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Abstract: Electrocardiogram (ECG) recognition systems
now play a leading role in the early detection of cardiovas-
cular diseases. However, the explanation of judgments
made by deep learning models in these systems is promi-
nent for clinical acceptance. This article reveals the effect
of transfer learning in ECG recognition systems on decision
precision. This article investigated the role of transfer
learning in ECG image classification using a customized
convolutional neural network (CNN) with and without a
VGG16 architecture. The customized CNN model with the
VGG16 achieved a good test accuracy of 98.40%. Gradient-
weighted class activation mapping (Grad-CAM), for this
model, gave the wrong information because it focused on
parts of the ECG that were not important for making deci-
sions instead of features necessary for clinical diagnosis,
like the P wave, QRS complex, and T wave. A proposed
model that only used customized CNN layers and did not
use transfer learning performed 99.08% on tests gave cor-
rect Grad-CAM explanations and correctly identified the
influencing areas of decision-making in the ECG image.
Because of these results, it seems that transfer learning
might provide good performance metrics, but it might
also make things harder to understand, which could make
it harder for deep learning models that use ECG recognition
to be reliable for diagnosis. This article concludes with a call
for careful consideration when using transfer learning in
the medical field, as model explanations resulting from
such learning may not be appropriate when it comes to
domain-specific interpretations.
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1 Introduction

Cardiovascular deaths are still the leading cause of death
worldwide, so the development of new diagnostic techni-
ques is an important requirement [1-3]. Electrocardiogram
(ECG) analysis holds a central place among examining tools
because it is a completely non-invasive method that pro-
vides information about the state of cardiac activity [4,5].
The application of deep learning, especially convolutional
neural networks (CNNs), is the next breakthrough in the
ECG interpretation field; it is more precise and more pro-
ductive than traditional approaches [6]. The suggested
approach was chosen because it could shed light on the
importance of using explanation methods for deep learning
models as well as how transfer learning affects the precision
of explanations in deep learning-based ECG recognition
systems. As artificial intelligence (AI) in healthcare has pro-
gressed significantly in recent years, there is a greater reli-
ance on Al models in crucial clinical areas, including ECG
analysis. However, the black-box nature of these models
hinders their implementation, making it challenging to com-
prehend the connection between the model and the pro-
blem at hand. Also, while transfer learning is considered
an effective approach that has been applied in numerous
studies and yields promising results in different image
recognition tasks, including ECG analysis tasks, the impact
of this technique on the interpretability of models has not
been sufficiently studied yet. Understanding how transfer
learning influences explanation accuracy in deep learning
for ECG recognition is as crucial as ever. Solving these pro-
blems is vital to ensuring that the AI systems used in the
medical field are credible. For instance, imagine that a deep
learning model is applied to identify arrhythmias using ECG
signals. Despite its high performance in detecting abnormal
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rhythms, doctors and clinicians only see the final decision
made by the model, not how the decision was made. This
can be attributed to the lack of clarity in how the model
arrived at certain predictions, meaning that there is doubt
about using the model for clinical decision-making. Take
another example where a deep learning model trained
with transfer learning diagnoses arrhythmias perfectly.
However, on closer observation, clinicians can determine
that the actual reasons offered by the model are not cred-
ible based on medical evidence. This brings about doubt
and would cause one to pause when trusting an Al-pow-
ered system to make life-altering decisions in the context of
medical treatment, thus hinting at the larger issue of how
to make Al systems trustworthy in healthcare. Therefore,
we conducted the current research to tackle these specific
issues and illuminate crucial aspects of the advancement of
Al in the healthcare sector. To investigate how transfer
learning affects the precision of explanations in deep
learning-based ECG recognition systems, we selected the
application of a CNN trained from scratch, without transfer
learning, to a hybrid CNN with VGG16. VGG16, a state-of-
the-art deep CNN architecture, has been employed in many
image recognition tasks as a pre-trained feature extractor;
therefore, the same approach is also used in this research.
The purpose of this study was therefore to try and close
this gap in the literature and to help more people get
to know how various model architectures and training
approaches can impact the ability of deep learning models
in the identification of complex ECG signals. It is necessary
to enhance future research to utilize deep learning models
in medical diagnosis in a more comprehensible and trust-
worthy manner.

