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Abstract: Multi-object detection and tracking is a crucial
and extensively researched field in image processing and
computer vision. It involves predicting complete tracklets
for many objects in a video clip concurrently. This article
uses the frame cancellation technique to reduce the computa-
tion time required for deep learning and DeepSORT (for any
version of the YOLO detector) coupled with DeepSORT algo-
rithm techniques. This novel technique implements a dif-
ferent number of frame cancellations, starting from one
frame and continuing until nine frame cancellations, tabling
the result of each frame cancellation against the overall
system performance for each frame cancellation. The pro-
posed method worked very well; there was a small drop in
the average tracking accuracy after the third frame rate
cancellation, but the execution time was much faster.

Keywords: Kalman filter, multi-object detection, multi-object
tracking, YOLO5 deep learning, data association metric

1 Introduction

Automatically identifying multiple objects in a video and
accurately representing them as a set of trajectories is a
challenging task known as multi-object detection and tracking
(MODT). This issue is of significant importance in computer
vision, with practical applications in various areas such as
CCTV security cameras, autonomous vehicles, and robot sys-
tems equipped with security cameras [1,2]. While our main
focus of this study is on pedestrian tracking in video footage,
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problems with detecting people include (A) changing posi-
tions and directions, (B) different clothing styles, (C) different
points of view, (D) changing lighting, (E) occlusion, (F) pedes-
trians of different sizes, and (G) different characteristics of
motion, such as silent walking, running, or jumping. Or jump,
our approach can easily be adapted to handle various types of
objects using a general object detector in deep learning and
employing DeepSORT methods [3-5]. Traditionally, MODT
activities have mainly relied on the tracking-by-detection
paradigm. This approach involves initially detecting objects
using an object detector and then applying an object tracking
method to establish connections between objects across con-
secutive frames [6]. Most proposed approaches incorporate a
Kalman filter (KF) as a motion module to predict the position
of objects of interest in the current frame. In contrast, the
emergence of deep learning-based neural networks has led
to innovative approaches in object vision-related tasks,
including object categorisation, recognition, and tracking.
A previous study [7] compared the inference efficiency of
several frameworks and suggested an efficient method that
optimises the network while utilising only approximately
30% of the hardware capacity compared to other methods,
making it suitable for real-time applications. Wu et al. [8]
aimed to develop an MODT prediction method capable of
estimating the potential locations of occluded objects. This
method used the velocity and position of objects in previous
frames to speculate where occluded objects might be located,
considering their visibility in earlier frames. Additionally,
their proposed technique employed an efficient version of
YOLO version 4 (YOLOv4)-tiny to generate detections, which
accelerated the tracking process and enhanced robustness.
Incorporating YOLOv4-tiny resulted in a significant increase
in tracking speed. Park et al. [9] mentioned multiple studies,
providing a comprehensive history of MODT over the past
few decades, exploring the latest developments in the field,
and highlighting promising avenues for future research.
While looking at the study from the past 3 years, Li et al
[10] mainly talked about the MOT strategies for continuous
optimisation in terms of the growth of object detection at
each step. This article also talks about the benchmark datasets
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that are widely used and how they can be used in MOT.
YOLOV4, a one-stage deep learning detector, is used to gen-
erate bounding boxes containing object classes, locations, and
confidence values [11]. These bounding boxes are then pro-
cessed through a simple online and real-time tracking (SORT)
system using the deep association metric (DeepSORT) tracker
to monitor the movement of targets. The detector’s architec-
ture has been improved by incorporating attention mechan-
isms and reducing parameters, aiming for accurate object
detection with minimal graphics processing unit (GPU)
memory usage, particularly in scenarios where objects are
small or obscured. The effectiveness of cutting-edge net-
works such as DarkNet has been demonstrated by previous
researchers [12], showcasing successful object detection and
tracking on a dataset featuring urban objects. While various
solutions have been proposed to address the challenge of
simultaneously tracking multiple objects, recent break-
throughs in deep learning-based object identification (ID)
approaches have led to a focus on detection-based tracking
within the domain. Once all detection hypotheses from
video data are collected, the tracking problem becomes
one of data association — linking similar detections to
form a coherent trajectory [12]. The application of this tech-
nology in the development of land-based defence weapons
has presented challenges in countering these threats. As a
result, researchers have pioneered a combat model that
deviates progressively from traditional algorithms [13-15].
All MODTs (MODT have YOLO3, YOLO4, YOLOS5, YOLO7,
and YOLO8 deep learning detector or other version) fully
depend on the video frames, which let algorithm need a
high cost and complex hardware to implement the MODT
algorithm in real time. Every frame needs computation size
from the graphics processing unit and central processing
unit processor during algorithm calculation especially
when there are many objects, have zero or low speed, which
they waste the overall systems execution time but the object
have the same position or short distance change in object
position, so the frame cancellation technique will help the
system to overcome this problem because the algorithm will
only depend on the KF estimation during frame cancellation
period which have less computation time compared with
the normal case. More simple explanation if we have a 30
or 25 s video frame rate record or online show the human
movement, all know the humans have zero speed when stop
or low speed when walk and low or medium speed when
run with all these cases (1, 2, ... and 9) frame cancellation will
be possible to estimate the human movement trajectory
within the given video frame rate. From this, we conclude
that the frame cancellation technique will be useful for
MODT to reduce the execution time and keep the accuracy
for low rate cancellation or gain more time but for less
accuracy when increasing the frame rate cancellation.
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While more advanced tracking-by-detection algorithms
have been proposed in recent years, it is evident that certain
aspects of the established framework require further refine-
ment for effective implementation in robotic systems.
Specifically, we observe that the quality of detections signif-
icantly influences detector results, and challenges arise
when objects are in crowded scenes or are partially occluded.
To address this, we propose a novel approach involving frame
cancellation within the multiple object tracking (MOT) frame-
work, a method that, to our knowledge, has not been explored
before. This study makes the following contributions to the
tracking-by-detection framework. First, to reduce the execu-
tion time required for a deep learning-based detector, we
introduce frame cancellation within the MOT framework. To
our knowledge, we are the first to explore this method, which
involves cancelling frames and relying on the KF to predict
and estimate object locations. Second, unlike previous ver-
sions of MOT that heavily relied on GPU processors, we pro-
pose allowing the KF to work during frame cancellation,
rather than the deep learning detector. This algorithm helps
enhance reliability in complex tracking scenes. Four modes of
operation have been implemented based on the type of can-
cellation. The first mode does not involve frame cancellation;
the second mode is applied only when the deep learning
detector experiences cancellation; the third mode operates
after frame cancellation in the convolutional neural network
(CNN) used for feature extraction in the DeepSORT tracker;
the fourth and final mode is employed after frame cancella-
tion is implemented in both the deep learning detector and
DeepSORT tracker. The simulation demonstrates that, with the
help of this innovative model, the importance of accuracy
constraints can be reduced after the third frame cancellation
in tracking problems. This is achieved while still maintaining
state-of-the-art (SOTA) performance, supported by a reliable
affinity measure calculated using the KF. Additionally, the
execution time shows significant improvement, especially in
overall frame rate cancellation. We evaluate the effectiveness
of the proposed algorithm on the MOT16 datasets [16] and
compare our method with the YOLO5+DeepSORT approaches.
The main highlight done in the new algorithm can now imple-
ment the MODT with less execution time and keep the accu-
racy the same when compared with other MODTs (MODT
have YOLO5s, YOLO5m, YOLOS5L, YOLO7, or YOLOS8 detector)
for the first and second frame cancellation rate (FCR). The
remainder of this article is organised as follows. Section 2
explores the related work of this research. Section 3 provides
a detailed theory for the methodology used in the frame can-
cellation algorithm. In Section 4, a thorough analysis of the
proposed algorithm will be conducted, addressing each of the
four modes of operation. Section 5 is dedicated to presenting
the experiment results, along with tests conducted for the
proposed algorithm in different modes of operation. We will
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compare these results with those of existing algorithms to
evaluate performance, effectiveness, and efficiency. Subse-
quently, a detailed discussion of these results will be provided.
In the final part of this section, we will present our conclu-
sions. Additionally, we will explain the proposed algorithm
and discuss further work needed to study and analyze it,
with the aim of enhancing the value, robustness, and suit-
ability of the MOT with frame cancellation technique for
robotic systems.

