Review Article

Hayder Saadoon Abdulaali, Ismar M. S. Usman*, and Shagea Alqawzai

Relationship between indoor environmental quality and guests' comfort and satisfaction at green hotels: A comprehensive review

https://doi.org/10.1515/eng-2024-0042 received November 22, 2023; accepted May 05, 2024

Abstract: Recent studies have focused on different aspects of green management, practices, and green consumption in the hotel industry. However, there is a need to explore and better understand the association between indoor environmental quality (IEQ) and green hotel guest's comfort. Therefore, it is essential to explore the effects of IEQ on the comfort and satisfaction of green hotel guests. This study conducts a comprehensive review of the effects of various IEQ parameters, including indoor air quality, thermal comfort, lighting, visual/view, acoustic comfort, building characteristics, decoration, and indoor greenery, on guest's comfort and satisfaction in green hotels. Based on previous literature, it was also revealed that most current green building schemes lack of comprehensive evaluation of the performance of IEQ dimensions in green hotels. It was also observed that these IEQ parameters show a significant influence on the hotel guest's comfort and satisfaction. Based on the findings of the literature review, a conceptual model was developed to represent the relationship between the IEQ parameters and guest's comfort and satisfaction. The proposed conceptual model can be implemented by the hotel management for a comprehensive assessment of guests' perceptions toward the IEQ in green hotels. The novelty of this study is based on its findings that establish a more effective IEQ evaluation method and serve as the reference scenario of IEQ, which

can be a useful tool for both academician and practitioners and contribute to improving the indoor environmental performance of green hotels through highlighting the key IEQ parameters, which affect the comfort and satisfaction of hotel guests.

Keywords: comfort, green hotels, green building schemes, hotel guest, indoor environmental quality, satisfaction

1 Introduction

The hospitality industry significantly contributes to the socio-economic sector. Still, its operations industry operates in an environment that requires excessive consumption of natural resources [1], resulting in environmental degradation, pollution, and depletion of resources in the future. The hospital industry has rapidly expanded, and hotel buildings are required to accommodate tourism activities [2]. Hotel buildings are considered an essential part of the lodging sector [3], which is responsible for socio-environmental tourism damage in two phases: construction and operation phases. Unplanned, uncontrolled, and rapid hotel construction can produce dust, runoffs, and debris that contribute to the contamination of the surrounding air, water, and environment. It simultaneously affects the surrounding nature and causes further deterioration during the operation phase. Green building (GB) and green hotel rating tools have been developed around the world in an attempt to operate the hotels in a more sustainable and efficient manner, ensuring human comfort and satisfaction within indoor areas.

Indoor environmental quality (IEQ) is essential for the human's health and well-being [4]. It is especially relevant due to the high percentage of time spent indoors by the average person [5,6]. IEQ is one of the main elements of the GB schemes because it is essential for achieving the comfort and satisfaction of occupants. It plays a crucial role in evaluating the satisfaction and comfort. It was stated that the IEQ basically consists of five parameters including

Hayder Saadoon Abdulaali: Department of Architecture and Built Environment, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia; Smart Direction Engineering and Technology Research Group, Scientific Research Center, National University of Science and Technology, Thi-Qar, 64001, Iraq Shagea Alqawzai: School of Civil Engineering, Chongqing University, 83 Shapingba, Chongqing, 400045, China

^{*} Corresponding author: Ismar M. S. Usman, Department of Architecture and Built Environment, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia, e-mail: ismarms@ukm.edu.my

indoor air quality (IAQ), thermal comfort, lighting, visual or view, and acoustic or noise. These factors are important for the green assessment criteria in evaluating the occupant's comfort [7]. Positive IEQ can enhance the comfort and well-being of occupants by inducing positive perceptual results. Uncomfortable IEQ, such as inappropriate temperature, humidity level, noise level, poor lighting [8,9], poor IAQ, and bad smells [10,11], can significantly impede life quality and conversely influence the experience of hotel occupants [12,13]. In addition, long-term exposure to unpleasant indoor environments can cause adverse changes in the health conditions of inhabitants. To ensure proper indoor environment for hotel guest's inhabitants, the evaluation of IEQ has been introduced in recent years.

In the hotel industry, IEQ has become an important indicator that influences customer satisfaction [13]. Besides, it was also reported that the comfort of the building's occupants is significantly influenced by other performance indicators, such as building characteristics, decoration, indoor greenery, furniture and furnishing, cleaning and maintenance, and privacy [7,14]. Previous studies have mainly focused on the IEQ in offices [15,16], residential buildings [17], and commercial hotels. For example, Devitofrancesco et al. [18] proposed an IEQ evaluation tool for offices based on measuring several IEQ parameters, such as thermal environment, IAQ, acoustic environment, and luminous environment. Piasecki et al. [19] proposed an IEQ index by measuring the dissatisfaction of building occupants with IEQ parameters, including air temperature and CO₂ concentration. Mui et al. [20] also developed an IEQ index consisting of five parameters, such as air temperature, relative humidity, CO₂ concentration, horizontal illumination level, and sound pressure level; the focus was on air-conditioned buildings. Suh et al. [21] examined the effects of IAQ, thermal environment, and acoustics on occupant satisfaction. Some studies have investigated the perception of IEQ by hotel guests, especially green hotel guests. For example, Li et al. [22] used these reviews to identify determinants of customer satisfaction in hospitality. Liu and Park [23] identified key factors affecting the perceived usefulness of online consumer reviews. Xie et al. [24] explored the relationship between online consumer reviews and offline hotel popularity. Buso et al. [26] also investigated the indoor comfort conditions and valuations of guests in Italian hotel rooms. Qi et al. [25] and Piasecki et al. [19] analyzed the IEQ issues in five-star hotels in China and South Korea. Shen et al. [27] assessed the IEO in the top five brand hotels in China using the text-mining approach. Studies are also reported on the relationship between the IEQ parameters with hotel guest's comfort and satisfaction in Malaysian green hotels before and after its validity surpassed [28]. Nevertheless, comprehensive systematic review studies have still not yet emerged. Therefore, there is still a lack of existing research that accounts for comprehensive IEQ parameters to determine the comfort and satisfaction of hotel guests staying in green hotel rooms, together with the considerable attention given to the concept of experience IEQ in the present competitive environment. Therefore, recognizing and understanding the customers' comfort and satisfaction with the IEQ of green hotels is essential for the sustainable development of the entire hotel industry. Accordingly, there is a need to delve in some of IEQ parameters to understand its correlations with the hotel guests' health, well-being and satisfaction.

