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Abstract: This research shows the influence of a new active
controller technique on a parametrically energized canti-
lever beam (PECB) with a tip mass model. This article
remains primarily concerned with regulating the system’s
response using a novel control mechanism. This study
describes a novel control mechanism called the nonlinear
proportional-derivative cubic velocity feedback controller
(NPDCVEC). The motivation of this article is to design a
novel control algorithm in order to mitigate the nonlinear
vibrations of a parametrically energized cantilever beam
with a tip mass model. The proposed controller NPDCVFC
incorporates nonlinearly second- and first-order filters
into the system. The system is governed by one nonlinear
differential equation having both quadratic and cubic non-
linearities within the parametric force. The controller’s
efficiency in reducing framework vibrations, managing
nonlinear bifurcations, and calming unstable motion is
evaluated using numerical simulations of instantaneous
vibrations. The perturbation technique is beneficial for
solving the current model under the proposed worst reso-
nance case (Qp = 2@p). In order to choose the optimal con-
troller, we have also added three more controller approaches
to the configuration. Integral resonant control, positive posi-
tion feedback, and nonlinear integral positive position feed-
back are the three controller approaches that are applied to
the structure under consideration. We determine that the
NPDCVEC as a new controller is the most effective for low-
ering the high vibration amplitudes. Over the investigated
model, all numerical results were performed using the
MATLAB 18.0 programmer software. The stability analysis
and the effects of various elements on the controlled struc-
ture have been investigated. A comparison with recently pub-
lished works of a comparable model has also been prepared.
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Experiment capacities for a PECB with a tip mass are obtain-
able to validate the results, and they demonstrate good agree-
ment with analytical and numerical results.
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1 Introduction

Applying different types of stimulation to dynamic systems
is a widespread activity. Direct excitation, sometimes known
as forced excitement, is a common type of stimulation. The
system itself, damping, and the amplitude of the excitation all
have an impact on the vibration amplitudes of a framework
under direct excitation. Huge responses can be obtained in
directly excited systems when one of the main frequencies of
the model is close to the excitation frequency or when there
are significant nonlinearities. Damping or the nonlinearity
itself can then limit these massive vibration amplitudes. Be
that as it may, on the grounds that the excitation looks like
time-fluctuating coefficients in the situation of movement,
parametrically animated frameworks show aversion to phe-
nomenally huge vibration amplitudes. The interaction of
the parametric excitation and system properties, including
inherent frequencies, primarily determines the stability of
structural systems. In a frequency region near the funda-
mental parametric resonance, a tiny excitation amplitude
can cause a significant response in the system. Large vibra-
tions that follow could damage the system’s components and
cause significant dynamic instability before the system col-
lapses. Wind, traffic, and earthquakes are the usual causes of
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parametric excitation for cable-stayed bridges [1]. Ignoring a
substantial correlation between parametric excitation and
bridge vibration could have lethal consequences [2-5]. Occa-
sionally, the roll motion of a ship can cause amplitudes that
are dangerously high. At the point when the wave level out-
performs a specific limit and the wave excitation recurrence
is generally two times that of the boat’s regular recurrence,
the higgest amplitudes are conceivable. The ship may capsize
as a result of this parametric roll or abrupt change in vibra-
tional amplitude [6].

Parametric excitation is utilized in a variety of appli-
cations, such as vibration suppression, signal identification,
response amplification, and vibration energy harvesting.
Vibration energy harvesters are devices that transform
mechanical energy from environmental vibrations into
useful electricity. It has been shown that vibration energy
collecting, when done properly, can offer a consistent and
efficient energy source for everyday electronic device opera-
tion [7]. In vibration energy harvesting, the most commonly
employed mechanical to electrical transduction mechan-
isms include electromagnetic [8], electrostatic [9], piezo-
electric [10], and magnetostrictive transduction processes.
Parametric amplification, the process of introducing para-
metric excitation to a directly excited system, makes para-
metric excitation useful for response amplification [11].
Parametric stimulation has also been shown to be an effi-
cient strategy for vibration reduction. The decrease of the
vibrational amplitudes of the main (hosting) system is a
critical building component of the parametric vibration sup-
pression technique. The pendulum is the most commonly
used structure for suppressing parametric vibration [12].