2 Background and related work

The application of CNNs and deep transfer learning tech-
niques used in diagnosing heart diseases through ECG ana-
lysis have resulted in tremendous changes. Deep learning
models have demonstrated their ability to outperform
conventional diagnostic modalities, leading to a transfor-
mation in how cardiac abnormalities are detected and ana-
lyzed [7]. Salehi et al. have made significant contributions
in this area by conducting an exhaustive empirical com-
parison of transfer learning techniques across various ECG
datasets and neural structures. They highlight the signifi-
cant benefits of transfer learning, which infuses the models
with information from unrelated large datasets. However,
as the training dataset expands, the marginal benefit of
transfer learning could potentially decrease [8]. Refereed
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research like that of Herman et al. has their Al-based sys-
tems for reading ECG interpreted as being better than the
traditional computerized means. The presented Al systems,
which have processed enormous amounts of ECG data,
have improved their accuracy and reliability level to
such an extent that in individual cases, these systems
have turned out to be more reliable and accurate in the
diagnosis of ECG than even experienced cardiologists [9].
Albahri et al specifically focus their systematic study on
the reliability and clarity of artificial intelligence in med-
ical technological applications. Their research brings to
light the critical feature of building AI with precision, inter-
pretation, and justification in clinical settings to eliminate
the chances of bias and error [10]. Qiu et al. and his team
focus their study on the explainability challenge, exploring
the relevance of gradient-weighted class activation map-
ping (Grad-CAM) across various deep-learning architec-
tures. In this study, they reported that the visualization
results from Grad-CAM were highly dependent on the
architecture and depth of the underlying neural network
model. As such, they highlighted the importance of careful
consideration when choosing a network for diagnostic
tasks [11].

While ECG interpretation with AI shows much pro-
mise, the limitations of transparency and operationaliza-
tion of these models become apparent in real clinical set-
tings. The question of how the architectural decisions
made influence the effectiveness of the models and their
clinical relevance is pertinent and therefore must remain
an area of continued research. This research will further
explore these aspects, with emphasis on learning strategies
and advanced explanation techniques in creating more accu-
rate, understandable, and safer ECG recognition models.

3 Research gaps

The following are the research gaps that were filled in our
study.

3.1 The lack of explanation techniques is the
major challenge when using transfer
learning in various applications

Many of the research papers employing transfer learning
for ECG and other medical image classification have not
used any explanation approaches. This exclusion creates a
significant knowledge gap about how these models make



DE GRUYTER

decisions, which is vital for the clinical endorsement that
enables trust between the general public and Al-based
diagnostic systems.

3.2 Marginal use of explanatory methods

Although some research works have used explanation
methods, including Grad-CAM, they have not investigated
the reliability and depth of these explanations. Determining
the level of explanation is critical to avoid misrepresenta-
tion of the visualized decision-making process or features of
the medical images being investigated.

4 Methodology

4.1 Model architectures

We compare two distinct architectures to assess the transfer

learning effect on the explanations generated by CNNs:

A. Customized CNN without VGG16: This baseline model’s
general goal is to classify ECG images. It consists of the
following layers:

Input layer: Takes inputs in 224 x 224 pixel format.

* Convolutional layers: To simplify the non-linear process
[12], ReLU activation follows each of the four convolu-
tional layers with a number of filters (128, 256, 512,
and 512).

* Global average pooling: Placed after the customized
convolutional layers to lower the feature dimensions
and help with classification.

* Dense layers: There are two dense layers: the first with

512 units and the second with four units, each corre-

sponding to a class of cardiac condition. The first layer

uses ReLU activation, while the second uses the Softmax
function to output probabilities for each class.

For a detailed visualization of this model’s configura-
tion, refer to Figure 1.

This figure illustrates the architecture of the custo-
mized CNN model without using VGG16 as one of its layers.
The architecture is sequential in terms of shape, from the
input layers to the dense layers. Variations in the architec-
ture are as follows: the first convolutional layer has various
filter sizes, which are essential in the feature extraction of
ECG signals for classification.
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Input Layer (224,224)

Convolutional Layer 1 (128 filters,3*3 filter size, ReLU activation)
Convolutional Layer 2 (256 filters,3*3 filter size, ReLU activation)
Convolutional Layer 3 (512 filters,3*3 filter size, ReLU activation)

Convolutional Layer 3 (512 filters,3*3 filter size, ReLU activation)

Global Average Pooling
Dense Layer 1 (512 units,ReLU activation)

Dense Layer 2 (4 units,softmax activation)

Figure 1: The proposed CNN architecture.

