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Abstract: Breast cancer is globally known to be a major
health concern that necessitates advancements in detec-
tion and classification methods. This study introduces a
machine learning-based approach for breast cancer diag-
nosis using benign and malignant mammograms of breast
cancer. A two-hidden-layer artificial neural network (ANN)
model was designed to categorize breast cancer from mam-
mographic images. Prior to analysis, the images were sub-
jected to a sophisticated data augmentation process that
leveraged data denoising, contrast enhancement, and the
application of a generative adversarial network (GAN).
This multi-enhancement preprocessing enriched the quality
of the images and transformed them into a format more
amenable to analysis by vectorizing the pixel data. The
methodology involved rigorous training of the ANN on input
images, resulting in a significant improvement in the
model’s ability to classify breast cancer accurately.
Experimental results demonstrate a notable enhancement
in classification performance, with an increase in accuracy
ranging from 22.5 to 42.5% compared to traditional scans.
The final model achieved an impressive accuracy rate of
unity, which considered all stages of image processing,
including normal, contrast-enhanced, denoised, and GAN-
enhanced scans. The outcomes of this research underlined
the effectiveness of data augmentation and ANN in medical
imaging. Future innovations in breast cancer diagnostics are
elaborated by the potential to improve early detection and
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patient outcomes. The robust offered methodology for
breast cancer detection is considered to be a significant
contribution to biotechnological fields of interest.
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1 The genesis and tapestry of
research

1.1 Introduction

Breast cancer is characterized by the malignant growth of
cells within the breast tissue and poses a significant health
challenge worldwide [1,2]. It is a complex disease, often
developing in the milk ducts or lobules, and has the poten-
tial to spread throughout the body [3,4]. Early detection is
key to improving survival rates and mitigating the adverse
effects of the disease. The urgency for precise and early
diagnosis has propelled rapid advancements in medical
imaging techniques, which play a pivotal role in monitoring
and guiding treatment strategies [5]. However, despite the
availability of various imaging methods, challenges persist
in accurately distinguishing between benign and malignant
cases. This complexity is further compounded by the varia-
bility in cellular presentation, such as differences in size,
shape, and location within the breast tissue [6]. The need
for a more accurate and efficient diagnostic approach is
evident, as it can greatly enhance treatment outcomes,
reduce patient discomfort, and potentially lower mortality
rates. In the context of breast cancer research, the explora-
tion of the interplay between hormonal factors, genetics,
and environmental influences continues to be of paramount
importance.

The traditional techniques for breast cancer detection,
primarily mammography and biopsy, each have their lim-
itations and complexities. Mammography is widely used
for early detection but faces challenges in accurately
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identifying cancerous tissues, especially in dense breast
tissue [7,8]. Biopsy, on the other hand, provides a more
definitive diagnosis but carries risks associated with inva-
sive procedures [9,10]. The variability in mammographic
interpretation and the invasive nature of biopsies necessi-
tate the development of more sophisticated and non-inva-
sive diagnostic tools. Deep learning (DL), which is known to
be a subset of machine learning, offers a promising avenue
in this regard. It has the potential to revolutionize breast
cancer detection by learning directly from image data,
thereby enhancing accuracy and efficiency in diagnosis.
This study introduces a novel machine learning-based
approach that utilizes a two-hidden-layer neural network
model trained on an enriched dataset through advanced
image processing techniques of data augmentation, namely
data denoising, contrast enhancement, and generative
adversarial network (GAN) applications. The integration of
these methods aims to address the inherent challenges in
breast cancer diagnosis and the limitations of small datasets,
which offer more reliability and automated solutions for the
early detection and classification of this prevalent disease.