The huge vibrational amplitudes obtained at principal
parametric resonance, on the other hand, have been exten-
sively employed for sensing purposes [13]. The important
parametric reverberation is actuated at two times the fra-
mework’s normal recurrence on the off chance that how
much the parametric excitation is adequately enormous to
beat energy dissemination in the framework. At long last,
the nonlinearities of the framework hose vibrations. The
powerful behavior of parametrically energized frameworks
has been extensively investigated in a range of applications
using parametrically invigorated cantilever radiates [14-20].
Methods of perturbation, such as the method of multiple
scales (MMS) [21-26] and averaging approaches [27,28],
have frequently been used to investigate the energetic per-
formance of parametrically simulated models. These strate-
gies have been demonstrated to be effective at predicting
how such systems will react, particularly in the frequency
region near the major parametric resonance [29]. Conven-
tional MMS has been demonstrated to accurately forecast
response only under basic parameters of modest system
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characteristics, moderate excitations, and confined frequency
ranges around the central parametric resonance [15,29-36].
Furthermore, a variety of control mechanism solutions have
been explored and demonstrated to lessen the harmful vibra-
tions caused by various nonlinear systems [37-45]. A linear
proportional-derivative (PD) controller is implemented to elim-
inate the nonlinear behaviors and to reduce the lateral oscilla-
tions of an asymmetric horizontally supported nonlinear rotor
system. The proposed controller is joined to the rotor system
through an electromagnetic actuator with four poles. One pair
of poles manages system vibrations horizontally, while the
other pair handles vertical oscillations, as mentioned in Saeed
et al. [46]. Recently, research studies [47,48] presented an eight-
pole actuator as an alternative to the four-pole actuator for
reducing nonlinear vibrations in a Jeffcott system. In their
initial research [47], the authors utilized a PD control algorithm
with the eight-pole actuator to dampen unwanted vibrations in
a nonlinear Jeffcott model suspended vertically. In their later
study [48], they employed a proportional integral resonant
controller (PIRC) to reduce the nonlinear oscillations in the
model analyzed by Saeed et al [47]. The analysis showed
that combining the PIRC control with the eight-pole actuator
stabilizes the unstable motion seen with the PD controller. The
performance of the positive position feedback (PPF) controller
is improved by suppressing its two peaks to acceptable levels,
where that could be done by coupling additional nonlinear
saturation controllers to the rotating compressor blade system
to impose a V-curve at each one of the peaks. Using multiple
time-scale method, the approximate solutions were derived,
and a stability analysis was achieved in Kandil and Eissa
[49]. Also, a macro fiber composite (MFC) system is applied
an active control algorithm to mitigate the unwanted vibra-
tions of a rotating blade via MFC sensors and actuators by
applying the PPF algorithm [50]. Formerly, a horizontally sup-
ported car’s motion has been modeled and controlled under
the effect of a nonlinear spring, a damper, and a harmonic
excitation external force. The car’s oscillations were controlled
via an integral resonant controller, which was built on a linear
variable differential transformer and a servo-controlled linear
actuator [51].