B. Hybrid CNN with VGG16: This model leverages the
robust feature extraction capabilities of the VGG16
architecture, pre-trained with the ImageNet dataset
[13]. It consists of the following layers:

¢ Input layer: Takes inputs in 224 x 224 pixel format.

* Pre-trained VGG16 base: During the initial stage of
training, all layers will remain frozen to preserve the
learned features, starting from the model’s base to the
“block5_conv3” layer.

* Customized top layers: We position four new convolu-
tional layers (128, 256, 512, and 512 filters) at the output of
the last retained VGG16 layer to better define the specific
features of ECG images. Each of these layers undergoes
subsequent ReLU activations.

+ Global average pooling: Placed after the customized
convolutional layers to lower the feature dimensions
and help with classification.

* Dense layers: There are two dense layers: the first with
512 units and the second with four units, each corre-
sponding to a class of cardiac condition. The first layer
uses ReLU activation, while the second uses the Softmax
function to output probabilities for each class.

* Trainable layers: At first, only the layers after VGG16 are
trainable. Later stages unfreeze the layers from VGG16’s
“block5” to enable fine-tuning on the ECG dataset.

Input Layer (224,224)

Pre-trained VGG16 Base
Convolutional Layer 1 (128 filters,3*3 filter size, ReLU activation)

Figure 2: The hybrid CNN with VGG16 architecture.
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To understand VGG16 integration, refer to Figure 2.

This figure represents the structure of the hybrid CNN
model, where the VGG16 base model is incorporated with
extra customized layers. The shape is a combination of the
VGG16 base model and customized layers, and variations
include the base VGG16 (freeze layers) and adding more
layers with 128/256/512 filters, respectively. This design
makes use of the pre-trained features while at the same
time learning other features specific to ECG.

4.2 Implementation of Grad-CAM for visual
explanations

This study chose Grad-CAM to generate visual explanations
of a deep learning model’s decisions [14]. It supports the
identification of the regions in the ECG images that models
rely on to make their predictions, thus giving useful infor-
mation about model understandability.

The Grad-CAM implementation includes the following
processes:

* Layer selection: We used Grad-CAM on the output of

each model’s final convolutional layer to identify the

most spatial features that determine classification.

Gradient calculation: We used backpropagation to com-

pute the gradients of the target class.

* Weighted activation map: By multiplying the feature
maps by the established set of weights, we were able to
create a localization map with the most features that
discriminate between classes.

We then scaled the generated class activation maps to
the original ECG images’ size and transformed them into
heatmaps. We superimposed the heatmaps over the initial
ECG images, effectively adding a visual layer that high-
lighted the regions the model most distinguished in its
predictions. This, in turn, led to a clearer understanding
of what the models were looking at, indicating how they
came to their conclusions.

4.3 The relation of proposed method
parameters to system parameters

The parameters used in the proposed method in this study
are carefully selected to correspond with the system para-
meters of the ECG recognition task, such that there are no
discrepancies between the general architecture of the
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model and the nature of ECG data. The customized CNN
model comprises the following architecture: input layer:
ECG images are fed into the model after resizing the images
to a standard size of 224 x 224 pixels. The convolutional
layers have a ReLU activation function, which serves the
purpose of feature extraction of important details of ECG
signals that include edges and other patterns associated
with cardiac conditions such as P waves, QRS complexes,
and T waves. The global average pooling layers are applied
to avoid overfitting and to summarize the spatial features
of the input since the networks will generally be very deep;
the dimensions of the feature maps are reduced to provide
only the most important features. The dense layers with
Softmax activation subsequently evaluate the extracted
ECG image features and categorize them into four apparent
types of cardiac diseases, namely history of myocardial
infarctions (HMI), myocardial infarctions (MI), abnormal
heartbeat (AHB), and normal.