Accordingly, the above-mentioned studies did not include a comprehensive description that presents the association between several IEQ parameters with the hotel guests' comfort and satisfaction based on a systematic review approach. To address this research gap and enrich the extant of literature, this study aims to provide insights into IEQ parameters and their influences on green hotels' guests' comfort and satisfaction. The novelty of this study is that it contributes to a more effective IEQ evaluation technique and serves as the reference scenario of IEQ to improve the indoor environment performance of green hotels by summarizing the most essential IEQ parameters, which affect the comfort and satisfaction of hotel guests. The main objectives of this study are listed as follows:

- (a) To provide an overview of the essential parameters that affect the IEQ in green hotel rooms.
- (b) To explore the potential relationship between IEQ parameters, including IAQ, thermal comfort, lightening, visual and acoustic, as well as building characteristics, decoration and indoor greenery, and comfort/satisfaction of guests at hotels using a systematic review procedure.
- (c) To summarize the existing literature on investigating the relationship between IEQ parameters and guests' comfort and satisfaction.
- (d) To propose a simple conceptual model, which can be implemented by the hotel management for a comprehensive assessment of guests' perceptions toward the IEQ in the green hotels.

2 Research methodology

In order to meet the aim of this study, a systematic review procedure was conducted in order to address the relationship between IEQ and guests' comfort and satisfaction in green hotels. It was stated that the systematic review approach is a research method that can be used to collect and synthesize all relevant research findings that fit the pre-defined inclusion criteria in order to address

particular research [29]. The systematic review method is conducted in four stages, namely (a) brainstorming, (b) database selection, (c) bibliometric search, and (d) sample refining and selection, as illustrated in Figure 1.

2.1 Brainstorming

Brainstorming is considered an effective way to define the boundary of IEQ in green hotel rooms and set the research objectives and questions. In this research, the boundary is lined by diverse topics on the effect of IEQ parameters on guests' comfort and satisfaction in green hotels. Brainstorming can help to generate various ideas, which can be consolidated into a group of topics that can form the boundary of IEQ research. The brainstorming group consisted of two PhD researchers, each with 3 to 6 years of research experience on various research topics. The brainstorming session was conducted via Zoom Meeting Mobile Apps on 1 September 2023 and lasted for 2 h. The aim of the brainstorming session was to explore the key research areas in the IEQ factor of green hotels research. The members of the group were informed about the aim of the brainstorming session ahead in order to improve its efficiency. The entire emerging ideas during the process of brainstorming were integrated into a large idea map with the assistance of the MindGenious graphical thinking software tool. Identical topics were consolidated.

2.2 Database selection

A number of databases such as Scopus, PubMed, Web of Science, and Google Scholar are currently available for indexing scientific papers. Some research has indicated that the Scopus database is preferred over other databases [30], because it is accurate in performance [31] and has been used extensively in review articles in the area of IEQ factors at green hotels [32,33]. However, other researchers have stated that the Web of Science is a comprehensive publications database in comparison with other databases [34]. Thus, both the Scopus database and the Web of Science database are considered in this study; meanwhile, Google Scholar is also used as an assistant tool.

2.3 Bibliometric search

For this purpose, "relationship between IEQ and guest's satisfaction and comfort at green hotel," "indicators of indoor environment assessment for visitors' satisfaction at green hotels," and "assessment of IEO at green hotels utilizing text-mining approach" as keywords in article titles, abstracts, and keywords is searched among articles and review papers from 2010 to 2023 in Google Scholar, Scopus, and Web of Science databases. The initial search generated lists of 50, 65, and 35 papers for the first, second, and third keywords, respectively, which were sorted by relevance in Scopus and Web of Science.

2.4 Sample refining and selection

In the refining, the titles, abstracts, and keywords of research papers were carefully checked and subsequent in-depth reading of the entire paper, the number of 38, 52, and 20 papers with the most relevant content is selected.

3 GB schemes

GB schemes are defined as tools for assessing the performance of buildings in relation to IEQ, efficiency of energy and water, IAQ, site, and environmental impacts [35,36]. The concept of the GB movement has been progressively grown throughout the years. Various GB schemes have been emerged in different countries to account for the difference in climate, people, and geographical importance without embracing the codes of GBs. Some of these GB schemes include GBI, LEEDS, BREEAM, GREEN MARK, GREEN STAR, CASBEE, etc. They have been emerged as a result of green initiatives introduced to suit each country [37]. It was claimed that there are approximately more than 600 GB schemes across the world [38]. These GB schemes aim to define GBs and encourage the design of GB as well as identify and appreciate the environmental initiatives that transform the buildings and minimize the damages to the environment [2,39]. According to Wei et al. [40], GB schemes aim to attain sustainable buildings that are healthy, energy efficient, and friendly to the environment.

GB schemes have widely emerged to promote the design and construction of buildings beyond the regulatory minimum requirements toward a green standard [41]. They serve as extensive approaches for assessing the recognition of the greenness level attained by a building [42]. The rapid growth of GB demands across the world acts as a forefront to provide the occupants of the building with a better indoor environment to ensure the health, comfort, and satisfaction of inhabitants as well as mitigating the

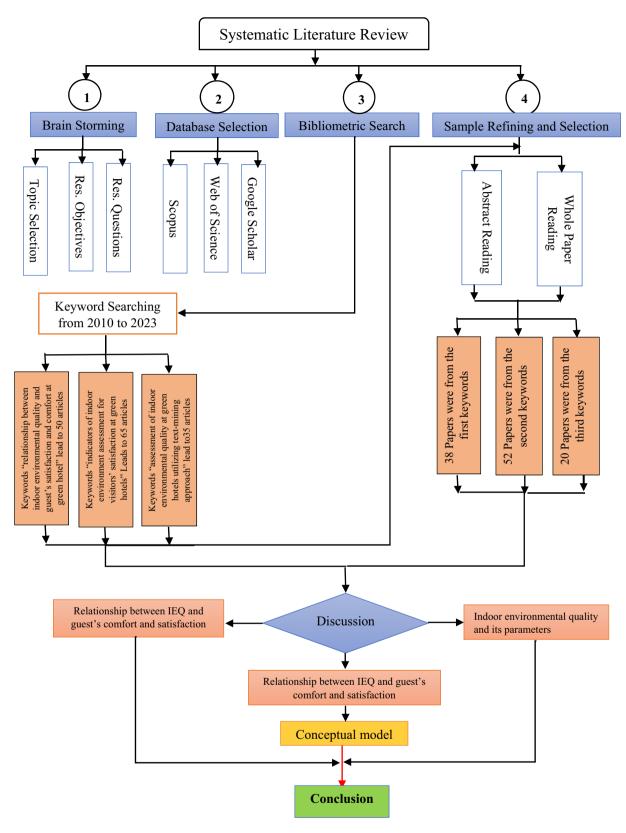


Figure 1: Research methodology.

climate change problems with advanced technologies that promote resource efficiency [43]. Besides the pre-existing GB schemes for GB ratings, there are some specific GB schemes for hotel buildings, where some examples are listed in Table 1.