This article aims to examine a novel active controller
approach for the structure model offered within parametric
excitation in the worst-case scenario, which serves as the pri-
mary parametric resonance situation (Qp = 20)) using a per-
turbation technique and numerical methods. The motivation
of this article is to design a novel control algorithm in order to
mitigate the nonlinear vibrations of a parametrically energized
cantilever beam using a tip mass model. The proposed
controller, nonlinear proportional-derivative cubic velocity
feedback controller (NPDCVFC), incorporates nonlinear
second- and first-order filters into the system. The system
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is governed by one nonlinear differential equation having
both quadratic and cubic nonlinearities within the parametric
force. The controller’s efficiency in reducing framework vibra-
tions, managing nonlinear bifurcations, and calming unstable
motion is evaluated using numerical simulations of instan-
taneous vibrations. The requirement for another dynamic
regulator approach for this model is to lessen as many
hazardous and dangerous vibrations caused by the struc-
ture as possible. To avoid these vibrations, the author tried
other regulators such as NPD, PPF, and IRC, but found that
the NPD was inadequate. Thus, he increased the nonlinear
terms in NPD by connecting them through the NCVF regu-
lator, which reduces vibrations more than other regulators.
With the help of a corresponding subsidiary regulator and
negative cubic speed criticism, the new dynamic control has
shown an expansion in nonlinear boundaries and a more
noteworthy number of ends of the related system’s perilous
vibrations. As a new nonlinear control method, NPDCVFC,
the explored controller uses NPD plus NCVFC. A numerical
comparison is made with various nonlinear controllers that
have an impact on the system. The key finding from the
numerical result shows that the new controller, NPDCVFC,
has the most influence in lowering and getting rid of the
high vibrations on the model. MATLAB 18.0 software was
used to compute the stability study and the effects of various
framework parameters both mathematically and numeri-
cally. There has also been a comparison with other recent
works on the same concept.

2 Description of the model

Figure 1 describes a cantilever beam with a tip mass m
under parametric excitation, where L marks the length
of the cantilever, w(¢) is the displacement of the clamped
end giving parametric excitation, and u(s, t) v(s, t) are the

y s+u(s,t)
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cantilever’s axial and transverse deflections, respectively.
As illustrated in Aghamohammadi et al. [16], s is the coor-
dinate along the middle plane of the cantilever repre-
senting the arc length, p, is the density of the cantilever,
b, signifies the width, ¢, is the thickness, A, is the cross-
sectional area, E, designates the elastic modulus, I, is the
area moment of inertia, p is the radius of curvature, and 0
is the angle of rotation. The tip mass m is defined as a point
mass added at the cantilever tip (s = L). It is presumed that
its moment of inertia is negligible. It is believed that the
beam is uniform. Furthermore, the cantilever beam is
treated as an Euler-Bernoulli beam, with its thickness
assumed to be minimal in relation to its length. Shear
deformation and rotating inertia’s effects are therefore dis-
regarded. Moreover, straight gooey damping with a coeffi-
cient ¢ is accepted to be the damping in the framework.
Furthermore, it is expected that the cantilever’s neutral
axis is inextensible.

The overseeing condition of movement for the canti-
lever beam can be acquired by applying the extended
Hamilton variation principle, following a series of simplifi-
cations and taking into account the homogenous boundary
conditions [14,52-54]:

2 3
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Figure 1: A parametrically energized cantilever framework with a tip mass.
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where & represents the Dirac delta function and the sub-
scripts t and s symbolize the derivatives with respect to
these variables, respectively. Presenting

E
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and the non-dimensional parameters
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where wq is the framework’s lowest un-damped natural
frequency. One way to express Equation (1) is in the dimen-
sional form

Vg + CV; + Vgsgs + ViVssss + AVslseVsss + V& — V(1
S
+ MSp(§ = DIge - Va1 + (S - D) beedl
1
e ey @
+ 05(1 + (S — D) (P2 + Vavias)dp + Dss(1 + (S
0

$¢
- 0)f [ + vvisapaé = o.
10

There is no closed-form solution to the nonlinear gov-
erning differential Equation (4).