In the proposed hybrid CNN model, the pre-trained
base that is incorporated in the hybrid CNN model or the
CNN architecture is VGG16, which has a strong feature
extraction ability from the ImageNet dataset. However,
due to the differences in features between ImageNet and
ECG, some extra layers are incorporated to optimize the
feature extraction of the model for ECG images. The
training stages include: first, freezing the VGG16 layers
to maintain pre-trained weights and, then, partially,
unfreezing some layers to fine-tune the ECG dataset,
which enhances the model’s ability to capture specific
features of ECG.

The Grad-CAM implementation further improves the
interpretability of the model. When Grad-CAM is applied
using the last convolutional layers, the method shows which
areas of ECG images are crucial for the model’s predictions,
thus explaining the decisions made. Backpropagation is
applied for calculating gradients, and a weighted activation
map helps make the results visible so that one can see which
part of the picture has the biggest influence on the model.

4.4 Model evaluation and validation
4.4.1 Quantitative evaluation

Standard performance metrics, including precision, recall,
F1 score, precision, and specificity, evaluated both models:
the customized CNN model without VGG16 and the hybrid
CNN model with VGG16. We calculated these measures for
each of the four target categories: HMI, MI, AHB, and
normal.
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4.4.2 Qualitative validation

A practicing cardiologist evaluated the Grad-CAM output of
the customized CNN model without VGG16 to see if it paid
attention to diagnostically relevant parameters such as
P waves, QRS complexes, and T waves. The cardiologist com-
mented that the model’s visualizations effectively pointed
out regions in agreement with clinical knowledge, housing
the decision-making logic. This means that the model can
help to highlight the most important elements in the
ECG data.

5 Experiment design

5.1 Dataset

The present study employed a standard ECG dataset that
was made available in the public domain and consists of
1,937 ECG samples annotated for analysis and categorized
into four classes: MI, AHB, HMI, and Normal [15]. A total of
77 images describe situations in which patients have M,
which is a sign of serious coronary diseases that might lead
to heart attacks and even death. Through the collection of
548 images, the AHB disease category demonstrates people
struggling with breathlessness or impaired breathing as a
consequence of cardiac diseases. The HMI includes 203
patient images from previous MI. Lastly, normal is the
largest category, which includes 859 images from healthy
individuals. The dataset comes from medical devices in the
EDAN series, with a standard 12 leads and 500 Hz sampling
rate. The original dataset included the COVID-19 class,
which this research excluded. Normal (548 ECG), MI (548
ECG), HMI (548 ECG), and AHB (548 ECG) images are used in
the categorization criteria. This value was chosen to adjust
the imbalance in the sample and avoid the inefficiency of
classifications that might result.

5.2 Data preprocessing and augmentation

For the preparation of ECG images for analysis, we first do
a static crop, selecting only 6-96% of the horizontal region
and 21-93% of the vertical region. By performing this step,
we eliminate unnecessary elements from the images and
retain only those areas that contain the expected diag-
nostic information. We resize all the images right after
cropping and standardize them to 224 x 224 pixels, based
on the input into our CNN. Moreover, we adjust the
brightness by approximately 5% to enhance the model’s
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resilience against contrast-induced fluctuations in image
lighting.

5.3 Model training

* Train-validation-test split: We first split the data into
training and testing sets using an 80/20 split. We also
created the validation subset within the training set, set-
ting its amount to 20%.

Optimizer and loss function: We compiled them using
the Adam optimizer and the categorical cross-entropy
loss function.

Training process: Customized CNN without VGG16: We
trained the customized CNN for 200 epochs, using early
stopping to prevent overfitting and reducing the learning
rates if the validation loss plateaued. Hybrid CNN with
VGG16: To easily adapt to the new top layers, the VGG16-
based model initially trains with the frozen VGG16 layers.
In the following step, we unfroze and refined the VGG16-
specific layers to ensure fine adaptability.

Validation method: Both models used a validation set
held out and performance metrics recorded at each
epoch to monitor the learning process during iterations
as well as guide adjustments.

6 Results

6.1 The performance of customized CNN
model without VGG16

We evaluated the customized CNN model without VGG16’s
ability to correctly classify ECG images into the desired
four categories. Table 1 displays the performance results.