1.2 Literature review

A recent study has proposed a two-stage model for breast
cancer detection using thermographic images [11]. The
approach is notable for its use of the VGG16 DL model
combined with an optimized Dragonfly Algorithm. The
innovation in the work lies in the incorporation of the
Grunwald-Letnikov (GL) method to enhance the perfor-
mance of the Dragonfly Algorithm. The model was evalu-
ated using the DMR-IR standard dataset and demonstrated
an impressive 100% diagnostic accuracy. A significant
achievement of the model is its ability to reduce the feature
set by 82% compared to the VGG16 model alone, show-
casing efficiency in feature selection and potentially faster
processing times. Another study has investigated the effec-
tiveness of various DL architectures by leveraging transfer
learning for breast cancer detection in histopathological
images [12]. The work stands out for its use of multiple
advanced architectures, including ResNet, ResNeXt, SENet,
Dual Path Net, DenseNet, NASNet, and Wide ResNet. Uti-
lizing the BreaKHis database of 7,909 histopathological
images, the study demonstrated high accuracy rates, with
the best models achieving up to 99.8% accuracy. The study
emphasized the power of transfer learning in adapting
non-specific DL models to highly specialized tasks like
breast cancer detection. The automatic classification of
breast cancer using histopathological images was a central
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focus in the study of Buvaneswari et al. [13]. The method
involved preprocessing for noise removal and image
resizing, then feature extraction using a 3D-convolutional
neural network. The classification was performed using sto-
chastic diffusion kernel recursive NNs (SDKRNN). The model
was tested across various datasets, yielding a balanced set of
performance metrics, including 98% accuracy and an F-1
score of 89%. A previous study compared six in-tuned DL
models using transfer learning for breast tumor classifica-
tion [14]. The study introduced a custom model trained on a
public dataset with results showing that the models trained
on the augmented dataset with 7,800 images had achieved
up to 98.11% accuracy. Moreover, a novel approach for
breast cancer detection using ensemble DL architectures
integrated with the Web of Things (WoT) was presented in
the study of Sheeba et al [15]. The methodology involved
collecting input images through WoT, preprocessing with
Gaussian filtering, and segmentation using active contour
convolutional neural networks. This study led to a high
classification accuracy of 96% and a detection accuracy of
92%. The results showed the potential of combining DL with
emerging technologies like WoT for enhanced breast cancer
detection. Table 1 lists a simply comprehensive presentation
of the comparison between the five cited papers.

1.3 Research gap and contribution
statement

Despite the advancements highlighted in the referenced
studies, there remains a significant research gap in the
integration and optimization of machine learning techni-
ques for the analysis of diverse image types in breast
cancer detection. Current methodologies primarily focus
on single-type image analysis (thermographic, histopatho-
logical, ultrasound, or microscopic) and often employ con-
ventional DL models without fully exploiting the potential
of data augmentation and hybrid algorithmic approaches.
The present study introduces a novel machine learning-
based architecture that not only bridges this gap but also
brings a new perspective to the field. This study employs a
two-hidden-layer neural network model optimized through
a comprehensive data augmentation process involving
denoised data, contrast-enhanced images, and the use of a
GAN. This approach allows for the effective processing of a
diverse range of image types, thereby enhancing the model’s
accuracy and generalizability. Furthermore, the model’s
ability to efficiently vectorize images and handle complex
datasets sets it apart from existing methods, offering a more
robust and versatile solution for early and accurate
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Table 1: Literature survey of currently applied state-of-the-art methodologies

Performance metrics

Dataset size

Key techniques/algorithms

Image type

Methodology used

Ref.