The transverse deflection V($, f) is anticipated by way
of a direct mix of the commitments from N vibration
modes in order to make a diminished request model for
the parametrically energized cantilever. As a result, V($, {)
can be expressed as [55], which is

N
UCHEDRAOFAG ®)
r=1

where ¥.(5) and Z.(f) are the direct mass-standardized
mode shape capabilities for the Euler-Bernoulli cantilever
pillar with a tip mass and the non-layered uprooting reac-
tion of the rth vibration mode, individually. Depending
simply on the principal vibration mode (N = 1) in Equation
(5) and disposing of addendum 1 for clarity, which turns
out as expected when the excitation recurrence is essen-
tially lower than the framework’s second normal recur-
rence ¥(8), is addressed as

¥(E) = RYE), (6)
where

1
k= s
\/L)l(l/j(g))z ds + @ = 1))2

™
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¥(8) = (cos(A8) - cosh(A$)) + Q(sin(A$) — sinh(A3)), (8)

sin(A) = sinh(A) + Arii(cos(A) = cosh(A))
cos(A) + cosh(d) — Am(sin(A) — sinh(1))"

Q= ©)

In Equations (8) and (9), the eigenvalue of the first vibra-
tion mode for which the relation holds is represented by

A= Ja,

Additionally, A satisfies the characteristic equation

10)

1+ cosh(A) cos(A) + mA(cos(A) sinh(A)
- sin(A) cosh(A)) = 0,

(11)

It is believed that the cantilever beam’s clamped end
moves axially in a harmonic manner with an acceleration
amplitude ay, i.e., wy is symbolized by way of

Wy = Gy COS(2p1), 12)

where Q,, is the parametric excitation frequency that has a
non-dimensional expression

o =% 13

Consequently, taking into account Equation (3), the clam-
ped’s non-dimensional acceleration W;; is calculated as

Wit = @y cos(@pl), (14)
where dj, is the non-dimensional acceleration amplitude
defined as

a
. _ Op
p

=T (15)

Consequently, Equation (5) for the first vibration mode
is inserted into Equation (4) to produce the final, reduced-
order equation of motion for the system, which is then
multiplied by ¥(§) and integrated over the non-dimen-
sional length as [56]

7+ BZ + d¢Q+ P cos(@p))Z + nZ3 + a(Z* + 72)Z
= 0’

(16)

where the derivatives are with respect to ¢, and g, P, 5, and
a are the coefficients of damping, parametric excitation
amplitude, Duffing-type nonlinearity, and nonlinear inac-
tivity term, respectively, which are characterized as

ap_ M o hs  hyiths
B_C’P_(D(?hl ap,q—hl,a —h1 , a7
where
1 1
hy = [2d3, by = [((1 - $)Yigs — Yp)ds - MpDP(D),
0 0
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1
hy= | YW Wgss + Aslesthess + Y28,
0

ds,

1 $
hy = wwg[I (;(7))dy
0 0

1 §¢
hs = [ [ w2 apac fas.
0 10
This part produced the mathematical model for a PECB
with a tip mass. In this section, we use the first-order approx-
imation of the multiple time-scale technique to get approxi-
mate solutions for Equation (16). Equation (16) is scaled as
follows, assuming that the system parameters counting f3, P,
n, and a to be minor and of a similar order &

7+ eB7 + Q¢ + eP. cos(Qyi)Z + en,Z? 8)
+ea(Z*+ 7ZHZ = 0,

where = €B,,P = &P, n = &n,, a = &a;.

3 Cantilever beams with various
control kinds mathematically

After including several controllers, the improved model
system Equation (18) was explored as follows [16]:

7 +eBZ + A¢Q + €. cos(@yl))Z + en,Z°

y 19
+ ea(Z* + Z2)Z = (1),

where F(t) is the control input, and it can be stated as
follows using different types of controls to lessen the vibra-
tions that occur in the principal parametric resonance case
(2, = 26)) as follows:

First type: IRC

Cantilever beam
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- 5

‘}1 + Oy, V1 = Avl Z

(20)
E(t) = eky, 1.
Second type: PPF
g+ ey iy + ol wy + 8 U = ey, Z a2

E(t) = eky, w.