4 IEQ and its parameters

IEQ is defined as the indoor space quality that is composed of several elements, such as IAO, thermal comfort, acoustics, sound, odor, vibration, lighting, ergonomics, cleanliness, control, and maintenance [49]. These parameters concern the environmental conditions inside the building and their influence on the health, comfort, and satisfaction of occupants [48]. IEQ is generally evaluated using objective measurements, subjective surveys, and both [6]. It is one of the key components in evaluating the building to meet the attributes of GB. Besides, IEQ is an essential element for attaining the sustainability of a building due to its effect on the health, comfort, and satisfaction of inhabitants [44]. It documents the indoor environmental performance of buildings and its effects on the health and well-being of occupants [45]. IEQ is composed of several conditions within the interior environment of building [46]. According to Guida et al. [47], the indoor environment represents the confined environment of life and work offices, housing, social and or recreational facilities.

Numerous GB schemes have incorporated the IEQ component as one of the assessment criteria, and hence, it is expected that the GBs would be better and more comfortable to meet the occupant's satisfaction compared with the traditional buildings.

As summarized in Figure 2, the majority of GB schemes provide credits to four basic IEO elements, such as IAO, thermal comfort, acoustic comfort, and visual comfort, while KLIMA gives credits only to the IAQ and thermal comfort. The BREEAM and LEED GB certification schemes are the most famous international GB schemes [50]. In the BREEAM scheme, IEQ elements are provided under the section called "health and wellbeing" [51], while IEQ

elements in the LEED GB scheme are assessed under the section called "indoor environmental quality" [51]. The BREEAM allocates 18 points of 150 to IEQ, while LEED allocates 17 points out of 110 to IEQ. The BCA GMS allocates 43 scores out of 190 to IEQ. The allocations of other GB schemes for IEQ are summarized in Table 2.

Under the section of IEQ in the LEED scheme, IEQ comprises IAO, tobacco smoke, CO₂ monitoring, indoor chemical sources and pollutants, daylight, thermal comfort, ventilation efficiency, and views [52]. A review of the credits assigned in BREEAM and Green Star GB schemes has indicated that approximately 10-20% of all scores that can be allocated to the various parameters certified by these GB schemes are related to IEQ [53,54]. GMS has different criteria applicable to new and existing buildings as well as to the internal spaces. IEQ parameters provided by GMS assessment criteria include sustainable products and policies, lighting level, high-frequency ballast, task light and control, IAQ management plan, IAQ, CO2 monitoring, thermal comfort and control, indoor greenery, post-occupancy survey, and corrective actions and noise level. Ventilation and filtration are assessed at the building level, while indoor greenery and landscape controls are incorporated in the GMS interior scheme [55]. Chiang and Lai [55] proposed a rating scheme comprising nine criteria for the application in the GB scheme of Taiwan, known as ecology, energy saving, waste reduction and health [56]. Based on this system, the building meets the requirements in the whole IEQ if the total of the awarded scores for each criterion is 60 or greater. This system did not incorporate the thermal comfort criterion because the attainment of thermal comfort inside the building in Tiawan requires extensive utilization of air-conditioning (AC) during summer. Additionally, Malaysian GB Index (GBI) rating schemes consider the assessment of IEO using five parameters, including IAO, thermal comfort, acoustic or noise, lighting, visual, or view.

Most GB schemes consist of various parameters that can be utilized to evaluate IEQ and ensure that IEQ conditions in the buildings, including hotels, are acceptable with low health issues and high well-being of inhabitants. Therefore, GB schemes are considered useful references and guidance

Table 1: Existing GB schemes for hotel buildings

GB schemes	Building type	Country
Green key global	Motels, hotels, resorts	Canada
National Australian Built Environment Rating System (NABERS)	Hotel	Australia
Earth-check	Hotel	Australia
LEED Building Design and Construction	Hospitality	USA
GBC Energy and Water Benchmarking Tool	Hotel	UAE

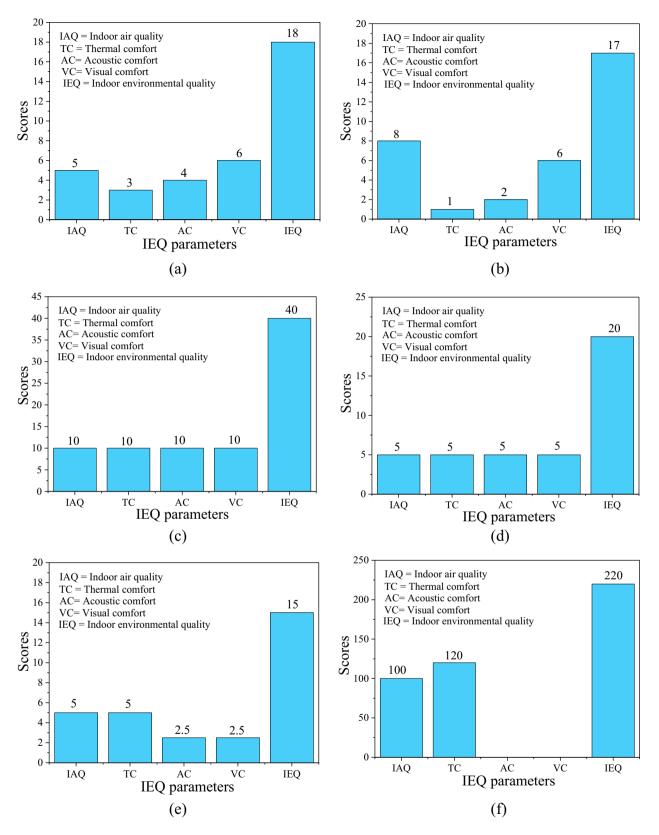


Figure 2: Scores accredited to IEQ in various GB certification schemes. (a) BREEAM (United Kingdom), (b) LEED (United States), (c) DGNB (Germany), (d) ITACA (Italy), (e) LiderA (Portugal), (f) KLIMA (Austria), (q) NABERS (Australia), (h) BCA GMSs (Singapore), (i) EEWH (Tiawan), (j) GBI (Malaysia).

