiency point of
88.6%. A similar approach to the design of the Francis
runner blade is presented by Krzemianowski and Steller
[13] based on the same coordinate system but a different
meridional shape. Moreover, the vortex lattice method was
exploited to compute streamlines in meridional cross-sec-
tion. The completed runner blade was then subjected to

2  Libor Koudelka



optimization to increase efficiency. The optimization was
performed in ANSYS Workbench®, resulting in 1% extra
efficiency, although the absolute value is not mentioned.
An interesting idea of inheritance is presented by Yin et al.
[14]. The inheritance lies in the extraction of the blade
load distribution from a runner with good weighted pro-
totype efficiency (93.84%) and utilizing its design para-
meters in other designs with similar specific speeds. The
method avoids extra CFD work, but the initialization by a
quality profile is necessary. The new pump turbine had a
weighted efficiency of 94% in pump mode. Ma et al. [15]
optimized channel geometry, blade loading, and blade
stacking to improve the range of operation and increase
efficiency. The inverse method was exploited for a high-
specific speed turbine runner to get also better pressure
distribution on blades since the original ones had cracked
after a few years. The latest paper on this topic is by
Zanneti et al. [16]. They present and discuss the most
interesting design solutions so far documented with the
main aim to illustrate the results achieved in the field of
hydraulic turbines. The basic theory of the inverse design
method is presented and analyzed with a focus on the
suppression of secondary flows. Then, recent applications
of the method to pump turbines and Francis turbines are
reported.

Because the main tool for blade construction is a dif-
ferentiable manifold and its coordinate slice, we provide
some basic information on this topic.

1.1 Euclidean space and coordinate slice

We briefly mention the notion of Euclidean space, viewed as
a differentiable manifold. Space R3 viewed as the Euclidean
space, is the Hausdorff topological space with only one
identity, diffeomorphic map (chart) onto its copy, where
diffeomorphism is a bijection of class Ck. Then, it is a C∞

differentiable manifold. Let M3 be a subset of space R3,
where the camber surface will be placed, and μ: U ⊂ M3 →
R3 be a diffeomorphism called chart. Then, μ is the system of
curvilinear coordinates. If ν is another chart: V ⊂M3 → R3, it
is another system of curvilinear coordinates. Compositions
μ○ν–1 and ν○μ–1 are transition maps. If both transition
maps are Ck, then M3 is called a Ck differentiable manifold
of dimension 3 [17] (Figure 1).

Coordinate slice S of dimension 2 in 3D manifold M3 in
a neighborhood U ∈M3 with coordinates u, v, andw is a set
S = {p ∈ U: w(p) = const.}

2 Problem description

From the designer’s point of view, the runner of a radial–
axial turbine can be viewed as a ring with ameridional cross-
section in the shape of a curvilinear rectangle revolved
around the axis of runner rotation. The sides of the rectangle
are given by inlet, outlet, hub, and shroud curve (Figure 2).
Camber surface was added to clarify the geometry. It is not
used for meshing. Moreover, the periodicity of the blading is
specified during the runner design. Meshing programs are so
powerful that it is enough to upload the meridional curves of
the rectangle mentioned above, the blade surface, and specify
the number of blades to obtain meshed volume (Figure 3),
where there is such a meshed volume prepared in Numeca
Autogrid®. Now, we can define the problem itself.

2.1 General characteristics

At this point, we can claim that the most reasonable solu-
tion for camber surface definition is a parametric surface,
say s(u, v), with the following properties:
1. s is smooth enough to enable an efficient transforma-
tion of fluid energy. s ∈ Ck, k > 0.

2. u-curves connect the leading and trailing edges, while v-
curves connect the hub and shroud.

3. Meridional curves of the hub and shroud and the curves
of the inlet and outlet edge are at least C1.

Figure 1: Scheme of manifold mapping.
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4. The leading and trailing angles are specified at the hub
and shroud meridional curves and change smoothly
along the inlet and outlet edges.

5. If one of these angles is altered, the surface must change
smoothly near the leading or trailing edge so that an
unwanted wave or even oscillation does not occur.

6. The easiest and most efficient way to specify the blade
hub and shroud curve is to map a plane curve into the
corresponding surface.

7. Pitch angles for the hub and shroud curve can be easily
specified. Blade pitch angles define the runner’s specific
speed and vice versa.

8. The geometric method and object should comply with
the geometric nature of the runner.

Strictly speaking, we are to prepare a meaningful
camber surface for an airfoil-shaped hole in the volume
of the runner. The situation is depicted in Figures 2 and 3.