Third type: Nonlinear integral positive position feed-
back (NIPPF)

iy + ey iy + of wy + &8 1 = el Z
vy + Oy, V1 = AWZ (22)
F(t) = Sku1 W+ Skvl V1.
Fourth type: Nonlinear proportional-derivative (NPD)
within NPDCVFC

7+ eB7 + Q¢ + eP. cos(Q))Z + enZ?
+eag(Z" + Z2)Z = K(t),
E(t) = —e(p,Z + diZ + aZ3 + 0,27 + aZ2° + GZ°),

(23)

where -(p,Z + dZ), is the linear control force, —(a,Z3 +
@Z%7 + a;Z Z%) is the non-linear control force, and Gy, G,
are the gains.

Since the fourth control kind is the most effective at
suppressing vibrations in the worst resonance condition,
we have only included it in this area of the mathematical
study. Figure 2 displays the model with the controller
under consideration.

3.1 Perturbation and stability analysis

The response is approximated as [57] in the first-order
approximation of the multiple time scale

Z(fr 8) = ZO(TE)) Ti) + 821(]—61 Ti) + 0(82)1 (24)

Base

Control excitation
P

€

Sensor

AA A A A

Controller g

Figure 2: A schematic diagram model of the cantilever beam with excitation via new controller NPDCVFC.
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where Ty = t and T = &t represent time scales. Substituting
Equation (24) into Equation (19) within Equation (23) and
merely accepting the terms of the order O(¢®) and O(e')
taking into consideration the equation’s outcomes
D§Zy + (D§Zy + 2DoD1Zo) + £(D§Zy + 2DoD1Zo)
+ &B,(DoZo) + €N,Zs
+ O¢(1 + €B. cos(@yh)) (Zo + €21)
+ eaeZo(DoZo)* + Zo(DjZo)) (25)
Pi(Zo + €Z1) + di(DoZo) + w(Z3)
+ 0,((Zo + Z1)*(DoZ0)) =0
+asZy (DoZo)* + G1(DoZo)?

+ £

Wherever, the derivatives are with respect to . Associating
terms of the same order of ¢ in Equation (25) yields

0% : (D¢ + 0z, = 0, (26)
O(eY) : (D§ + OGN Zy
= =2DoD1Zy = BDoZo = N.Z5 ~ aeZo(DoZo)*
- a.ZiD¢Z, - %d)&&(e"‘ép% + e 9Tz, - p,.Zy .(27)
- di(DoZy) ~ aZg — aZ§(DoZo) = asZy (DoZo)’
= G1(DoZy)?
The solution for Equation (26) is stated in the form
Zy= A (Tp) ei®h + cc. (28)
Substituting Equation (28) into Equation (27) yields
(D + O¢)Zy
— 2i@oD1A — idBA - %a)ggﬁei@r%o%
_ |- 3nA%A + 2a,0¢AA - p,A - iDydA
- 3mA’A - 3imAPA - adARA
- 3iGIAGA’A

pitoTo

(29

+ NST + cc,

where cc stands for the complex conjugate of the preceding
terms and NST denotes non-secular terms. Taking into account
the principal parametric resonance scenario Qp = 20y, the fre-
quency detuning parameter &, for the parametric excitation
frequency is characterized by way of

.Qp - 20:)0 = Eé'p. (30)

The solvability conditions in Equation (29) produce
when terms that produce secular terms are rejected using
Equation (30). Considering Equation (30), eliminating the
secular terms in Equation (29) yields

DE GRUYTER

o n 1. 61 -
2idg D1 A + idoPA + E(uolfE Aetohi - 30 AA

+ 20,00 - pA - iGdA (31)

- 3mALA - 3iwmAPA - adiARA - 3iGiOSARA = 0.

To separate the averaging conditions that administer
the elements of Equation (31), let express A and A are
exposed in the next polar formulas

A= Sa(myexplio()], A = Sa(T) expl-6(Tp)], (2

where a and 8 are the steady-state amplitudes and phases,
respectively. Changing Equation (32) hooked on Equation
(31), we obtain

1 1 1
—i@oa’ - Ec{)oa(ép -y + Eid)oﬁaa + Zd’oz a P. (cos y

. 3 .2 ., 1
+isiny) - gnga + gagwoa - Epla
(33)
—lid)da—iaa3—§iaa3—lad)za3

2 041 8 1 8 2! 8 3Wo

3
- gi61w3a3 =0,

where y = 6, - 26, separating real and imaginary ele-
ments, we obtain

, 1 1, . 3| o .
a =E[d1—ﬁ£—zwopssmy a+§d)O+le02a3,(34)
a’-d—ld)oPcos +pla+l 3 - 20

Y 14 2 £ 4 OA)() 4 af\)ong 08(35)

as.