2 Related work

2.1 Object detection model

In recent years, CNN-based object identification models
have become increasingly preferred in both academic and
industrial settings due to their remarkable resilience and
efficient performance [17-19]. Object detection methods
are typically categorised into two types: one-stage and
two-stage object detectors, based on whether they employ
a region-hased CNN (R-CNN). Specifically, the two-stage
object detector requires a specific region and its perfor-
mance is limited by the generation network component,
which affects its operating speed. An extension of R-CNN,
known as fast R-CNN [20], addressed this limitation by incor-
porating an area of interest pooling layer. This layer enables
the mapping of feature maps from candidate regions of
varying sizes to fixed-size feature maps. Another frame-
work, faster R-CNN [20], utilises a region proposal network
based on CNNs to process an image feature map and gen-
erate potential regions of interest. In contrast, the one-stage
object detector eliminates the area generation network com-
ponent, resulting in a generally faster method. However, it
often exhibits significantly lower accuracy compared to the
two-stage detector. Lin et al. proposed RetinaNet [21] as an
enhancement to the single-stage object detection technique,
leveraging the feature pyramid network [22] to achieve
improved performance. The YOLO series serves as a promi-
nent example of a single-stage method. YOLOV3 [4], the third
iteration, was designed to enhance efficiency and precision
through multiscale feature detection, multilabel task inte-
gration, and anchor bhox clustering. Building on YOLOV3,
YOLOv4 [23] incorporated the cross-stage partially con-
nected Darknet (CSPDarknet) [24] and the PANet [25] to
enhance the overall performance of the model. YOLOX, a
novel YOLO network, was introduced in 2021. Nevertheless,
the rapid evolution of these detectors has markedly improved
their ability to detect and identify objects [26]. YOLOvV7 [27]
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was predominantly built upon the foundations of YOLOvV5
[28], encompassing the overall network architecture, config-
uration file parameters, and the procedures for training,
inference, and validation. Notably, the YOLOv7 model intro-
duced the extended efficient layer aggregation network
module into its network architecture. This innovative
approach utilises convolutional operations to expand the
feature space, employs a feature shuffle operation, and
ultimately combines output feature maps from different
convolutional layers. The aim is to enhance the network’s
capability to extract a more comprehensive range of picture
features.

2.2 Data association with Kalman tracking
algorithm

Data association is a computational method used to track
objects within a given dataset. This process involves com-
puting similarity measures between trajectories and detec-
tion boxes and then matching these entities based on their
computed similarities. Feature models and similarity
metrics are important components in the field of data asso-
ciation. Among the models used, the motion model plays a
key role in predicting the spatial coordinates of objects
within video frames. The proposed method uses a predictive
approach to track bounding boxes in the current frame by
leveraging information from the previous frame. By estab-
lishing correspondences between detected boxes in the cur-
rent frame and predicted boxes from the previous frame,
smooth and uninterrupted tracking of objects is achieved.
The appearance model focuses on capturing the distinctive
characteristics of objects. This ensures that features of the
same object in different frames show more significant simi-
larity compared to features of other objects. To measure the
degree of similarity between detection and tracking boxes,
similarity metrics are used. Commonly used measures include
the intersection over union (IoU) metric, Mahalanobis dis-
tance, and cosine distance [29]. The SORT algorithm [30]
used the faster R-CNN object detector for object detection.
This algorithm employs the KF prediction technique to fore-
cast and update motion trajectories for tracking bounding
boxes. The integration of these models and metrics contributes
to the robust and effective tracking of objects in dynamic
datasets. In addition, the IoU metric serves as the matching
criterion. The real-time DeepSORT technique, a deep simplified
object tracking method built upon the SORT algorithm, intro-
duced several enhancements. It incorporates a cascade matching
step before IoU matching, integrates deep appearance features,
and extracts these features as an embedded layer using a
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reidentification (Re-ID) network [31]. This approach holds
promise for mitigating occlusion issues to some extent and
reducing identity-flipping occurrences. Further enhance-
ment to the DeepSORT method came from the MODT algo-
rithm [32], which introduced a trajectory scoring mechanism
to bolster system reliability, increasing as the trajectory
length grows. The joint detection and embedding (JDE)
method [33] was improved by incorporating the MODT
approach. A key advantage is the integration of detection
and embedding networks during the feature extraction
phase, striking a balance between computational efficiency
and precision. FairMOT [34] enhanced the anchor-free
approach for object detection by leveraging the JDE algo-
rithm. It tackled scale invariance issues through the intro-
duction of multilayer feature aggregation. The proposed
ByteTrack method [35] presented a straightforward yet
effective data association approach. It efficiently distinguishes
between high-scoring and low-scoring boxes, allowing the
identification of more genuine objects from the latter cate-
gory. ByteTrack has achieved SOTA performance on the
Multiple Object Tracking 2020 (MOT20) dataset [36]. These
tracking algorithms collectively underscore the current
research trajectory, which predominantly focuses on devel-
oping improved data association techniques. It is crucial to
emphasise the significance of the object detection module in
the tracking by detection TBD algorithm, requiring equal
consideration for both the detection capacity and the speed
of detection techniques.