2.2 Leading and trailing angle

These are usually referred to as β1 and β2. The geometric
meaning is shown in Figure 4. The runner is considered to
rotate CW in the turbine mode. To introduce these angles,
it is necessary to manipulate the camber surface at the
leading and trailing edges. This is done in the [u, v,w] space
using functionw(u, v) on the slice and mapped in the mani-
fold as a camber surface. The procedure is described in the
following example. Analytically, the angles are defined

Figure 3: Example of a meshed periodic runner volume with camber surface (red).

Figure 2: Basic geometry for Numeca Autogrid® mesher with camber surface (red).
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using the scalar product of tangent vectors to the camber

surface and a w-curve by ( )
〈 〉

∣ ∣∣ ∣
=cos β

i

t t

t t

,i wi

i wi

, i = 1, 2, by
Figure 4. Vector directions have nothing to do with a sense
of rotation, only with the blade geometry.

3 Method

3.1 Manifold

We work with a 3D manifold M3 ∈ R3 given by a system of
curvilinear coordinates
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such that g(u, v, w) ∈ Cn, n ≥ 2 is injective and Jacobi
determinant
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Then, there is a unique chart µ: M3 → A given by an
inverse of g(u, v, w)

( )

( )

( )

( )=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∈μ

u x y z

v x y z

w x y z

x y z M

, ,

, ,

, ,

, , , . (3)

According to Bishop and Goldberg [17], M3 is a subma-
nifold embedded into R3 with μ as the only chart. In the
words of Section 1.1, A is a subset of the copy of R3. To tailor
the method to our purpose, we can imbed M3 in a quite
special way as a cylindrical curvilinear coordinate system.
This can be done by rotating a plane curvilinear coordinate
patch by a specific angle (Figure 5). The plane patch deserves
more attention since it naturally reflects the runner’s meri-
dional curves, namely the hub, shroud, inlet, and outlet. Rota-
tion by an angle less than π is a diffeomorphic operation.

3.2 Coordinate slice

Now, we refine the definition from Section 1.1 and tailor it
to our purpose by setting U = A, and we can go even
further. We can consider the camber surface in A as a
submanifold S embedded by the inclusion map and utilize
Proposition 1.4.1 of [17], p. 42, namely its constructive proof.
In principle, the proposition says that if S is a submanifold,
then there exists a coordinate system in A such that S is a
coordinate slice in A. The proof even gives a recipe for its

Figure 5: Scheme of the manifold with mapping.

Figure 4: Definition of leading and trailing angles.
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construction. For our purpose, the slice is one dimension
less than the sliced manifold. A simple example of the
situation can be seen in Figure 6. The submanifold itself
is used for the definition of a new coordinate system [y1, y2]
as follows:

=y x ,1 1

( )= −y x f x .2 2 1

S in Figure 6 is a coordinate slice since y2 = 0 on S. A is
mapped identically onto its copy and S onto the projection
of A in the x1-axis. We used the designation of the coordi-
nates from the proposition mentioned above.

Using this technique in 3D, we slice the 3D set A in a
more general way. Let parametric surfaces g(u, v1, w), g(u,
v2, w) define the hub and shroud of a runner while g(u1, v,
w), g(u2, v, w) define the inlet and outlet surfaces, respec-
tively. Now, the camber surface can be represented by a
coordinate slice S given by an injective function:

( )= →w w u v B R, :

such that rank [w,u w,v] ≠ 0,w(u, v) ∈ Cn, n ≥ 1, (u, v) ∈ B, B =

[u1, u2] × [v1, v2] (Figure 7).
The corresponding chart of the slice into A is
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To prove that σ gives a coordinate slice, it is enough to
define a coordinate system [y1, y2, y3], again by Proposition
1.4.1 of [17], p. 42.

=y u,1

=y v,2

( )= −y w w u v, .3

Rem. Here, w(x, y, z) and w(u, v) represent two dif-
ferent functions distinguished by the number of variables.

This represents a coordinate system in M3, and the
points of S are those where y3 = 0. This also means that S
is given by
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which is a submanifold ofM3. The slice is well defined, and
its use for camber surface description is correct. In otherwords,
since each curvilinear coordinate system is diffeomorphic with
a Cartesian coordinate system, the slice under the conditions
given above is well defined.

4 Simple example

The same notation as in Section 3 will be used to obtain
the correspondence between both parts. Continuity Cn is
meant for n ≥ 1.

4.1 Coons patch

This method for surface description is based on the frame-
work of its boundary curves [18]. The surface patch P ⊂ R3

is defined asFigure 6: Simple 1D coordinate slice.