3
+ —a + @iy

Wo
For steady-state responses (a’ =y’ = 0), the periodic
solution corresponding to Equations (34) and (35) is given by

a N
— + G1(/J02
Wo

1 3
{dl—ﬁg—zd)opssiny a+y a® = 0, (36)

. 1,
Gy ~ EwOR8 cosy + ZZ

1( 3 R 3
a+ —|=—n, = 2000 + ——0
4 wWo Wy
(37

+ w30 a’ = 0.

Subsequently, the steady-state responses can be derived
from the algebraic equations by the use of the Newton—
Raphson approach and MATLAB software. The stability
of the steady-state shell system is assessed by finding
the right-hand side eigenvalues of the Jacobian matrix
at Equations (34) and (35) using the Lyapunov first
approach
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a’ Ry Rpplfa
| 2[R Re [ ]’ (38) Then,
y Ry Rn|lY 5
A+ pA+p,=0, (40)
where - . . .
sa 1 . ol a where A indicates the Jacobian matrix’s eigenvalue, p; =
- - - ; ) ~2 . .
Ry = o g[dl -B. - 2 WoF; sin V] + E[(;TO + leo]az, —Riy — Ry and p, = RyRy; — RipRy. The Routh-Hurwitz cri-
Ry = ? - _ i (oaB, cos teria state that t.he follow.mg are p; > 0, and p, > 0, neces-
v sary and sufficient requirements for the structure to be
oy’ 1 1, . .
Ry = oy _1 Gy~ =B oS Y + {’1 stable. If th? real par.ts of th.e .elgenvalues are negative,
oa a 2 Wo the system is stable; if not, it is unstable. In frequency
3 ) 3 ) response curves, stable and unstable periodic responses
1 (;,_0'78 ~ 200 + 6)—0011 * Gyo d, are represented by solid and dotted lines, respectively.
Ry = /i 1a“)oP sin
22 ay 2 y

The following determinant in the preceding matrix
must be solved in order to determine the stable regions
of the controlled model

3.2 Experimental model study

A vibration controller, power amplifier, shaker, cantilever
beam, signal analyzer, data collection computer, and two

Ru-2 Rp ’ =0. (39) accelerometers make up the experimental apparatus are
Ry Ry -2 used to conduct the studies. This configuration, which uses
Vibration Data aquisition Signal
controller computer analyser
Stainless steel beam
Power i >
: aker > |
amplifier \
| \ Accelerometer
Accelerometer
Figure 3: An experimental set-up schematic block design.
Vibration Power VibrationView
controller amplifier software

Shaker Accelerometer
beam

Fixture Cantilever Accelerometer

Signal analyser Data aquisition
computer

Figure 4: Design of a parametrically energized cantilever framework with a tip mass.
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the novel controller NPDCVEC, is roughly block diagrammed
in Figure 3 and illustrated in Figure 4 as described in Agha-
mohammadi et al [16]. The numerical results and their
corresponding numerical outcomes are presented in the
following section.