The visualization of Grad-CAM for the customized CNN
model without VGG16 (referred to Figure 3a) confirmed
that the model successfully highlighted features necessary
for clinical diagnosis, like P waves, QRS complexes, and T
waves. The visualizations showed the model’s ability to
localize precisely on the foundational segments of the
image that aimed at providing clinical interpretation to
guide its decision-making process.

6.2 Hybrid CNN with VGG16 model
performance

We also evaluated a hybrid CNN model incorporating
VGG16, and Table 2 presents the corresponding results.
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Table 1: The performance results of the customized CNN model without VGG16

Precision (%) Recall (%) F1 score (%) Accuracy (%) Specificity (%)
AHB 98.32 98.32 98.32 99.09 99.38
HMI 100 100 100 100 100
MI 100 100 100 100 100
Normal 98.20 98.20 98.20 99.09 99.39

When compared with the customized CNN, the hybrid
model’s Grad-CAM representation (Figure 3b) was clearly
out of place. The model pointed out the areas that were not
pertinent for clinical interpretation, showing that VGG16
pre-trained features may not have the specific fixings
required for the ECG classification.

6.3 Comparison and observations

Customized CNN Model without VGG16: The customized
CNN model without VGG16 was successful because of its
high ability to spot diagnostically relevant features in the
ECG images. This success is reflected in the high-perfor-
mance metrics achieved (Table 1). The Grad-CAM visualiza-
tions showcased the model’s ability to identify regions
significantly affected by cardiac conditions, indicating its
performance aligns with expectations.

Hybrid CNN with VGG16: The model displayed some
regions on Grad-CAM visualizations that do not contain
clinically recognized features used in an ECG interpreta-
tion. The model performed as well as the customized one,
but the Grad-CAM scores did not always reflect a deep
comprehension of the data, which means that transfer
learning did not necessarily make the model more inter-
pretable in this context.

There is an indication thus that transfer learning can
bring certain advantages into play sometimes, but indivi-
dually designed and trained models for ECG classification,
such as customized CNN without VGG16, can be superior
in interpretability by focusing on specific Grad-CAM
visualizations.

7 Robustness evaluation

Further experiments were conducted as a measure of
testing the robustness of the developed ECG recognition
system; the experiments included data augmentation and
training the model using a different pre-trained model
(VGG19).

7.1 Data augmentation

To simulate real-world variations, data augmentation stra-
tegies were employed on the original ECG dataset. In
particular, the value of 1.3 pixels of blur and changes in
exposure from -10 to +10% were applied. These augmenta-
tions assist in evaluating how the models perform in context
to seemingly different forms of the ECG image.

7.2 Additional pre-trained model (VGG19)

Besides the customized CNN and hybrid CNN with VGG16,
the experiment included a hybrid CNN with VGG19. Similar
to VGG16, the VGG19 model was also pre-trained on the
ImageNet dataset and later adopted for the ECG classifica-
tion. Table 3 below displays the performance results.

7.3 Performance metrics with
augmented data

We used data augmentation approaches to test the robust-
ness of the models. This was done by evaluating the models
on the augmented dataset to test for generalization with
slightly different ECG images. Table 4 presents the obtained
test results.

It is clear from the performance metrics that although
the customized CNN had much higher accuracy, precision,
recall, F1 score, and specificity, the hybrid models con-
sisting of VGG16 and VGG19 are also acceptable but not
as good as the customized CNN.

7.4 Grad-CAM visualizations with VGG19

We also created Grad-CAM visualizations for the hybrid
CNN with VGG19 to identify which regions of the ECG
images affected the model’s prediction. Figure 3c displays
the Grad-CAM results for the hybrid CNN with VGG19.
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(b)
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Figure 3: Grad-CAM visualizations. (a) Grad-CAM visualization for the
customized CNN model. The shape of the highlighted regions in the ECG
images aims to point at diagnostically significant areas like P-waves, QRS
complexes, and T-waves, as well as offer correct visual explanations that
match clinical experiences. (b) Grad-CAM visualization for the hybrid CNN
model with VGG16. The highlighted regions in the ECG image show that
the shape of the regions often emphasizes unimportant areas, which
shows that transfer learning adversely affects explanation accuracy.

(c) Grad-CAM visualization for the hybrid CNN model with VGG19. The
highlighted regions in the ECG image show that the shape of the regions
often emphasizes unimportant areas, which shows that transfer learning
adversely affects explanation accuracy.
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Similar to the VGG16 model, the Grad-CAM output of
the VGG19 model also displayed falsely highlighted regions.