2.3 Improvements in MODT

Abdulghafoor et al. [15] incorporated techniques that com-
bine principal component analysis with deep learning net-
works. This integration aimed to maximise the benefits of
both approaches, resulting in the development of a real-
time intelligent identification and tracking system. In pur-
suit of creating a practical video surveillance system that
efficiently identifies moving people while utilising minimal
resources, this study, as detailed in the study by Kim et al
[37], adopted a strategy that combined background removal
with CNNs. This straightforward framework was designed
for detecting and identifying moving objects in outdoor
CCTV video footage. Additionally, Alikhanov and Kim [38]
examined SOTA MODT trackers. The goal was to fill a gap by
providing a comprehensive analysis of their performance in
surveillance scenarios. The study aimed to identify the
trackers most suitable for an online action detection pipe-
line. Introducing the Kalman-intersection-over-union (KIOU)
tracker in Chen and Shao [39], the article proposed a novel
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method for multi-object tracking in movies. This approach
combined a KF with IoU-based track association techniques.
Furthermore, [40] enhanced the components of YOLOv3 and
suggested a new military target detection method, denoted
as YOLO-G. The study employed a military target dataset
featuring armed individuals wielding various weapons. This
dataset serves as a testing ground for evaluating various
object detection algorithms. When addressing the challenges
of occlusion and homogeneous appearance, researchers pro-
posed a depth-enhanced tracking-by-detection framework
[40]. This innovative approach utilised a semantic matching
strategy and a scene-aware affinity measurement method.
Furthermore, to expand the evaluation scope of indoor
tracking systems, they introduced a dedicated dataset. Shifting
focus, Natarajan et al [41] introduced a vision-based forma-
tion control method for unmanned aerial vehicle (UAV)
swarms, eliminating the need for an external positioning
device. The hierarchical architecture adopts a modified lea-
der—follower strategy, where follower UAVs calculate con-
trol inputs to achieve the desired swarm formation. The
application of modern deep learning techniques, including
YOLOv7 and DeepSORT, enables UAV localisation through
vision. In the study by Silano and Iannelli [42], a hybrid
visual geometry group 19+ bidirectional long short-term
memory network was introduced. This research aimed to
identify animals and generate alerts based on their activity.
The development of the Swin transformer neck-YOLOX
(STN-YOLOX) algorithm as the object detection module
and the G-Byte data association method as the tracking
module led to the creation of a novel MOT algorithm, known
as STN-Track [43]. Testing on UAVDT and VisDrone MOT
datasets demonstrated the effectiveness of the STN-Track
framework, with SMS-enabled notifications promptly sent
to the neighbourhood forest office for quick responses. In
another work [44], the primary goal was to present a simu-
lation strategy tailored for a specific UAV task: the optical
recognition and tracking of randomly moving objects. All
research entirely depends on all video frame if they have
new information to update the detector or not, which pro-
duce a time delay and computation consumption in case
there is no information update or low rate object change,
especially for pedestrian object. So our proposed algorithm
shows the effectiveness of frame cancellation on MODT
system performance related to a different number of can-
cellation. Liu et al. [45] tried to solve these MOT problems by
suggesting a new MOT method for cars that are moving in
traffic. The author’s tracker looks at the vehicle tracks as a
single 3D instance of a spatiotemporal route and uses deep
learning to figure out how the vehicles are moving from the
3D instances. The GM-YOLO network was developed in this
work [46] so that it can give multi-tracker high-quality
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detections. The backbone is made up of a coordinate atten-
tion mechanism and a weighted bidirectional feature pyr-
amid network structure. The effective receptive field for
each feature point is described as a Gaussian distribution.
This letter [47] tries to solve the problem of improving detec-
tion accuracy and lowering uncertainty by using the dif-
ferent points of view of many agents to create a framework
for uncertainty transmission called MOT-CUP. This frame-
work starts by figuring out how unsure collaborative object
detection (COD) is. It does this through direct modelling and
conformal prediction. Jain et al. [48] suggested a new deep
fused learning optimised deep fused learning (ODFL) model
that can be used to find and follow objects more effectively
in video security systems.

3 Methodology

The methodology used in this study employs a frame can-
cellation approach to evaluate its impact on the overall
performance of the MODT system. We utilise one of the
latest versions of MODT, namely, YOLOv5+DeepSORT. The
proposed algorithm operates sequentially in both the
normal and cancellation phases. Figure 1 illustrates the pri-
mary algorithm sequence timeline, including the processing
methods. Normal phase: this phase begins when the first
two frames are introduced to the system. The algorithm
locates and calculates the position, speed, and dimensions
of the bounding box for each object within these initial
frames. Following the completion of the cancellation phase,
the normal phase is applied to the subsequent two frames,
and the cycle repeats. During the normal phase, a deep
learning detector (e.g. YOLOVS5 or a later version) is used
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to provide detection results to DeepSORT. This initiates
object tracking and determines crucial parameters such as
IDs, position, velocity, height, and width of the bounding box
for each object.