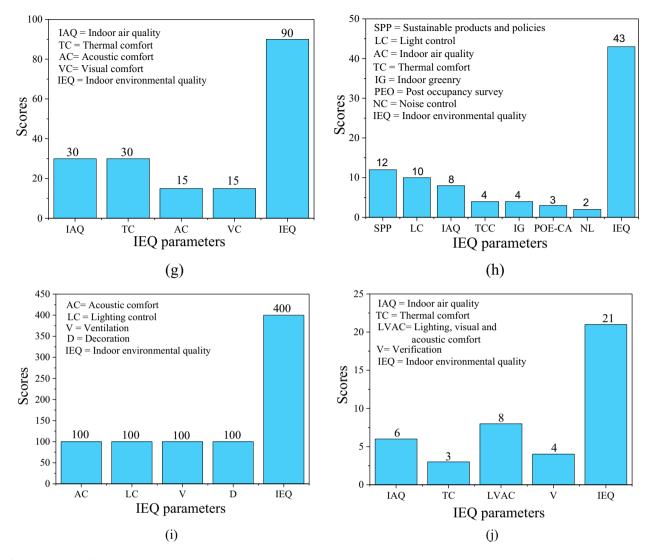
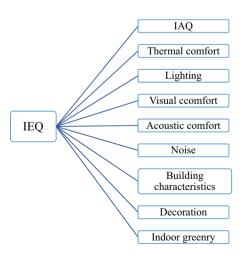


Figure 2: (Continued)

for the selection of IEQ parameters for the assessment of buildings. However, these GB schemes may not be able to include comprehensive IEQ parameters for assessing whether the building or hotels can provide better IEQ to the occupants. Besides, there might even be situations whereby the IEO performance would be compromised to achieve the other criteria in the existing GB schemes, such as BREEAM, LEED, GMS, and

In addition to the IEQ elements reported in the existing GB schemes, various publications have been presented by various researchers to improve the IEQ in GB (e.g., hotels) [28]. Lee et al. [15] carried out a study to assess the IEQ of GB in warm, humid, and tropical climate. It was indicated that ventilation, thermal comfort, and ability to control the indoor environment of the GB were relatively less satisfactory. IAQ, acoustics, and layout did not show a great difference between the buildings. The lighting, outer view, furniture, cleanliness,

and privacy seemed to be significant. Patnaik et al. [58] conducted research to evaluate and explain the IEQ parameters and their effect on GBs. It was found that building characteristics (i.e., location, climate, design and construction, optimal temperature zone, and thermal insulation) significantly influence the IEQ within the building. Thermal comfort, visual comfort, acoustics, and the levels of volatile organic compounds (VOCs) assist in measuring the IEQ of a building. Suh et al. [21] conducted a study to evaluate the IEQ of platinum-certified office buildings located in a tropical climate, considering the effect of various variables, such as thermal comfort, IAQ, lighting, acoustics, cleanliness, and furniture. It was indicated that the IEQ can be measured using decoration and indoor greenery [17,19]. Some of the essential IEQ parameters that might affect the comfort and satisfaction of guests at green hotels are summarized in Table 2.


Table 2: Other IEQ parameters from the literature

IEQ parameters	Criteria	Sources
Building characteristics	Location	[58]
	Climate	[58]
	Design and construction	[58]
	Optimal temperature zone	[58]
	Thermal insulation	[58]
Decoration and indoor	Amount of interior decoration	[13,19]
greenery	Usage of environmentally	[13,19]
	friendly building materials	
	Indoor Greenery	[17]

Based on the above, several parameters are important to improve the IEQ at green hotels, as depicted in Figure 3. Therefore, these IEQ parameters seem to have a significant effect on the hotel guests' comfort and satisfaction at green hotels.

5 Relationship between IEQ and guests' comfort and satisfaction

IEQ has a significant influence on the safety and health of human beings. It is essential for hotels to provide a cleaner and healthier environment for their guests and employees. It is essential for hotels to improve the hotel environment to meet the comfort and satisfaction of hotel guests and obtain higher profits. It was observed that good IEQ can decrease the complaints rate of customers by enhancing the work and living environment [59]. However, many hotel guests mentioned some IEQ problems when they

Figure 3: Extensive parameters for extensive evaluation of IEQ at green hotels.

make complaints about hotels due to improper thermal, acoustics and lighting actors as well as poor IAQ. Many studies have been conducted to document the influence of several IEQ parameters on hotel guests' comfort and satisfaction, as shown in Table 3.

Accordingly, IEQ, particularly, IAQ, thermal comfort, lighting, and visual and acoustic, are essential factors considered by hotel guests and therefore a factor in determining customer satisfaction. Besides, some literature has also reported that there is an effect of other IEQ parameters including building characteristics, decoration, and indoor greenery, on green hotel guest's comfort and satisfaction. It can be generally found that most studies were performed to evaluate the IEQ parameters within a commercial green hotel. However, the existing studies evaluate the relationship between IEQ parameters and hotel guest comfort and satisfaction in green hotel rooms.

5.1 The relationship between IAQ with green hotel guests' comfort and satisfaction

IAQ is the essential environmental parameter that affects the IEQ and indoor comfort as well as guest satisfaction. It is an indicator to estimate the quality of air in the interior of a building [2]. Besides, it influences the living comfort and mood changes of building occupants. Poor IAQ will not only decrease the occupant's ability to sleep [66], but it also causes irritability and anxiety [67]. Therefore, it is indicated that low quality can result in guest dissatisfaction, which will increase the rate of complaints [19]. Indoor air is defined as the air within the building spaces occupied by the residents, which might be related to the thermal experience [68,69]. There are two types of indoor air contaminants, which include chemical and biological factors. Chemical factors comprise VOCs, NO_x, CO₂, CO, asbestos, radon, ozone, respirable suspended particulates (RSPs), and construction chemicals, while biological contaminants include endotoxins, houseplants, dust mites, pests, pollen, molds, etc. [70]. It was indicated that poor IAQ can cause slow mental and high blood pressure in the development of children. Other health issues resulting from poor IAQ include sick-building syndrome (SBS), which refers to symptoms such as nausea, irritated eyes, upper respiratory infections, nose and throat, dizziness, headaches and fatigue, or sleepiness [71]. Studies have indicated that there is a correlation between the indoor environment with asthma and allergies [72].