8 Selectivity of the proposed
method for practical systems

The proposed method is based on a comparison between a
customized CNN trained without transfer learning and a
hybrid CNN with transfer learning. We conducted this
comparison to assess the impact of transfer learning on
the interpretability of ECG recognition systems. We con-
clude that the use of transfer learning reduces the interpret-
ability based on the presented Grad-CAM display results. For
practical systems and user-specific applications, this method
is beneficial for the following reasons:

1. Improved interpretability without transfer learning: The
customized CNN without transfer learning gives better
and more explicit visualization of the explanations using
Grad-CAM as illustrated in Figure 3(a). This is particularly
helpful for more clinical applications where under-
standing the decision-making process behind a model
significantly enhances trust and the overall function-
ality of the model.

2. Clinical relevance and trust: Interpretation is a matter of
clarity, and accurate interpretability translates to clin-
ical trust. Thus, when the explanations line up with
existing clinical cues, clinicians are more likely to use
the AI system. The customized CNN’s reliable explana-
tions make it a better candidate for practical application
in the real world, hospitals included.

3. Enhanced model performance: Our investigation shows
that the customized CNN is more appropriate for ECG
analysis than the hybrid CNN which uses transfer
learning. This makes it especially effective when used to
address real-world cases in ECG recognition to improve
the reliability of the system.

9 Discussion

9.1 Addressing the interpretability issue

The main objective of this article was to investigate how
the use of transfer learning affects the interpretability of
deep learning-based ECG recognition systems. For models
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Table 2: The performance results of the hybrid CNN with VGG16
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Precision (%) Recall (%) F1 score (%) Accuracy (%) Specificity (%)
AHB 95.16 99.16 97.12 98.41 98.12
HMI 100 100 100 100 100
MI 100 99.06 99.53 99.77 100
Normal 99.07 95.50 97.25 98.63 99.70
Table 3: The performance results of the customized CNN model without VGG19
Precision (%) Recall (%) F1 score (%) Accuracy (%) Specificity (%)
AHB 100 91.60 95.61 97.72 100
HMI 94.87 100 97.37 98.63 98.17
MI 96.26 100 98.10 99.09 98.81
Normal 97.17 97.17 97.17 98.63 99.10
Table 4: Performance metrics with augmented data
Model Accuracy (%) Precision (%) Recall (%) F1 score (%) Specificity (%)
Customized CNN 99.24 99.25 99.22 99.23 99.74
Hybrid CNN with VGG16 96.64 96.70 96.63 96.62 98.88
Hybrid CNN with VGG19 90.77 91.49 90.98 90.84 96.95

that are implemented in a clinical context, not only the
output of the model is important but also the way the
model arrives at those decisions. This creates trust and
prepares the groundwork for implementing and adopting
Al technologies in clinical practice.

9.2 Interpretation of findings

The study’s findings indicate that the customized CNN
without transfer learning had improved accuracy and rele-
vant clinical decisions compared to the customized CNN
with transfer learning. One of the reasons that the expla-
nations are not accurate for transfer learning with VGG16
and VGG19 could be the variation between the features of
the image learned from ImageNet and those of ECG inter-
pretation. VGG16 and VGG19 were pre-trained for images
from nature, but ECG signals differ much as regards struc-
ture, shapes, and their arrangements. As a result, the fea-
tures from VGG16 and VGG19 that are captured may not be
the best for the ECG image classification, and consequently,
the visualization of Grad-CAM might not be very accurate.

The results of the data-augmentation experiments
further supported the robustness of the customized CNN

model. While we noticed a decrease in the performance of
the proposed hybrid models when tested on the new aug-
mented data, the CNN model developed specifically for
our purpose was much more robust and explainable.
This means that the customized CNN without transfer
learning is relatively accurate in identifying the varia-
tions that may exist in real ECG images, as opposed to
the hybrid models based on transfer learning.