4 Outcomes and simulation
discussions

4.1 Numerical simulation with time history

Equations (19)—(23) just illustrated the nonlinear dynamical
structure. Four different types of control techniques (IRC-PPF-
NIPPF-NPDCVFC) were then attached, and the 0 18.0 computer
programmer was used to numerically simulate them in order to
determine which control would minimize the oscillations in the
model. The time history of Figures 5-9 is used to illustrate the
parameter values as follows:

-4

1000 2000 3000

t

(o] 500 1000

t

1500 2000

V(Y

o 500

1000
t

1500 2000

Figure 6:
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B. = 0.2, @ = 1.5, B. = 2.15, @}, = 2y, n, = 1.15, a, = 1.02,

oy, = 0.66,

A = 0.7, ky, = 05, 41y = 2.0, w; = 1.6, 81 = 0.5, A, = 1.75ky,
=04,

p;=02,d = 03,4 = 04, = 035 a3 = 0.74, G, = 36,

€=025

and zero initial conditions. Figure 5 has attained the basic
steady-state amplitude Z(t) before starting any controller
at the principal parametric resonance item Qp = 2 as the
worst resonance case of the system. The outcomes for
adding the controllers (IRC, PPF, NIPPF, and NPDCVFC)
are displayed in Figures 6-9, allowing you to choose the
most effective way to lower the high vibration amplitudes.

Based on Figures 6-9, we may conclude that the new
controller NPDCVEC is the best. This section discusses the con-
struction of the controller for the active vibration of the mea-
sured cantilever beam is covered in this section (Figure 9).
As mentioned earlier, NPD and the NCVFC algorithm are
used to provide active vibration control. For this structural

10

Z(tyt
(@]

-5

-10

dz (it

dv(t)ct

Controlled structure vibration amplitude inside the measured principal parametric resonance item (Qp = 2@y) via IRC.
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0o 500 1000 1500 2000

500 1000 1500 2000
t u, (1)

o

Figure 7: Controlled framework oscillation amplitude at the restrained principal parametric resonance case (Qp = 2@y) applying PPF.

1000 1500 2000

500 1000 1500 2000 0 500 1000 1500 2000
t t

o

Figure 8: Controlled structure vibration amplitude organized on the dignified principal parametric resonance item (Qp = 20g) via NIPPF.

0.5
5
= o
N
o
-0.5
“o 500 1000 1500 2000 0.5 0 0.5
t Z(t)

Figure 9: Controlled framework vibration amplitude concluded the measured principal parametric resonance item (Qp = 2@,) via NPDCVFC.
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0.4

03 |
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Figure 10: Influence response curves a versus g of the controlled
system.

0.5

be =0.1,0.2,0.5
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03 1

02 r

01 r

4 2 0 2 4

Figure 11: Impact of damping coefficient j,.

model, the depreciation rate features are enhanced by this
controller rule. It is evident that this straightforward strategy
may work well for reducing the infinite norm of vibration
amplitudes. The findings demonstrate the effectiveness of the
optimization strategy in reducing vibrations and the speed at
which vibrations in the measured cantilever beam were sup-
pressed by angularly orienting actuators and sensors in the
proper places. Thus, in order to explore the controlled model
and examine the acts of different controlled parameters on the
framework, we shall select and statistically evaluate it.
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Figure 12: Effect of excitation frequency @,.
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Figure 13: Influence of nonlinear coefficient a,.
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Figure 14: Influence of parametric force coefficient B. = 3.5, 2.15, 1.5.

4.2 Simulation of stability and the impact of
different regulated model coefficients

This section investigated the influence of various para-
meters on the controlled structure in Equations (36)—(40)
besides numerically demonstrated stable and un-stable
regions. The helpful case a; # 0, a; # 0 is investigated in
order to obtain a large number of parameter impacts. As
can be seen in Figures 1018, all curves exhibit only stable
sections with no instability zonoutcome for any vibrating
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Figure 15: Influence of the linear control force coefficient d;.
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Figure 16: Influence of the linear control force coefficient p,.
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Figure 17: Influence of nonlinear control parameter aj.

systemes when NPDCVEC is indicated to the system. This is
another justification for adding this additional controller
to the structure, which is a desirable outcome for any
vibrating system. Solid curves reflect responses that are
stable. The solid line represents the stability regions shown
graphically by ( ). Figure 10 depicts the performance
of the amplitude—frequency response steady-state response
curves. As illustrated in Figure 10, the backbone curve is
acquired as a basic case of a against which shows stable
region with no instability zones. As damping coefficient f5,
decreased the amplitude a is increased and the stability