High accuracy with 82% fewer

features

Standard dataset

VGG16, Dragonfly Algorithm, GL method

Thermographic

Thermographic images

(1]

Up to 99.8% accuracy

7,909 images from 82 patients

ResNet, ResNeXt, SENet, Dual Path Net, DenseNet,

NASNet, Wide ResNet
3D-CNN, SDKRNN

Histopathological

DL with transfer learning

[12]

Accuracy: 98%, precision: 93.8%

Up to 98.11% accuracy

Various datasets

Histopathological

Ultrasound

Feature extraction and classification using DL
Comparison of DL models using ultrasound
images

[13]
[14]

780 images, augmented to

3,900 and 7,800
Not specified

ResNet-50, Inception-V3, Inception-ResNet-V2,

MobileNet-V2, VGG-16, DenseNet-121

Detection accuracy: 92%,

specificity: 91%

Gaussian filtering, active contour CNN, and transfer

learning with regional attention mechanism

Microscopic

DL techniques integrated with WoT for

microscopic image analysis

[15]
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detection of breast cancer across different imaging modal-
ities. This innovation not only fills the identified research
gap but also marks a significant step forward in the applica-
tion of DL in medical imaging.

2 Developed methodology

In this study, the proposal of a marginally novel machine
learning-based methodology for the classification and detec-
tion of breast cancer is given. The current approach
advances such classifications by leveraging the strengths
of the utilized artificial neural network (ANN) model.
Generally speaking, the approach is primarily focused
on processing mammographic images, which are inher-
ently complex and require a sophisticated analysis tech-
nique to ensure accurate diagnosis. The dataset employed
in the present research was acquired from a publicly
available source, as mentioned in the study of Deb et al.
[16]. The link to freely access the open-source data is
available at the following portal: https://github.com/sagar-
deepdeb/rahman_xception_global, where all the scans are
presented. It comprises mammographic scans of varying
resolutions, predominantly larger than 4,000 x 2,000 pixels.
To maintain the integrity and quality of these high-resolu-
tion images, regions of interest (ROIs) containing the mass
were meticulously extracted rather than resizing the entire
mammograms. Examples of these ROIs, both benign and
malignant, post-preprocessing, are integral to the proposed
analysis. For visual reference, representative mammo-
graphic scans from the dataset are depicted in Figure 1.

Computers are being utilized heavily in the field of
biological medicine and other diagnostical approaches
[17-20]. The methodology deviates from traditional approaches
by utilizing a modified ANN, initially developed for image
classification tasks. This network is particularly suited for
deep feature extraction due to its inception modules, depth-
wise separable convolution layers and residual blocks. The
modification lies in the enhancements of the ROIs before
processing them into classification tests. To enhance the
performance of the proposed model, the study adopted con-
trast-enhancing, denoising, and GAN image pre-processing
techniques. These techniques aid in the more effective
extraction of features, which is crucial for the subsequent
classification process. The GAN process is particularly adept
at emphasizing the most prominent features in the mammo-
grams, which is essential for distinguishing between benign
and malignant cases. Figure 2 elaborates on the workflow
process of the presented approach, where the images are
progressed through a two-hidden-layer ANN after the pixels
are vectorized accordingly.
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Figure 2: The workflow of the ANN-based image classifying
methodology.

3 Theoretical basis

This section describes the data augmentation process in
order to enhance the classification of breast cancer scans.
This part of the research also delves into the procedure
followed for creating the ANN.

3.1 Data augmentation

Data augmentation is a crucial process in the field of
machine learning, which is particularly used for medical
imaging. It involves artificially expanding the size and
variability of datasets by altering the images in ways that
are plausible during real-world usage. This study covers
three key data augmentation methods which are contrast
enhancement, image denoising, and GANSs. First, contrast
enhancement is used to improve the visual quality of
images by increasing the contrast between the different
features in an image. A common approach to contrast
enhancement is histogram equalization, which modifies
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(b)

Figure 1: Acquired and randomly selected mammographic scans of breast cancer dataset: (a) benign and (b) malignant.

the intensity distribution of an image. The transformation
function T(r) can be defined as

T
@) = (L - 1)IPr(w)dw, )
0

where r and T(r) are the original and transformed intensi-
ties, respectively, L is the total number of possible intensity
levels in the image, and B(w) is the probability density func-
tion of the pixel intensities. Moreover, as a second method,
image denoising involves the removal of noise from the
image while preserving important structural details. A simple
yet effective method for denoising is Gaussian filtering. The
Gaussian filter applies a convolution operation to each pixel
with a kernel that represents a Gaussian distribution. The
kernel G(x, y) for a 2D Gaussian filter is given by
2,.,2