9.3 Implications for clinical applications

The capability for AI models to display outputs that are
understandable to end users is of importance for their
usage in clinical environments. Correct descriptions that
have been illustrated by the customized CNN model can
improve clinicians’ trust and help them understand the
basis of model predictions. As a result, it may support
making informed medical choices. While the hybrid model’s
Grad-CAM outputs showed that transfer learning is not gen-
erally the optimal choice for interpretability in domains like
ECG analysis, it might be the case that it is leading to worse
interpretability. This finding emphasizes the necessity of
tailoring the model architecture to suit the application’s
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specific domain of interest to reach a balance between high
accuracy and meaningful interpretability.

9.4 Solving the problem

The proposed method has successfully dealt with the issue
of interpretability in the following ways:

Enhanced Transparency: The proposed customized CNN
model without transfer learning is more accurate and gives
clinically useful explanations, which are important for the
trust of clinicians.

Reduced Misalignment: Here, the study notes that
while pre-trained models such as VGG16 can be employed
in medical imaging tasks, they come with several shortcom-
ings that make it important for bespoke medical domain
models to be developed.

Improved Trust and Adoption: Hence, it can be said
that precise interpretability has a positive influence on the
level of clinically applied artificial intelligence trusted by
clinicians. With its cleaner and more reliable explanations,
the customized CNN model can be deployed in practical
health engagements.

9.5 Limitations and confounding factors

This research has some shortcomings that should be taken
into account.

Dataset size and diversity: The dataset presented has
good coverage, but it might not cover all possible different
types of ECG patterns. Therefore, this may influence the
model’s generalizability and the relationship between the
inputs and the Grad-CAMs produced.

Model architecture: The model complexity can give
deeper insights into the data, but at the same time, the
architecture of the models could inherently limit their
interpretability. The customized model is tailor-made for
this case, while VGG16 and VGG19 are not, suggesting that it
may have some negative impact on the performance of the
hybrid model.

New research needs to be conducted on various archi-
tectures of models and data augmentation techniques to
improve the interpretability and accuracy of the model in
the domain of clinical operation.

10 Conclusion

This research aims to fill the gaps identified in the existing
literature by studying the effects of transfer learning on
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explanation accuracy in deep learning-based ECG recogni-
tion systems. The findings could potentially enhance the
accuracy of disease identification through artificial intelli-
gence, benefiting researchers in Al and diagnostics, physi-
cians, and developers of diagnostic programs and applications.
This research serves as a guide for future studies and
developmental work, providing insights into the impact
of transfer learning on the interpretability of models. The
contributions are long-term, emphasizing Al systems’
explainability to support their implementation and trust
in healthcare. Moreover, other subfields of medical image
analysis and diagnostic Al can apply the results, offering a
broader perspective on explanation techniques across var-
ious domains. Since this work focuses on improving the
reliability of explanations used in Al models with transfer
learning, it provides useful information to researchers,
practitioners, and the healthcare sector. Specifically, it fos-
ters the creation of reliable Al systems for healthcare,
which will benefit both healthcare providers and patients.

In this study, we compare the performance and inter-
pretability dimensions of a custom-designed CNN and a
hybrid CNN with VGG16 to classify ECG images. The custo-
mized CNN model without VGG16 showed a more robust
performance, along with a more accurate explanatory
power indicating diagnostically significant areas in the
ECG signals, in distinction from the hybrid model with
VGG16, which justified these regions more often with fea-
tures of less value despite achieving comparable quantita-
tive assessments.

The results demonstrate that the VGG16 network’s
learned features from the ImageNet dataset do not effec-
tively extract features from ECG images. The ImageNet
dataset primarily includes images of everyday objects, ani-
mals, scenes, and so on but excludes medical images like
ECGs. Therefore, the weights acquired during transfer
learning were less effective compared to those obtained
by a custom-made CNN model, mainly in terms of inter-
pretability. This emphasizes the necessity to develop indi-
vidual models that take into account the specific features of
medical data (ECG signals, for example) so that the achieved
results have high diagnostic meaning.

Future research will focus on making the models more
suitable for ECG analysis and adding domain competence
features to the design. Further work on improving the
model’s interpretability is needed. Yet, also, the growth
of diversity and size of input increases the accuracy of
predictions and boosts the reliability of determinations.
Through complementing these revelations, future develop-
ment of ECG recognition systems can have the power to
achieve high accuracy as well as robust interpretability,
which can then improve their use in clinical practice.
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