0.7
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05+
04 ¢
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02l G,=1.5,25,3.6

01 f

Figure 18: Influence of nonlinear control gain G;.
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Figure 19: A comparison of the current work’s results with those from
earlier studies [14,16,17] both with and without a controller.

region is increased as appeared in Figure 11. By way of the
excitation frequency @, is increased the steady-state ampli-
tude a is decreased and all regions are stable as shown in
Figure 12. Moreover, the diagrams of the nonlinear coefficient
a, is shifted to right when the values are increased with no
instability regions as depicted in Figure 13. Also, as the para-
metric force coefficient P. is increased the steady-state ampli-
tude a increased with increasing in stability regions as
displayed in Figure 14. On the other hand, when the linear
control force coefficient d; increased the steady-state ampli-
tude a has decreased and all regions are stable as plotted in
Figure 15. Besides, the curve of the linear control force coeffi-
cient p, is shifted to right (S.R) when the values of parameter
p, are increased with no instability regions as described in
Figure 16. Also, as shown in Figure 17, the values of the non-
linear control parameter a; is decreased when the amplitude
is increased with increasing the stable regions. In the last, as
the gain coefficient G; increased the steady-state amplitude a;
be small with stability regions as presented in Figure 18.

4.3 Comparison of the same model with
more recent studies

A parametrically energized cantilever beam (PECB) with a
tip mass model system akin to Equation (18) was examined
in previous studies [14,16,17]. However, they applied the
multiple time-scale process within the principal parametric
resonance item to study the behavior of the structure under
mixed parametric and harmonic excitations, eliminating the
need for a controller. The development of the model given
by Aghamohammadi et al [16] is examined in the current
work. I add a variety of control strategies to the vibrating
structure system’s modified system in order to determine
which one reduces the framework structure’s risk of vibra-
tion. Additionally, the upgraded system’s new controller



12 —— Hany Samih Bauomy

(NPDCVEC) is examined in this article. The results of this
research show that the novel controller less than the other
controllers decreases the high vibrational amplitude of the
model exposed to parametric stimulation inside the principal
parametric resonance, as shown in Section 4.1. The perturba-
tion approach is used to aid in the acquisition of analytical
solutions. Plotting of the frequency response graphs occurs at
different framework parameter levels. We end with a numer-
ical validation of the obtained results. The comparisons show
that the current approach produces findings that are remark-
ably similar to those found in Aghamohammadi et al. [16] and
that the discrepancies are less than 1%. The influence
response on recent works [14,16,17] with and without a
controller is also compared to the current study’s NPDCVFC
controller, as displayed in Figure 19.

5 Conclusion

This work aims to present a new controller, NPDCVFC, that
operates on (PECB) with a model of the tip mass. To raise
the nonlinear coefficients, it blends NPD with the inclusion
of NCVFC. The perturbation strategy is suitable for approx-
imating the solution of the considered controlled model.
The item that is regarded as the worst is the primary para-
metric resonance item (Qp = 20g). To determine which
controller design method reduces high amplitude vibra-
tions at the major parametric resonance case the best, a
comparison of several controller design methods (PPF con-
trol, NIPPF control, IRC control, and NPDCVEC as novel
control techniques) has been made. It has been shown
that the novel controller, NPDCVF, is very effective in redu-
cing vibrations in the structure close to the resonance case
under consideration. For every frequency response curve,
the unstable and stable zones were obtained through the
execution of a numerical stability study. The numerical
clarification of the model’s amplitude variation inside fre-
quency response curves under the new controller has been
considered. The results demonstrate how remarkably well
the unique measured controller lowers the vibrations of the
system under investigation. The lack of zones of instability in
the response curves is another unique result of the novel
controller that has been demonstrated. Numerical research
has been done on the impacts and implications of each coef-
ficient on the changed controlled system inside the frequency
response curves.
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