Figure 7: 2D coordinate slice.
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p: B → P, B = [0, 1] × [0, 1].
The injectivity of p is an additional requirement to the

definition given in [18].
Considering Figure 8, we can write Equation (6) in

components as follows:
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For future simplification of Equation (11) and others,
we designate
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4.2 Manifold

It is introduced as a curvilinear coordinate system similar
to a cylindrical one, where u-curves are given by the hub
and shroud meridian, v-curves by inlet and outlet edge, and
w-curves are circular arcs with center on runner axis and in
interval [0, π]. With this idea in mind, it is necessary to

proceed from the basic data for runner design. These are
curves defining hub and shroud meridian, and inlet and
outlet edge. Figure 8 shows the basic net of the u- and v-curves
in the zx-plane represented by the corresponding planar
Coons patch. We call it the basic patch p(u,v).
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Now, the basic patch is used for the construction of
manifold M as a curvilinear coordinate system by
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where w is the angular coordinate. Sets A and B are
marked in Figure 7.
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on A. This is derived from Equations (10) and (11).
In correspondence with Equation (2), this ensures the

existence and uniqueness of g−1(x, y, z) ∈ Cn. The manifold
is mapped onto A by
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This is the only map. It is a Cn manifold of dimension 3
with a boundary, where n depends on the continuity of the
basic patch boundary curves. It can be observed also in
Figure 5 that g is injective. The isoparametric curves are
not tangent to each other.

Rem. Tangent space at a point has the basis
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4.3 Coordinate slice

We define the coordinate slice in the same manner as
described in Section 3.2. Then, Equation (5) has the fol-
lowing form:Figure 8: Patched portion of the zx-plane.
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( ) ( ( ))

( ) ( ( ))
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=
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z u v
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, cos ,
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Thus, s(u,v) is a regular surface and can be considered
as embedded in M by inclusion. This situation is shown in
Figure 9.

4.4 Manipulating leading and trailing angle

We work in A with isoparametric curves w(u, 0) and w(u,
1). They connect vertices w00, w10, and w01, w11. The curves
can be defined as cubic polynomials with boundary condi-
tions listed in Table 1. Coefficients of the polynomials are
easily calculated from boundary conditions

( ) ( )

( ) ( )

∈ = − =

′ = =

β Π φ Π β w i j w

w i j tg φ i j

0, /2 , /2 , , ,

, , , 0, 1.

ij ij ij ij

ij

(16)

The meaning of these angles is shown in Figure 10.
These curves are then mapped in S. Because the mapping

is not conformal, it is necessary to compute real β1 and β2
angles, as defined in Section 2.2, and step-by-step change φij

to obtain the required values. This can be performed in the
cycle of a computer language program. Function w(u, v) to
be inserted into Equation (12) is

( ) ( ) ( )( )= + −w u v w u v w u v, , 1 , 0 1 . (17)

Figure 11 shows the same camber surface as in Figure 9
but with modified φij and corresponding βij. The shape
modification is rather excessive, to be evident.

Table 1: Boundary conditions

Curve Position Angle Leading and trailing angle

w(u, 0) w00 w10 φ00 φ10 β10 β20
w(u, 1) w01 w11 φ 01 φ11 β11 β21

Figure 10: Section of the slice in A at v = const. with definition of the
corresponding leading and trailing angles.

Figure 9: Camber surface as a coordinate slice.

Figure 11: Camber surface with modified β-angles.
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Now, having explained the idea and basic strategy, we
can approach generalization.

5 Generalization

Since Equation (15) together with sine and cosine functions
on [0, π] isC1 and injective, we claim that any C1 slice in space (u,
v,w) is mapped on a C1 camber surface. Now, the idea is simple.
We can patch the slice consisting of its boundary curves and as
many as necessary v = const. curves. The patch including curves
with properly set β-angles is then mapped as the camber sur-
face. In this way, the hydraulic designer can specify a blade
with pitch and β-angles on those v = const. meridional curves.

We keep the idea of Section 4.4 where camber curves
were defined as cubic polynomials. With this in mind, particu-
larly useful is the bicubic blending. Figure 12 shows themethod
that offers to set four meridional curves, which require three
patches. Detailed patching procedure of the coordinate slice in
set A is given in [18], p. 231–234. This also shows that the
method is well-defined. The table with boundary conditions
would be similar to Table 1 but with four rows. This enables
finer shape modification like bent of the trailing edge (black
curves in the slice and camber surface).

If necessary, the camber surface can be fitted as a
NURBS surface (Figure 13).

6 Practical example and physical
meaning

The above method was used for the design of the high-
specific speed Francis runner presented in Koudelka [8].
A detailed design process is described there. Nevertheless,
basic hydraulic and geometric parameters are listed in
Table 2 and depicted in Figure 14. The data in Table 2 are
inferred from those given in Koudelka [8].

Since the runner for such speed is higher, there must
be six v = const. Curves in R3 to sufficiently describe the
camber surface (Figure 15).