X“ty

e 20° , (2)

1
G,y = 2710
where x and y are the distances from the origin in the
horizontal and vertical axes, respectively, and o is the
standard deviation of the Gaussian distribution. Finally,
GANs s are used to generate new data samples that are indis-
tinguishable from the original dataset. A GAN consists of
two networks: a generator G and a discriminator D. The
generator creates images while the discriminator evaluates
them. The objective function of a GAN is formulated as

MingMaxpV(G,D) = [Ey-p, [log (D())]

+ By flog (1 - D(y))]
= | Paa0 108D

XEx

+ P00 log(1 - D(x))dx.

Q)
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Figure 3: Enhanced benign mammographic scans of breast cancer: (a) contrasted, (b) denoised, and (c) GAN analysis.

(b)

Figure 4: Enhanced malignant mammographic breast cancer scans: (a) contrast-enhanced, (b) denoised approach, and (c) GAN analysis.

Here, x is a real image from the dataset, z is a noise
VeCtor, Pyy, i the data distribution, p, is the noise distribu-
tion, G(z) is the generated image, and D(x) is the discrimi-
nator’s estimate of the probability that x is a real image.
Figures 3 and 4 display the results of the three methods for
both the benign and malignant breast cancer scans,
respectively.

3.2 ANN

Machine learning has proven to be effective in many dif-
ferent applications, regardless of the required regression
or classification purposes [21-32]. An ANN is a computa-
tional model inspired by the way biological neural net-
works in the human brain process information [33,34]. It
is composed of interconnected nodes or neurons, which
process data and pass it through layers to produce an
output [35]. The basic operation of a neuron in an ANN,
the adopted activation function [35], and the stochastic
gradient descent (SGD) solver [30,36] can described by
the following equations:

n
y = f| D wx; + b|, )]
i=1
sinh(x) e¥-e™X
= = = 5
f = tanh() cosh(x) eX+eX’ ©)
Whew = Woid = NV Q(Woia,Xir)}), 6

Figure 5: The utilized ANN structure.
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Table 2: Parameter values of the adopted ANN model

Parameter No. of hidden layers No. of neurons in the first layer No. of neurons in the second layer Solver No. of iterations

Value 2 4 4 SGD 1,000

where y is the output, x; are the inputs, w; are the weights, 4 Results and discussion

b is the bias, and f is the activation function. This mathe-

matical formulation allows ANNSs to learn complex patterns In terms of discussing the results, it is important to point
and relationships within data, making them highly effective  out that after the data were extracted from the images, it
for tasks like image classification and pattern recognition. was turned to numerical features. The numeric value cor-
Figure 5 depicts the adopted ANN structure, while Table 2 responds to the letter n, where the methodology has
enlists the parameters for progressing the images. extracted countless numerical values of around 2,500.

n2 /onl
% %
oo ¥ = b
® x
|® x X ®
% n3 n0
n3 |% xOO ® &,‘% % o n0
X x
[
%
s ®benign all
benign all * malignant all
* malignant all
‘n4 n5
(a) (b)

Figure 6: Visualization of the trained data: (a) free and (b) radial.

benign all | benign all -

malignant all | w malignant all

0 100000 100 200 300 400 500
size Width & Height

(a) (b)

Figure 7: Violin plot of the three features: (a) size and (b) width and height.
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Table 3: Classification-based results

Test dataset Result accuracy of classification (%)