Several studies have reported the relationship between IAQ issues and the dissatisfaction of hotel guests in many publications. For example, Patnaik and Mishra [73] also

Table 3: Previous studies on the relationship between IEQ and guests' comfort and satisfaction

Ref.	Objective	IEQ parameters	Research methods	Major findings
Gayathri et al. [60]	To determine the key factors influencing the IEQ on green hotel buildings as compared to the conventional hotel	IAQ, thermal, external view, acoustic qualities, lighting and ventilation, cleanliness, furnishings, and maintenance	Interviews and questionnaire survey	It was found that the green hotels can provide better IEQ performance than that provided by the conventional hotel that meets the guest's comfort and satisfaction. However, it was indicated that some parameters, such as acoustics, lighting, and person control degree, were relatively less satisfactory in the green hotels
Qi <i>et al.</i> [25]	To evaluate the perception of guests toward IEQ in green hotels	Space heating, AC, humidity, fresh air, lighting, and noise	Online reviews using a text- mining approach	It was indicated that the AC, humidity and noise were the top factors affecting the IEQ satisfaction of the guest. It was also shown that a higher complaint rate of IEQ can affect the performance of the hotel business. The IEQ complaint showed a positive relationship with energy consumption if the annual energy consumption is higher than 150 kWh/m² and vice versa
Qi <i>et al.</i> [25]	To evaluate the IEQ and guests' valuations in Italian hotel rooms	IAQ, acoustic, visual, and thermal comfort	Questionnaire survey	It was elucidated that guests' appreciation of comfort is greater than the investment costs required to provide them with comfortable conditions. It was also found that energy efficiency measures are essential to reach the desired indoor comfort level
Wei <i>et al.</i> [53]	To assess the sub-criteria used to evaluate the IEQ in hotel buildings	IAQ, thermal, visual, and acoustic environments	Literature Review	It was indicated that, on average, the contributions of IAQ, acoustic, thermal, and lighting environments to the IEQ rating were 34, 17, 27, and 22%, respectively
Abdulaali et al. [28]	To investigate the IEQ perception of the former green hotels within the GBI certification validity	IAQ, thermal, visual, and lighting comfort	Online reviews using a text- mining approach	It was found that the top IEQ factors affecting the comfort and satisfaction of green hotel guests were thermal and acoustic or noise, with percentages of 36.8 and 45.8%, respectively, while the IAQ, visual or view, and lighting showed only 5.8% for all of them
Kim <i>et al.</i> [3]	To measure the variations in temperature and humidity in hotel guest rooms	Thermal comfort	Field measurement and questionnaire survey	It was found that the potential discomfort in the guest rooms appeared to have a stronger association between outdoor and indoor temperatures, implying thermostat-related discomfort sources
Shen <i>et al.</i> [27]	To evaluate the IEQ complaints in the hotel building	IAQ, thermal, acoustic, and luminous environments	Online reviews using a text- mining approach	It was found that IAQ, thermal, acoustic, and luminous environments can affect the complaints of hotel guests regarding IEQ, indicating their discomfort and less satisfaction
Borowski et al. [4]	To study the IEQ in the guestroom at the hotel located in Poland	IAQ and thermal comfort	Field measurement and analysis	Based on the measurement and analysis, it was found that the humidity and temperature are sustained at a satisfactory level, while it was indicated that the concentration of CO ₂ observed to exceed 2,000 ppm,

(Continued)

_		
٠,		
Postinitary	١	
- 7	٠	۰
- 7		
7		
1	3	•
7		
,	•	
(•
U	7	
`	٠	
		,
ċ	•	
٠.	•	
•	J	
=		
427		
7	1	
٠.	٠	۱
۰	-	

Ref.	Objective	IEQ parameters	Research methods	Major findings
				which means that it causes discomfort to the guests of the hotel
Xu <i>et al.</i> [13]	To explore the effect of different decoration styles on the subjective evaluation of the IEQ	Decoration styles, IAQ, thermal, acoustic, lighting environment, and non-lighting factors	Questionnaire survey	It was indicated that IAQ, thermal, light, acoustic, and non-light visual (decoration) factors have the greatest impact on the subjective evaluation of the hotel IEQ
Suhag and Maan [61]	To investigate the perception and behavioral intention of hotel guest toward green hotels to measure their comfort and satisfaction with green services provided by green hotels	Accommodation and environmental communication	Questionnaire survey and Interviews	It was found that the environmental behavior of guests in the hotel accommodation significantly affects the guest's loyalty toward their perception of environmental communication within the hotel
Zhang <i>et al.</i> [62]	To evaluate the satisfaction of visitors toward IEQ in Australian hotels and apartments	IAQ, thermal environment, acoustics, lighting, availability of space, cleanliness, exterior view, layout/design and maintenance	Web-mining, natural language (NL) processing and analysis	It was indicated that the hotel guests were not satisfied with acoustics, cleanliness, facilities and cleanliness. Overall, it was indicated that the overall IEQ parameters, excluding IAQ showed a small influence on the degree of dissatisfaction across different climate zones
Dang-Van [63]	To examine the relation between the IEQ of green hotels and the intention of customers to revisit as well as to investigate the mediation roles of guest positive affectivity and the considered brand value	IAQ, thermal comfort, acoustics, layout, and lighting	Questionnaire survey	It was found that the IEQ element has a positive effect on the revisit intention of customers. The positive affectivity of customer and perceived brand value showed a positive mediation role between the IEQ and customer revisit intention
Kim <i>et al.</i> [64]	To explore the effect of IEQ on the service quality as well as its effect on customer loyalty and satisfaction	IAQ, thermal environment, acoustics, internal space, and furnishings	Questionnaire survey	It was indicated that there is a significant relationship between the internal spaces and furnishings with service quality and guest satisfaction. It was also shown that the IAQ and thermal comfort significantly influence the quest satisfaction as well as their lovalty
Ma <i>et al.</i> [65]	To explore the relationships between IEQ and occupant dissatisfaction in temporary residences (e.g., hotels)	IEQ, visual, acoustic, and thermal comfort	Text-mining approach	It was also revealed that windows are perceived as the common source that matters for all four categories of IEQ dissatisfaction. It was also observed that the IEQ value is correlated with increased rental costs when the temporary residences have satisfactory IEQ conditions. It was concluded that IEQ satisfaction can be a key design driver and, therefore, should be considered in building design, management, and real estate finance