Cancellation phase: the cancellation phase starts after
the normal phase concludes for a specified number of can-
cellations, denoted as N-frames. In this phase, object para-
meters positions, speeds, and aspect ratio of the enclosed
box required during the normal phase are calculated using
the KF, which operates recursively. The algorithm then selects
the optimal value between the estimated location and the CNN
appearance, leveraging metrics such as Euclidean distance,
cosine similarity, and the Hungarian algorithm. Selected para-
meter values for each object are synchronised at each N-frame
cancellation and composited for the corresponding N-frame.
Figure 2 illustrates the block diagram of the proposed
algorithm. The algorithm initially processes the first two video
frames to initialise the system, detecting and tracking objects,
and determining key parameters such as position, velocity,
width, and height of the bounding box. Subsequent frames
are cancelled based on the frame rate cancellation value. Pre-
dicted and estimated values (i.e. position, velocity, width, and
height of the bounding box) for each detected object are then
calculated using the KF. After the frame cancellation phase,
the algorithm resumes regular operation, similar to the first
two frames. Figure 3 provides a visual representation of the
frame sequence throughout the normal and cancellation. The
study examines the effects of N-frame cancellation at different
rates, ranging from 1 to 9 frames. The purpose of this analysis
is to evaluate how frame cancellation impacts the overall
performance of the deep learning with DeepSORT algorithm.
The KF equations, as described in previous studies [49,50], are
used in both the normal and cancellation phases, and their
details are summarised in Table 1. All equations remain con-
sistent throughout the phases, except for the observation

2-frame N-frame 2-frame N-frame 2-frame

N-frame 2-frame N-frame 2-frame

M-Frame Sequence number

» »
Ld Ld

». <
Ld <

Normal Cancellation Normal Cancellation Normal Cancellation Normal Cancellation Normal
hase hase hase hase hase hase hase hase hase

Dee Dee Dee, Dee Dee,

P Kalman filter p Kalman filter p Kalman filter P Kalman filter P
Learning = Learning = Learning : Learning : Learning
4 work in 4 work in o work in I work in P

ive wi { ive wi ive w ive w
DeepSort recursive way DeepSort recursive way DeepSort recursive way DeepSort recursive way DeepSort

Figure 1: Time sequence for frame cancellation algorithm with processing methods.
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estimated
value for each
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Figure 2: Illustration of the block diagram of the frame cancellation technique implemented on YOLO5 with the DeepSORT algorithm.

measurement equation, which is excluded during the cancel- 3.1 Detector

lation phase. During this phase, only predicted values are utilised

until the cancellation phase is completed. This decision is based = Our prototype framework utilises one of the versions of the
on the proximity of the predicted values to the observation YOLO detector (YOLOV5) for deep learning, leveraging arti-
values, particularly when observation values are not available.  ficial intelligence. However, the choice of YOLO detector

Frames in the normal phase

Output video frames after insert enclose box around
0 Q each detected and tracked objects

Input video frames

— i
=E8 = E 8
N 2 £ N 2 &
N-F N-F | N-F | | N-F | |_|
cancellat = o cancellat = s Multiple object detection and tracking algorithm " cancellat - " cancellat’ =
ion BE 2 ion BE 2 Deep Learning detector (YOLOVS or later version ) ion = é 2 ion = E E
phase S & phase S E + DeepSORT tracking phase S & phase S £

Frames in the Cancellation phase

|_N-E | |_N-E |
1 T 1
cancella cancella
tion tion
phase phase

Figure 3: Frame sequence during the normal and cancellation phases.
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Table 1: KF equations are used in the normal and cancellation phase
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Normal phase KF equation

Cancellation phase KF equation

Description

Knsin = FXun + GU,
Bran = FPn,nFT +0Q
Xn,n = An,n—l + Ky(Zy - HXn,nfl)

Xml,n = FXn,n + GU,
Pn+l,n = FPn,nFT +0Q

Xn,n = An,n—l + K(Zy - HXn,nfl)

Predictor equation
Prediction covariance equation
Estimated equation

Pn,n = - KnH)Pn,n—l(I - KnH)T + KanKnT

Bup = (I = KeHBypa(I = KH) + KRuK
K, = Bl,n—lHT(HPn,n—lHT + Ry)™!
No measurement is available, using the predicted values instead

K, = Pn,n—lHT(HPn,n—lHT + Rn)_1
Z, = HX,
of the measurement

Corrector equation
Kalman gain equation

Measurement equation

X = state vector, Z = output vector, F = state transition matrix, U = input variable, G = control matrix, P = estimated uncertainty, Q = process noise
uncertainty, R = measurement uncertainty, H = observation matrix, K = Kalman gain, and n = discrete-time index.

version can be flexible, depending on considerations such
as accuracy, complexity, and execution time [51].

3.2 DeepSORT

SORT, a tracking method introduced by previous studies
[30,31], is designed for MOT tasks. SORT streamlines time-con-
suming processes, enhancing task efficiency. By employing
CNN-based object trackers, SORT achieves accurate object
identification despite its simplicity.

DeepSORT, an extension aiming to minimise ID changes,
incorporates additional information into the tracking metho-
dology outlined in SORT [30,31]. Distinguishing itself from
SORT, DeepSORT employs multiple techniques to detect
objects already under tracking. Specifically, DeepSORT
employs two distinct distance measures — Mahalanobis dis-
tance [30] and cosine distance between appearance descrip-
tors — to assess new detections against tracked objects. Each
bounding box undergoes processing through a CNN trained
on a person reidentification dataset. Similar to SORT,
DeepSORT employs a KF to determine the state of tracked
objects. Consequently, DeepSORT combines both SORT
and CNN appearance functionalities. For the implementa-
tion of the frame cancellation technique in MODT, we
integrated a YOLO detector and DeepSORT tracking. The

Table 2: Phase sequence and equation required in each mode

frame cancellation technique operates in four distinct
modes, as elaborated in Section 3.3.