To describe the situation thoroughly, Figure 16 shows
the camber surface (red) inside the manifold boundaries
formed by the hub and shroud (green) together with inlet
and outlet (violet) surfaces.

The basic physical meaning of the blade is to take
effectively the static component of the water pressure,
transform it into the runner torque, and subsequently pro-
duce turbo-generator power. The process of draining static

Figure 13: Quintic NURBS representation of the camber surface.

Table 2: Hydraulic parameters

Parameter Value

Runner diameter D 0.35 m
Number of blades 11
Runner speed n 470 min−1

Number of guide vanes 10
Net head H 4.6 m
Rated discharge Q 0.32 m3 s−1

Q11 at BEP 1.23
n11 at BEP 75.1 min−1

nsq at BEP 84.7 min−1 m−1/4

Hydraulic efficiency at BEP 91%Figure 12: Bicubic blended coordinate slice in R3 and corresponding
camber surface.
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pressure is nicely seen in Figure 17. Pressure decreases
from the leading to the trailing edge as the blade sucks it
gradually.

This process is the most effective when flow splits just on
the leading edge, also indicated by the red pressure strip in
Figure 18. This also indicates the best efficiency point.

A photograph of the resulting runner in steel can be
seen in [8].

7 Discussion and conclusions

A straightforward step toward an object-oriented program-
ming language is possible. Objects include surfaces, curves,
vectors, etc., with methods for manipulation, description,
and display. The runner is then inserted into a turbine
model, and this virtual prototype is subjected directly to
CFD analysis or an optimization loop.

7.1 Why the coordinate slice?

The question may arise as to why we do not define a sur-
face patch such as NURBS in the bounds of hub, shroud,
inlet, and outlet surfaces [19]. Here are some difficulties
coming from the nature of this technique:
1. It is difficult to insert such a patch inside the runner volume
with specified camber surface pitch angles, namely positions

of control points, since each of them has three degrees of
freedom. Moreover, the surface would consist of more than
one patch or a patch of a higher degree than three, as can be
seen from Section 5.

2. The danger of local change of the surface, namely when
a higher order (rational) polynomial is used. This can
result in unwanted waves and does not comply with
items 1 and 5 (Section 2.1).

3. Simple modification of β-angles by the control polygons
in space is questionable. That is why Flores et al. [6] use
the simplest reasonable NURBS patch for the purpose,
which is the cubic patch.

4. The subset of R3 defining the runner is described by a
cylindrical coordinate system. This follows from the fact
that the runner rotates around its axis, here coincident
with the z-axis. If this approach is not applied, then the

Figure 15: Bicubic blended coordinate slice in R3 and corresponding
camber surface with six curves.

Figure 14: Runner meridian with borders of the basic patch.
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problem of pitch angle specification arises. These angles
define runner speed and vice versa. A problem with a
deformed blade may emerge like in [5].

5. Techniques based on classic patches (NURBS can be
considered to be their generalization) are suitable,

namely for free-form modeling. Reasonable utilization
in blade design requires a patch with a small number
of control points to handle the shape either in an inter-
active or optimization loop process. That is why only
cubic patch is used in [6]. Usage of patches of higher
degree may lead to unwanted oscillations. See also
Figure 13, where the NURBS control polygon was gen-
erated just after design in the way of the coordinate
slice. The coordinate slice is easily defined, including
the construction of the planar curve mapped as a
camber curve and easy mapping into the manifold,
which complies with runner geometry.

Conversely, the coordinate slice technique respects the
nature of the blade geometry. One can, in a natural geometric
way, define all important blade parameters as follows:

Figure 18: Flow lines splitting at the leading edge at the BEP.

Figure 17: Pressure field on the blade pressure side at BEP.

Figure 16: Blade in the boundaries.
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1. Meridional shape of hub, shroud, inlet, and outlet edge
by corresponding (spline) curves.

2. Pitch, leading, and trailing angles by straight assign-
ment of the value for specific camber curves.

3. Lean angle by varying the w-parameter along the blade
and, in this way, also the curved shape of the leading and
trailing edge and blade passage area at the runner exit.

4. Since the camber surface is regular, it is possible to
modify it in the normal direction reasonably.

5. The inheritance method mentioned in [13] is obvious
here. This time geometric parameters are inherited.

Rem.
The method is also suitable for low-specific speed run-

ners, as indicated in Section 5. To the author’s knowledge,
this method may not be useful for the inverse problem
design.

7.2 Further development

The next step to improve the presented method lies in con-
formal mapping of the slice isoparametric curves. This leads
to avoiding the numerical computation of meridional curves
that have required leading and trailing angles.
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