highlighted the influence of poor ventilation, humidity temperature, and air movement on surface heat loss in human's body. Asadi et al. [74] monitored the IAQ of some star-rated hotels and found that these hotel buildings had problems such as insufficient ventilation speeds, room particle concentrations that were too high, and formaldehyde pollution. Besides, Gayathri et al. [60] indicated several effects of IAQ parameters on human health. These effects include SBS, building-related illness, nausea, headache, shortness of breath, drowsiness, fatigue, cancer, lung cancer, heart failure, signs of inflammation, asthma, chest pain, respiratory infections, stroke, and pulmonary and cardiac diseases. Chang et al. [75] monitored US hotels and found that when the room was vacant, or the guest was asleep, the particulate matter (PM) level in the room was very low, but when the guest was indoors for activities, PM pollution would increase. Wu et al. [76] investigated the access to IAQ based on the grey method. Conventional buildings and green-rating buildings were chosen to evaluate IAQ in terms of smell satisfaction. Gray method-rated 3-star buildings showed satisfactory smell compared to conventional buildings. The 3-star building type was the best among all types of buildings in relation to the fresh air satisfaction. Kim and Oldham [3] assessed the IAO parameters such as humidity, temperature, CO₂ concentration, and acceptability level of IAQ conditions. It was mentioned that the recorded IAQ parameters varied over time, and there was no repeatability or clear variation patterns. This may be attributed to the preferences and behavior of users. It was also demonstrated that the relationship between IAQ parameters, such as thermal satisfaction and humidity levels, is critical. High humidity also affects the inhabitant's health and enhances the respiratory conditions [77,78].

5.2 The relationship between thermal comfort with green hotel guests' comfort and satisfaction

Thermal comfort is defined as the state or condition of mind that represents satisfaction with its thermal environment and will be significantly affected by air temperature and velocity as well as relative humidity [79]. It plays a key role in IEQ as it influences the comfort level of occupants. It measures the satisfaction of occupants with the thermal surroundings inside the building as well as heating and cooling systems [80,81]. The thermal environment is influenced by many conditions, which can be categorized into personal and environmental factors. Personal factors include physical condition and type of clothing, while environmental factors include air temperature and velocity as well as the moisture of air [20]. Both personal and environmental factors

play a critical role in measuring the thermal comfort in the building [82].

The agent of thermal comfort (e.g., temperature and humidity) are the most common type of physical factors that could significantly influence the inhabitants of the building [83]. It is essential to consider the effective temperature because it represents the perception of an individual on the ambient temperature [70]. Temperature has a high influence on thermal comfort, which in turn affects the health, work performance, and social behavior of building occupants [84]. The humidity is described as the amount of moisture available at a specific place. The amount of moisture is influenced by the temperature. When the temperature is high, the moisture content is also high [85]. Several studies have examined the influence of thermal comfort on the comfort and satisfaction of the occupants. For example, Wargocki et al. [86] noticed an improvement in the building occupant's performance when the room temperature is maintained at a comfortable level. Ismail et al. [87] found that the temperature level and ventilation were varied based on the preferences of individuals. It was pointed out that the situations responsible for increasing the internal temperature in a building are the external heat transfer from outside the building and the emitted heat from the interior electric devices [88]. Guida et al. [47] indicated that thermal comfort is affected by different factors, such as temperature, relative humidity, solar radiation, wind velocity and atmospheric pressure, physical activity (mediator), and thermal clothing (worn garments). Patnaik and Mishra [73] highlighted the importance of thermal comfort in affecting job performance and productivity. It was also indicated that there is a correlation between poor ventilation and heat loss from body surfaces with temperature, humidity, and movement of air. Sahid et al. [89] conducted a questionnaire survey approach to evaluate the indoor thermal comfort in the hotel rooms and indicated that solar radiation had a significant effect on changing the temperature in the hotel room and consequently the thermal comfort. Vella et al. [90] also found that there is a lack of overall thermal mass of the building and higher solar gains through glazing elements, giving a minimal inertia against the fluctuations of exterior temperature. Kim and Oldham [3] characterized the variations in the profiles of internal temperature and humidity in guest rooms. It was found that the potential discomfort occurred in the rooms with a stronger association between outdoor and indoor temperatures. Al-Sakkaf et al. [88] highlighted some passive architectural design interventions to enhance thermal comfort as well as required building cooling energy. It was shown that using double low-E glass and a double wall with polystyrene thermal insulation can improve the

thermal comfort inside the building and decrease the energy performance and the emissions of CO_2 to 17 and 9%, respectively.

5.3 The relationship between lighting with green hotel guests' comfort and satisfaction

Lighting is an essential characteristic of IEO because it influences human health and well-being. It affects the physical and psychological state of occupants. It also influences the health, comfort, and productivity of building inhabitants because it causes high levels of fatigue [91]. Various human activities in indoor spaces are vulnerable to the effects of different lighting sources (i.e., LEDs). Therefore, it is important to create a healthy and comfortable lighting environment inside the hotels [92] by using modern light control technology, which provides physical and psychological comfort to occupants [93]. Utilizing modern lighting control technology to sufficiently provide humans with psychological and physiological comfort is an important means to improve their work efficiency and well-being [93]. Building designers should consider proper dimensions to attain optimal lighting comfort. These dimensions include light levels, light transmission, glare control, and consistency [91]. GBs also utilize natural sunlight to decrease the consumption of energy and provide the occupants with better visual comfort. Appropriate illumination obtained from natural and artificial light contributes to enhancing the health, well-being, and satisfaction of the occupants, indirectly improving their performance as well as productivity.

Previous research indicated that insufficient lighting could lead to numerous health issues, including eye irritation, dry eyes, headaches, and allergic reactions [94]. It was also reported that the absence of daylight can affect the ability of building inhabitants to improve their performance, as daylight is associated with the minimization of health issues [94]. Musa et al. [95] stated that high-quality lighting can enhance the vision, emotion, focus, and attitude of the person. Boyce [94] also claimed that natural lighting can decrease seasonal anxiety, while excess lighting can cause unwanted glare. Besides, a sufficient amount of lighting can influence morale, quality, energy efficiency, and productivity [84]. Aries et al. [96] evaluated the recent research on the effect of daylight exposure on human health. It was indicated that there is proof of the link between daylight and its potential effects on health. Salvadori et al. [97] pointed out that it is important to adopt a standardized procedure of evaluation that would permit the

lighting designers to confront the possible interventions and adopt the most adequate to establish the conservation and comfort problems of the lighting environment.