3.3 Mode operation

* Normal mode (NM): no cancellation occurs.

* Detector cancellation frame mode (DCFM): only the
frame from the YOLO detector is cancelled.

* DeepSORT cancellation frame mode (DSCFM): the frames
from both the detector and DeepSORT blocks are can-
celled simultaneously.

* Detector and DeepSORT cancellation frame mode
(D&DSCFM): the frame from the detector and deep
sort blocks are cancelled at the same time.

Table 2 illustrates the phase operation sequence along
with the equations required for each mode.

3.4 Data association metric in the frame
cancellation technique

During the normal phase operation, the data association
metrics consist of the original equations for Mahalanobis
distance and cosine metric, respectively [20]:

Cancellation mode type Phase operation

Equations are given in Table 1

NM Normal phase
DCFM
DSCFM
D&DSCFM

Normal phase

Normal and cancellation phases

Normal and cancellation phases

Normal phase KF equations
Normal phase and cancellation phase KF equation
Normal phase KF equations
Normal phase and cancellation phase KF equation
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AV, j) = (dj - y)TS(d; - »), 6
d®(i,j) = min[1 - r]»Tr,Ei)|r,§i) € R, )

where dO(i, j) is the Mahalanobis distance, d; represents
the incoming new measurement, y, denotes the predicted
Kalman states, d®(i,j) is the cosine distance, r; is the
appearance descriptor, and 1y is the gallery.

These two measures work together to create a compre-
hensive data association metric. The Mahalanobis distance
provides valuable information for short-term predictions in
the context of DeepSORT frame cancellation, considering
possible object locations based on motion. On the other
hand, the cosine distance considers appearance informa-
tion, aiding in identity recovery after long-term occlusions
during detector frame cancellation. The two measures are
combined using a weighted sum ¢;; to formulate the asso-
ciation problem in the frame cancellation technique:

Gij = 2D, ) + A - H*dPG, ). ®3

During the cancellation phase, three possible scenarios
arise. Detector cancellation frame mode: in this mode, the
Mahalanobis distance equals zero due to the absence of
measurement values. The prediction value of the KF is
used instead of the absent measurement value. This choice
is made because the prediction is the nearest available
value, resulting in a Mahalanobis distance of zero, as per
Equation (1). Consequently, the gate region depends on the
long-term value of the cosine metric of the appearances, as
specified in (2). DeepSORT cancellation frame mode: In
cancellation mode, the Mahalanobis distance remains the
same as described in Equation (1). However, the cosine
metric relies on the last latch gallery set obtained in the
normal phase to determine the appearances, as outlined in
Equation (2). Detector and DeepSORT cancellation frame
mode: Mahalanobis distance is zero in this mode, and
DeepSORT relies on the last latch gallery set obtained
from the normal phase to identify the appearances, fol-
lowing the guidance in Equation (2).

4 Proposed algorithm

In this study, we used one of the latest versions of MODT,
specifically YOLOv5+DeepSORT, as the foundation for a
framework that incorporates frame cancellation, deep
learning (detector), and DeepSORT (tracker) techniques.
The investigation focused on understanding the impact
and improvement of these methods on the overall system
performance of MODT. The findings from this research
have practical applications in the development of various
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applications and robotic systems to enhance the perfor-
mance of MODT algorithms.

41 NM

In NM operation, the FCR is set to zero for both the YOLO
detector and the DeepSORT tracker. The MODT system
algorithm functions as in the original setup without any
alterations.

4.2 Detector cancellation frame mode

* The normal phase begins by sending the first and second
frames to a deep learning detector (YOLOV5 or another
detector version) to determine the object’s position in the
frame.

* DeepSORT resumes estimating and predicting object para-
meters, selecting the best values between the detector and
Kalman estimation using the Hungarian algorithm.

* The cancellation phase is initiated by cancelling subse-
quent frames from passing to the detector, depending on
the FCR.

* The object’s main parameters (position, speed, width,
and height of the enclosed box) are estimated based on
the KF values.

* Data association metrics are computed as described in
Section 3.4.

* The KF updates the main object parameters until the end

of the frame cancellation sequence.

If the video does not conclude, the normal phase is rein-

itiated and resumes operation; otherwise, the program is

stopped.

4.3 DeepSORT cancellation frame mode

The normal phase begins by sending the first and second
frames to a deep learning detector to determine the object’s
position in the frame.

* DeepSORT resumes estimating and predicting object para-
meters, selecting the best values between the detector and
Kalman estimation using the Hungarian algorithm.

* The cancellation phase is initiated by cancelling subse-
quent frames from the pass to the CNN appearance block
in DeepSORT only, based on the FCR value. The CNN
relies on the last values obtained in the normal phase
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Table 3: Video specification in the Mot16 dataset used to test the proposed algorithm

Name FPS Resolution Length Density Camera Viewpoint Conditions
MOT16-02 30 1,920 x 1,080 600 (00:20) 29.7 Static Medium Cloudy
MOT16-04 30 1,920 % 1,080 1,050 (00:35) 45.3 Static High Night
MOT16-05 14 640 x 480 837 (01:00) 8.1 Moving Medium Sunny
MOT16-09 30 1,920 % 1,080 525 (00:18) 10.0 Static Low Indoor
MOT16-10 30 1,920 x 1,080 654 (00:22) 18.8 Moving Medium Night
MOT16-11 30 1,920 x 1,080 900 (00:30) 10.2 Moving Medium Indoor
MOT16-13 25 1,920 % 1,080 750 (00:30) 15.3 Moving High Sunny
Average 27 760 (00:30.7) 19.62

and updates the weight when the cancellation phase con-
cludes, after which the normal phase resumes its operation.
Data association metrics are computed as described in
Section 3.4.

The detector and other MODT blocks function as in the
normal phase.

If the video does not conclude, return to the normal
phase; otherwise, stop the program.