Normal 57.5
Denoised 65.0
Contrast Enhanced 71.5
GAN 100

These statistics are based upon three main features, namely
the size, width, and height of the image. Although some
approaches would conduct important selection techniques,
this current approach is to advance them for classification
purposes. The first three numerical results (n0-n5) are ran-
domly selected for depiction in Figure 6. Figure 6a visualizes
the free depiction of the trained dataset scans of benign and
malignant while corresponding to the five true numerical
statistics. While the radial visualization is depicted in Figure
6D, it is concluded that nl is a feature where it classifies
benign tests easily, while n2 corresponds more to the malig-
nant scans. Moreover, the violin plots for the three main
features are illustrated in Figure 7. The size feature is shown
in Figure 7a where it can be seen that the malignant scans
are of higher diversity, which makes it a hard challenge for
classification. Figure 7h, on the other hand, depicts the width
violins while pointing out that the height is of the same
instances because all the scans are cropped on the same
width and height.

Predicted

benign all malignant all 3
benign all 18 2 20
;% malignant all 15 5 20
b3 33 7 40

(@
benign all malignant all 3
benign all 15 5 20
;% malignant all - 16 20
b3 19 21 40

(©)
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The classification results of all three methods, in addi-
tion to traditional datasets, are listed in Table 3, where the
recognition accuracy is presented in percentages. Corre-
sponding to this, the confusion matrix for each of the
overall four techniques is elaborated upon in Figure 8.
The testing dataset comprises 40 total images where half
of which correspond to malignant scans, and the others are
healthy. When the normal image scans were progressed
into the ANN model, 57.5% was predicted correctly with 7
only identifying as malignant where 2 were wrong. This is
an absolutely not dependable prediction methodology with
high percentages of error. The denoised dataset, on the
other hand, was of marginally similar results with a clas-
sification accuracy of 65%. Following up, the contrast-
enhanced group of images was slightly better in prediction,
with a recognition accuracy of 77.5%. However, this cannot
be trusted among medical applications, which require a
classifying near perfection. Interestingly, the proposed
GAN-enhanced dataset had exhibited a remarkable clas-
sification accuracy which exceeded expectations with a
value of unity. GANs can be advantageous over normal
images because they have the capability to generate syn-
thetic images; in addition, GANs could potentially handle
noise in a more adaptive and dynamic way during the gen-
eration process. It is also concluded that the synthetic
images produced by GANs might exhibit better contrasts
and highlight relevant features for improved classification.
While GANs might not bring such advantageous results in

benign all malignant all 3
benign all 14 6 20
:(% malignant all 8 12 20
2 22 18 40

&
benign all malignant all > 3
benign all 20 0 20
‘<§ malignant all 0 20 20
b3 20 20 40

(d

Figure 8: Confusion matrix for each of the four tested datasets: (a) normal scans, (b) denoised, (c) contrast-enhanced dataset, and (d) GAN.
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other fields of operation, it is concluded that GANs work
perfectly when used for breast cancer scan classification.

5 Conclusion

In conclusion, this study presented a robust machine learning-
based approach for breast cancer diagnosis by leveraging a
two-hidden-layer ANN model and a comprehensive data
augmentation process. The incorporation of data denoising,
contrast enhancement, and GAN techniques has signifi-
cantly improved the quality of mammographic image clas-
sification. It led to a remarkable accuracy rate of 100% in the
final model of which GAN-based enhancements were adopted.
The detailed analysis of numerical features extracted from
images, namely nx, highlighted the importance of considering
size, width, and height for classification purposes. Notably,
GAN-enhanced datasets demonstrated superior performance
compared to normal, denoised, and contrast-enhanced
images, showcasing the potential of GANS in generating syn-
thetic images with improved contrasts for accurate breast
cancer classification. This research contributes significantly
to the biotechnological field by emphasizing the efficacy of
data augmentation and ANN in medical imaging, particu-
larly in the context of breast cancer diagnostics and compu-
ters in biotechnology. The findings also underscored the
potentiality of future innovations to enhance early detection
and improve patient outcomes in bio-related fields of breast
cancer diagnosis and image processing.
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