5.4 The relationship between visual with green hotel guests' comfort and satisfaction

The visual environment provides contact people with the external world because it translates color, light, and shapes to the human brain. Visual comfort is described by the glare and contrast concepts, which are influenced by the viewer's field of vision [98]. It greatly influences productivity [99,100] and is critical for the comfort, satisfaction, and well-being of occupants [91,101]. It was reported that visual comfort is related to the illuminance and general appearance of the interior environment, where the amount of illumination in the living place is essential and is regarded as an important guideline [102]. It was also pointed out that a good luminous environment is one of the critical parameters for attaining the comfort and satisfaction of hotel guests [19]. This can be achieved by using an effective combination of natural and artificial lighting sources that create high-performance lamination space for enhancing the quality of lighting within the building [13,103]. The glare obtained from the sunlight and sky can also induce significant issues for the building occupants. Some studies attempted to report the correlation between the lighting and guest comfort and satisfaction. For example, Musa et al. [95] mentioned that good lighting quality could enhance the visual comfort of people and improve their attention, attitude, and emotion, while high direct artificial and natural sunlighting can produce a glare that causes visual discomfort. Previous studies also indicated that visual comfort affects the health of occupants and causes headaches, dry eye, and early eye fatigue, as well as reduced concentration and visual function [27]. Besides, it was reported that the wall color (i.e., rose, blue, yellow, and green) in the guestroom can improve the focus, mood, and productivity of building occupants [84,104]. Alapieti et al. [105] pointed out that the wooden exterior materials can induce positive or neutral impacts on the IEQ (i.e., humidity fluctuations of interior air).

5.5 The relationship between acoustic/noise with green hotel guests' comfort and satisfaction

Acoustic comfort is described as conductivity to sound intelligibility, sound privacy, and concentration with fewer

annoyances and distractions. A good acoustic can reduce the external noise from disrupting the indoor environments. Sound pollution can cause harmful hearing implications. Exposure to a high load of noise can result in hearing issues and permanent damage to the ears. Sound can affect the personal motivation and performance as well as the productivity and effectiveness of building occupants [58,106]. It was reported that del Puerto [107] mentioned that maximum background noise is approximately 35 dBs in an empty space, while the reverberation ranged from 0.6 to 0.7 s. Excessive noise in spaces can negatively influence the psychosocial relationships with work performance and cause many health problems, such as hearing loss and increased blood pressure [84,108]. Chronic exposure to noise can also impair reading skills and hinder cognitive functioning [109]. High noise levels can disturb the building occupants and also affect their ability to hear in the long term [110].

In hotel facilities, it is common that noise includes indoor and outdoor noises, which are generated by natural or human sources. The natural sources of noise include waves or wind noise, while human noise is caused by transportation, household appliances, or industrial facilities [111]. Poor acoustic environment can be caused by traffic or neighbors' noises [112]. This noise is generally related to the architectural design of hotel buildings. Jablonska and Trocka-Leszczynska [113] indicated the acoustic comfort of a hotel can be improved by providing a good structural design of a building with a better acoustic effect. It was also mentioned that the level of noise is usually attributed to the room surface absorption characteristics and the volume of internal space [114]. The consideration of building acoustic quality is an effective method to enhance the comfort of the building, and the hotel buildings should be concerned with the complaints of guests and improve the acoustics to meet the satisfaction of customers. For instance, absorbing materials of sound should be provided in rooms to attain better noise control to eliminate the discomfort of customers. Recent similar studies by Haghighi and Jusan [115] further reinforce the earlier concept that poor acoustic environments in spaces affect the performance of the occupants by negatively impacting communication and interaction.

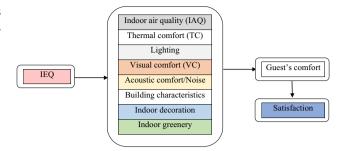
5.6 Relationship between the building characteristics and green quests' comfort and satisfaction

Building structures are constructed to provide shelter for the occupants from the external harsh environment with

the provision of high-quality interior conditions. The building protects its inhabitants from harsh environmental conditions, such as storms, earthquakes, and precipitation, as well as maintains a comfortable internal environment [116]. The indoor environment must be more comfortable than the external one. The building skeleton, such as the foundation, exterior wall, doors, windows, and roof systems, are the mediums between the indoor and outdoor environments. Its components function as barriers playing an essential role in providing the required energy to maintain a comfortable indoor comfort [117]. In addition to the aesthetic quality, a GB should have the energy properties of the wall and how the design and materials influence the indoor spaces [117]. According to Patnaik et al. [58], building characteristics, such as location, climate, design, and construction, make a significant contribution to the IEQ. MH and AH [117] assessed the effectiveness of the facade utilized in green office buildings as the interface of the ambient climate to the IEQ. It was shown that most of the IEQ parameters meet the criteria established by GBI nonresidential new construction tools despite the fact that the envelop of the building comprises different types of facades.

5.7 Relationship between the decoration and green guests' comfort and satisfaction

Due to the enormous demand for hotel aesthetics in the tourism market, hotel rooms with different decoration styles have been designed and constructed. Various decoration styles with different furniture layouts and decoration materials have been used. Therefore, the motivation on whether various decoration styles influence the subjective evaluation of the hotel [19]. To create a memorable experience in the hotel, the interpersonal relationship between the hotel environment and guests plays an essential role, as same as tangible elements, such as the guest rooms' impressive decoration [118]. Numerous studies have been conducted researches on indoor landscapes, such as the hotel IEQ transformation using various decoration environments, decoration materials, and plant configurations [13,119]. The guest's emotions are sometimes affected by tangible factors, such as layout, exterior, and interior decoration, where hospitality is emphasized on the emotional dimensions affecting the interpersonal relationship between the host and guest [95]. According to Lam et al. [120], the aesthetics of buildings include architectural and interior design as well as decoration that contribute to the attractiveness of GB. It was found that the functional benefits, such as decoration of the hotel may lead to the satisfaction of customers. The IEQ


may be intensified by other aspects of interior design, such as plants/flowers, pictures/paintings, wall decorations, and furniture, which may affect the behavior of customers.

5.8 Relationship between the indoor greenery and guests' comfort and satisfaction

The indoor green places within a building, such as indoor green walls, indoor green spaces, plants, green decorations, and natural lights through glass windows, are essential nature-based solutions (NBS) to attain sustainable and resilient buildings [121]. In the hotel building context, a green indoor physical environment is also an important component of NBS. Besides, the concept of the hotel's green physical environment includes all aspects of interactions that take place between the hotel guests and the indoor environment inside the hotel because it can be a factor in hotel service quality and performance as well as a criterion for quality assessment [122]. Previous studies indicated that indoor greenery can influence the satisfaction of occupants. Gray and Birrell [123] pointed out that bringing greenery or a natural environment inside an office building can positively affect satisfaction. Greenery in offices was found to be related to productivity and the reduction of stress. Moya et al. [124] reported that indoor greenery can act as a passive acoustic insulation system to decrease sound levels. Han et al. [125] stated that the indoor green spaces within a hotel significantly improve the perceptions of well-being and selfrated mental health of guests. Xiao et al. [126] pointed out that indoor vertical greenery can enhance visual satisfaction.