4.4 Detector and DeepSORT cancellation

frame mode

Initiate the normal phase by sending the first and second
frames to a deep learning detector to determine the posi-
tions of the objects in the frame.

DeepSORT will then continue to estimate and predict object
parameters, selecting the best values between the detector
and Kalman estimation using the Hungarian algorithm.

* In the cancellation phase, proceed by cancelling subse-
quent frames from the pass to the detector and CNN
appearance in DeepSORT, depending on the FCR value.
Compute the data association metric according to Section 3.4.
Estimate the main parameters of the object (position,
speed, width, and height of the enclosed box) depending
on the values of the KF. The KF will continuously update
the main object parameters until the end of the frame
cancellation number.

If the video does not conclude, the program is reinitiated,
and the normal phase resumes operation. Otherwise, the
program is stopped.

5 Results and discussion

The programme discussed in this study was implemented
using Python on MSI Crosshair 15 laptops featuring 11th
generation Intel Core i7 processors clocked at 2.3 GHz,
equipped with 16 GB of RAM. The performance of the

Table 4: Performance evaluation of normal mode and detection cancellation frame mode on the MOT16 dataset

FCR IDF1 FP FN IDs MOTA MOTP MT (%) ML

None 52.39 5,375 60,882 432 39.6 80.85 15.45 39.65
1 50.49 7,488 63,009 399 35.8 80.1 17.21 41.01
2 49.19 6,566 61,370 834 37.8 774 17.79 39.46
3 48.99 6,912 62,065 892 36.8 76.7 16.05 41.39
4 48.79 7,738 62,789 1024 35.2 76 13.93 42.55
5 48.09 10,772 62,724 1190 322 75 12.57 42.36
6 47.49 8,927 64,052 1101 329 74.5 11.41 437
7 46.49 10,049 64,698 1129 31.3 73.8 9.67 44.68
8 47.99 10,408 65,198 1149 30.5 73.4 7.74 46.62
9 45.09 10,832 66,150 121 29.2 72.6 6.77 46.23

FCR = frame cancellation rate. IDF1 = the identification metric (IDF1 score). IDF1 = (IDTP)/(2 * IDTP + IDFP + IDFN). GT = the number of ground truth
trajectories. MT = most tracked (number of most tracked trajectories). ML = (number of most lost trajectory): The number of trajectories with less than
20 FP = false positive. FN = false negative: Total number of false negatives among all frames. IDs = ID switch number, indicating the number of ID
jumps. MOTA = multi-object tracking accuracy: A metric that reflects the tracking accuracy. It has integrated consideration of FN, FP, and IDs.
MOTA = (1 ,(FNt + FPt + IDSt))/>,(GTt). MOTP = multi-object tracking precision: A metric that reflects the tracking precision.
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Table 5: Execution time table for normal mode and detector cancellation
frame mode, YOLO5 time, DeepSORT time, and total detector and
DeepSORT time

FCR AF ATPT/s AYT/F ADST/F ATD&DS/F
0 760 166.2 0.0808 0.089 0.1698
1 760 159.4 0.0557 0.108 0.1637
2 760 150.98 0.0421 0.113 0.1551
3 760 143.08 0.0335 0.113 0.1465
4 760 136.625 0.0281 0.113 0.1411
5 760 137.81 0.0242 0.117 0.1412
6 760 132.37 0.0208 0.114 0.1348
7 760 130.75 0.0187 0.115 0.1337
8 760 130.17 0.0172 0.117 0.1342
9 760 129.48 0.0155 0.118 0.1335

FCR = frame cancellation rate, AF = average frame, ATPT/s = average
total programmed time/s, AYT/F = average YOLO5-time/frame, ADST/F =
average deep-SORT time/frame, ATD&DS/F = average time (detection +
DeepSORT)/frame.

algorithm was evaluated across four modes of operation
using standard MOT metric evaluation. Previous research,
specifically studies [51,52], established the CLEAR MOT mea-
sures, which are widely adopted for evaluation purposes.
The leaderboards in the MOT challenges are determined
based on a combination of metrics, including mostly tracked
objects (MT), mostly lost objects (ML), IDF1, and the false-
positive (FP) rate. It is important to note that the FP rate
accounts for items incorrectly identified, contributing to
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erroneously missed objects, commonly referred to as false
negatives.

5.1 Dataset

The dataset employed for algorithm evaluation was MOT16
as given in the study of Milan et al. [16], and the specifica-
tions of the videos used for testing are detailed in Table 3.

5.2 Normal mode and detector cancellation
frame mode results

In the NM and DCFM, the YOLOS5 detector and DeepSORT
tracker were utilised, incorporating the frame cancellation
phase as outlined in Section 3. The results for these modes,
tested across various (FCR values on the MOT16 dataset, are
presented in Table 4. The outcomes were derived by
executing the algorithm on seven videos from the MOT16
dataset (02, 04, 05, 09, 10, 11, and 13) and computing average
values. This approach aimed to ensure stability by consid-
ering multiple frames from diverse videos, each presenting
distinct challenges. The evaluation revealed a minimal
decline in MOTA accuracy for all FCRs in this mode of
operation, maintaining MOTP for the initial FCR and

(b)
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Figure 4: Normal mode and detector cancellation frame mode: (a) accuracy vs FCR (red for multiple object tracking precision MOTP, blue for multiple
object tracking accuracy MOTA); (b) average time per frame vs FCR (blue for detection (red for DeepSORT, grey for total detection and DeepSORT

average time).
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Figure 5: Videos output for different frame cancellation rates for normal mode and detector cancellation frame mode (a: Without cancellation, b, ¢, d,
e, and f for 2, 4, 6, 8, and 9 frame cancellation rates, respectively) using Dataset MOT16: A Benchmark for Multi-Object Tracking [16].
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Figure 6: Video outputs for different frame cancellation rates for normal mode and detector cancellation frame mode (a: Without cancellation, b, ¢, d,
e, and f for 2, 4, 6, 8 and 9 frame cancellation rates, respectively) using Dataset MOT16: A Benchmark for Multi-Object Tracking [16].



DE GRUYTER Improving MODT with deep learning, DeepSORT, and frame cancellation techniques

Table 6: Performance evaluation of normal mode and DeepSORT cancellation frame mode on the MOT16 dataset

- 13

FCR IDF1 FP FN IDs MOTA MOTP MT (%) ML (%)
None 52.39 5,375 60,882 432 39.6 80.85 15.45 39.65
1 55.09 2,020 64,191 413 40.8 83.45 17.21 41.01
2 54.59 2,200 64,407 425 39.9 83.15 16.63 41.20
3 51.99 2,354 64,845 566 38.6 82.55 13.93 41.39
4 51.29 3,081 65,863 594 37 82.15 11.61 43.71
5 50.99 4,102 66,763 724 35.1 81.45 9.28 45.45
6 51.29 5,080 67,504 806 335 80.85 8.32 47.58
7 49.39 5,728 68,487 828 32 80.35 5.80 48.74
8 49.19 6,661 69,345 832 30.4 79.85 5.03 48.55
9 48.19 7,659 70,013 848 29.8 77.05 4.06 48.55

Table 7: Execution time table for normal mode and DeepSORT cancel-
lation frame mode, YOLO5-time, DeepSORT time, and total detection
and DeepSORT time

subsequently decreasing for subsequent FCR values. Notably,
Table 5 highlights a significant enhancement in execution
time. The table provides the average execution times for
NM and DCFM, encompassing the average times for the

FCR AF ATPT/s AYT/F ADST/F ATD&DS/F  yoLO5 Detector, DeepSORT Tracker, and the overall average
None 760 166.2 0.0808 0.089 0.1698 time for the detector and tracker.
1 760 140.299  0.081 0.053 0.134 These averages were computed from the seven videos,
2 760 131194 0.082 0.041 0.123 each varying in frame count (with an average of 760
3 760 115.477 0.077 0.031 0.108 6 11 videos) and idering different f
4 260 110781 0.076 0.027 0103 rames aFross all videos .an considering differen .rame
5 760 12218 0.085 0.029 0.114 cancellation values (ranging from 0 to 9) for evaluation
6 760 118.931 0.083 0.026 0.109 Figure 4(a) illustrates the relationship between accu-
7 760 119.402 0.084 0.025 0.109 racy and frame rate cancellations for NM and DCFM. No
8 760 117984 0.083 0.023 0.106 significant improvement in accuracy is observed with an
7 114.937 . .022 A . . . . .
S 60 % 0.083 0.0 0105 increase in FCR for this mode of operation. In Figure 4(b),
(a) (b)
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Figure 7: Normal mode and DeepSORT cancellation frame mode: (a) accuracy vs FCR (red for multiple object tracking precision MOTP, blue for
multiple object tracking accuracy MOTA and (b) average time/frame vs FCR (blue for detection, red for DeepSORT, grey for total detection and

DeepSORT time).
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Table 8: Performance of detector and DeepSORT cancellation frame mode with normal mode tested on the MOT16 dataset

FCR IDF1 FP FN IDs MOTA MOTP MT (%) ML (%)
None 52.39 5,375 60,882 432 39.6 80.85 15.45 39.65

1 55.49 2,829 61,581 419 41.3 81.55 18.96 41.20

2 55.89 3,193 61,714 594 40.7 81.45 18.18 39.26

3 52.69 3,444 62,426 755 39.7 81.15 17.21 41.39

4 52.99 4,071 63,021 891 385 80.45 14.12 41.97

5 51.39 4,563 63,553 936 375 79.85 12.57 42.55
6 53.49 5,056 63,962 986 36.6 79.15 12.19 43.91

7 51.79 5,579 64,669 984 355 78.45 11.22 44.49
8 48.59 14,461 63,447 1,179 28.4 77.65 9.28 44.10

9 50.69 6,809 65,778 1,093 333 77.15 7.35 44.87

Table 9: Execution timetable for detector and DeepSORT cancellation
frame mode with normal mode: YOLO5-time/frame, DeepSORT time/
frame, and total detection and DeepSORT time/frame

FCR AF ATPT/s AYT/F ADST/F ATD&DS/F
Non 760 166.2 0.0808 0.089 0.1698
1 760 125.36 0.055 0.053 0.108
2 760 104.38 0.042 0.041 0.083
3 760 90.28 0.033 0.031 0.064
4 760 81.06 0.028 0.027 0.055
5 760 73.28 0.024 0.029 0.053
6 760 68.29 0.020 0.026 0.046
7 760 63.65 0.018 0.025 0.043
8 760 59.53 0.017 0.023 0.04
9 760 57.26 0.015 0.022 0.037
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the relationship between the average time per frame and
FCR for NM and DCFM is shown. There is a notable
improvement in the average detection time for the first
five frames of cancellation and the total algorithm time
when increasing the FCR. Subsequently, there is consistent
improvement for the remaining frame rate cancellations.
However, there is no noticeable improvement for the
DeepSORT tracker during the increase in FCR for this
mode of operation. Figures 5 and 6 display the video output
of the proposed NM and DCFM at different frame rate
cancellations for videos of MOT16 dataset [16], ranging
from zero to nine in two-frame increment steps for the
video sequence. In the subsequent study modes, we will
focus more on tables and graphic results than video pic-
tures, as they accurately depict the details of the results.
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Figure 8: Normal mode and detector and DeepSORT cancellation frame mode: (a) accuracy vs FCR (red for multiple object tracking precision MOTP,
blue for multiple object tracking accuracy MOTA) and (b) average time/frame vs FCR (blue for detection, red for DeepSORT, grey for total detection and

DeepSORT time).
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5.3 Normal mode and DeepSORT
cancellation frame mode results

Table 6 presents the results of the first and third modes of
operation, namely, the NM and DSCFM techniques, for dif-
ferent FCR tests on the MOT16 dataset. The results were
calculated by running seven videos. It indicates a slight
improvement in MOTA for the first FCR and consistency for
the second FCR, followed by a performance decrease for the
subsequent FCRs as the cancellation rate increases. The
average time, calculated from seven videos with varying
frame numbers (averaging 760 frames), demonstrates a sig-
nificant improvement in execution time, as shown in Table 7.
The table displays the execution timetable for both NM and
DSCFM, the average time for the YOLO5-detector, the average
time for the DeepSORT tracker, and the total average time for
detection and tracker.

Figure 7(a) illustrates the relationship between accu-
racy and FCR for NM and DSCFM. It shows a noticeable
decrease in MOTA accuracy for the first FCR, remaining
relatively constant for the next two FCR values, and then
experiencing a performance decline for subsequent FCR
increases. Figure 7(b) illustrates the relationship between
average time per frame and FCR for NM and DSCFM. A
significant improvement is observed for the average time
of DeepSORT and the total algorithm time with increasing
FCR. However, the detector shows no noticeable improve-
ment during this mode.

5.4 Normal mode and detector and
DeepSORT cancellation frame mode
results

Table 8 shows the results of the first and fourth modes of
operation: NM and detector and D&DSCFM for various tests
on the dataset. The results were obtained by analysing
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seven videos, revealing a slight improvement in MOTA
accuracy for the first three FCR values and a subsequent
decline in performance for higher FCR values. However,
Table 9 clearly shows a significant improvement in execu-
tion time, presenting the execution timetable for NM and
DSCFM.

Figure 8(a) illustrates the correlation between accu-
racy and frame rate cancellations for NM and D&DSCFM.
It demonstrates a minimal improvement in MOTA accu-
racy for the first three FCR values, followed by a decline
for higher FCR values. Figure 8(b) depicts the relationship
between average time per frame and FCR for NM and
D&DSCFM. It exhibits a significant improvement in the
average time for detector, DeepSORT, and the overall
average algorithm time as FCR increases.

5.5 Comparison and study results

To compare the proposed algorithm with other algorithms,
we select the first FCR from each mode: DCFM, DSCFM, and
D&DSCFM. These modes exhibit the best accuracy and
execution time performance. While the remaining FCRs
show less accuracy improvement, they demonstrate signifi-
cant enhancements in execution time. For more in-depth
comparisons, the aforementioned tables provide additional
information for different FCRs. Table 10 shows the tracking
results for the MOT16 challenge [53], comparing the tracking
performance of YOLOv7-DeepSORT and YOLOvV5(S/M/L)-
DeepSORT with the frame cancellation technique modes
DCFM, DSCFM, and D&DSCFM. DCFM does not affect system
accuracy as FCR increases, but it significantly improves the
detector and the overall system execution time. Also, the
switch ID increases with FCR. Several general features can
be observed from the frame cancellation technique in dif-
ferent modes. The NM does not affect the overall system
performance.

Table 10: Tracking results on the MOT16 challenge, comparing the tracking performance of YOLOv7-DeepSORT and YOLOV5 (small/medium/large) (S/

M/L)-DeepSORT, detector cancellation frame mode DCFM, DeepSORT cancellation frame mode DSCFM, and detector and DeepSORT cancellation

frame mode D&DSCFM

Model MOTA MOTP IDF1 IDs ML (%) MT (%) FP FN
YOLOV5s 39.60 80.85 52.39 432 39.65 15.45 5,375 60,882
YOLOV5L 40.77 81.96 52.43 547 31.92 20.70 7,853 56,990
YOLOv7 40.82 82.01 53.65 514 32.11 20.12 7,940 57,434
D&DSCFM 4.3 81.55 55.49 419 41.20 18.96 2,829 61,581
DCFM 35.8 80.1 50.49 399 41.01 17.21 7,488 63,009
DSCFM 40.8 83.45 55.09 413 41.01 17.21 2,020 64,191




16 —— Rashad N. Razak and Hadeel N. Abdullah

The DCFM and the DSCFM have a minimal impact on
system accuracy for the first and second FCR, but they
result in significant improvements for DeepSORT and the
overall system execution time. Additionally, the switch ID
increases with FCR. The last mode, D&DSCFM, shows the
most significant improvement in execution time with minimal
accuracy improvement for the first FCR. Specifically, for suc-
cessful implementation of the frame rate cancellation tech-
nique, consideration should be given to the camera’s condition
and environment. The MOT16-05 video, with its low frame rate
and resolution, has an impact on the algorithm’s performance
compared to other videos. The tracking system based on
the KF characterises and models moving objects without
accounting for the effect of camera movement during
video recording. Therefore, modeling the camera move-
ment to obtain its parameters, specifying individual KFs
for camera movement to track the camera motion para-
meters, and using them as composited errors for each
object KF can significantly reduce the total error pro-
duced from videos with a moving camera. Finally, cloud
and night vision videos also affect algorithm performance
compared to other sunny static videos. Therefore, cam-
eras with good night vision contribute to the detector’s
ability to identify all objects within the camera’s field of
view, simplifying and improving the overall algorithm
performance.

6 Conclusion

This study shows a brand-new unified framework that
aims to greatly shorten the time it takes to run a program
while requiring less from the GPU processor and keeping
the main features of MODT. Using the frame cancellation
method, the suggested structure works as a variable in the
MODT algorithm, shortening the runtime and using the
GPU best. A four-mode operation test was used to analyse
the MOT16 dataset fully, which led to creating tables and
graphs showing key important factors during implementa-
tion. One big benefit of our method is that it can reduce
MODT complexity and processing time. The runtime is a lot
shorter than it was with the original versions of the deep
learning and DeepSORT methods. For the first and second
frame rate cancellations for D&DSCFM, we obtained 25%
and 37% time gains, respectively. The accuracy stayed the
same and improved compared to the original YOLO5 algo-
rithm with DeepSORT. You can learn more about the frame
cancellation method using different types of YOLO detec-
tors (YOLO7, YOLO8, and YOLO09) along with DeepSORT for
tracking. As part of this investigation, metric values will be
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looked at, and complexity, accuracy, and completion time
will be compared. The objective is to find the best version
that can be used in robotics and single-board control sys-
tems. The frame cancellation method could also be com-
bined with other algorithms, as explained in Section 2.3.
This could lead to better algorithms that are better suited
to certain uses.
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