6 Conceptual model between IEQ parameters and hotel guest's satisfaction

This study investigates the relationship between the IEQ parameters with guests' comfort and satisfaction through a comprehensive literature review. It proposes a conception model on the relationship between IEQ parameters, such as IAQ, thermal comfort, lighting, visual comfort, acoustic comfort/noise, building characteristics, indoor decoration, and indoor greenery, with guests' comfort and satisfaction in green hotels, as shown in Figure 4. The proposed model can be implemented for the comprehensive evaluation of IEQ in green hotels. Therefore, it reflects the recent advancement in the field of green-certified hotel in green hotels.

Figure 4: Conceptual model on the relationship between IEQ parameters and guests' satisfaction.

7 Future prospectives and relevant solutions

Although IEQ and building occupants have been on the agenda of the hotel industry, a new perspective is placed on the features of hotel buildings that promote the comfort and satisfaction of green hotel guests. When constructing or renovating cost-effective and eco-friendly hotel buildings, it is necessary to consider the IEQ to meet the health, comfort, and satisfaction of hotel guests. Better IEQ can result in improving the health and well-being of guests and increase their intention to revisit the green hotel. A holistic approach to evaluating the IEQ, supported by cutting-edge technologies and enabled by individualized services, is required in the future to address the critical issues affecting the IEQ and provide sustainable solutions to improve the hotel building viability and support the health, comfort, and satisfaction of green hotel guests. Relevant solutions for the IEQ challenges have to be established from the initial evaluation of the hotel building to the implementation and management services for maintaining a healthier and viable indoor environment. Besides, a metric of IEQ is useful for the appropriate characterization of IEO in hotel buildings, and it is considered priority because it would allow the full assessment of IEQ performance and lead to technological development.

8 Conclusion

To provide an understanding of the relationship between IEQ performance and hotel guests' comfort and satisfaction at green hotel buildings, this research aims to explore the effects of several IEQ parameters on guest's comfort and satisfaction based on a systematic review approach. Based on the findings of the systematic review, it was found that there is a positive relationship between IEQ parameters, such as IAQ, thermal comfort, lighting, visual/view, acoustic

comfort, building characteristics, decoration, and indoor greenery with hotel guest's comfort and satisfaction. A simple conceptual model was then suggested to correlate the IEQ parameters with the comfort and satisfaction of hotel guests and create a reference for future development of extensive IEQ rating schemes. Overall, the findings of this review can provide the hotel management with a rationale for adopting various IEQ parameters to meet overall guest satisfaction. However, this study presents the indoor factors affecting the IEQ, and the indoor environment is possibly influenced by other outdoor conditions, the factors impacting thermal comfort, which are crucial in improving the comfort and satisfaction of hotel guests.

Acknowledgement: The authors would like to acknowledge the assistance and encouragement from colleagues for giving us the support and sharing their knowledge and enriching research experience. The authors also are grateful to the anonymous reviewers for their constructive comments and suggestions that enhanced the quality of this work.

Funding information: Authors state no funding involved.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and consented to its submission to the journal, reviewed all the results and approved the final version of the manuscript. HSA: data acquisition, methodology, conceptualization, writing-original draft. IMSU: guidance, critical revision, validation, resources. SA: interpretation, resources, writingreviewing and editing, validation.

Conflict of interest: Authors state no conflict of interest.

Data availability statement: Most datasets generated and analyzed in this study are in this submitted manuscript. The other datasets are available on reasonable request from the corresponding author with the attached information.

References

- Scanlon NL. An analysis and assessment of environmental oper-[1] ating practices in hotel and resort properties. Int J Hosp Manag. 2007 Sep;26(3):711-23.
- Abdulaali HS, Hanafiah MM, Usman IM, Nizam NUM, [2] Abdulhasan MJA. Review on green hotel rating tools, indoor environmental quality (IEQ) and human comfort. Int J Adv Sci Technol. 2020;29(3):128-57.
- Kim H, Oldham E. Characterizing variations in the indoor tem-[3] perature and humidity of guest rooms with an occupancy-based climate control technology. Energies. 2020 Apr;13(7):1575.

- Borowski M, Zwolińska K, Czerwiński M. An experimental study of thermal comfort and indoor air quality - a case study of a hotel building. Energies. 2022 Mar;15(6):2026.
- Ashrae. Ashrae Handbook-Fundamentals. Peachtree Corners, GA, [5] USA: ASHRAE; 2021.
- [6] Arif M, Katafygiotou M, Mazroei A, Kaushik A, Elsarrag E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. J Sustain Built Environ. 2016 Jun;5(1):1-11.
- Malaysia's Greenbuildingindex. 2023. https://www. [7] greenbuildingindex.org/
- [8] Kong Z, Utzinger DM, Freihoefer K, Steege T. The impact of interior design on visual discomfort reduction: A field study integrating lighting environments with POE survey. BuildEnviron. 2018 Jun;138:135-48.
- [9] Kong Z, Jakubiec JA. Evaluations of long-term lighting qualities for computer labs in Singapore. Build Environ. 2021 May;194(1):07689.
- [10] Wu Y, Kang J, Mu J. Assessment and simulation of evacuation in large railway stations. Build Simul. 2021 Oct;14:1553.
- [11] Zhang S, Zheng J, Wu Y. Field study of air environment perceptions and influencing factors in waiting spaces of general hospitals in winter cities. Build Environ. 2020 Oct;183:107203.
- Zhang H, Liu Z. Influence of winter natural ventilation on thermal [12] environment of university dormitories under central heating mode in severe cold regions of China. Archit Sci Rev. 2023 May;66(3):226-41.
- [13] Xu J, Li M, Huang D, Wei Y, Zhong S. A comparative study on the influence of different decoration styles on subjective evaluation of hotel indoor environment. Buildings. 2022 Oct;12(11):1777.
- [14] Abri EEWH. Green building evaluation system of Taiwan. Architecture and Building Research Institute (ABRI). Taipei, Taiwan: Ministry of the Interior; 2009.
- Lee JY, Wargocki P, Chan YH, Chen L, Tham KW. Indoor environmental quality, occupant satisfaction, and acute buildingrelated health symptoms in Green Mark-certified compared with non-certified office buildings. Indoor Air. 2019 Jan;29(1):112-29.
- Esfandiari M, Mohamed Zaid S, Ismail MA, Reza Hafezi M, Asadi I, [16] Mohammadi S, et al. Occupants' satisfaction toward indoor environment quality of platinum green-certified office buildings in tropical climate. Energies. 2021 Apr;14(8):2264.
- Ravindu S, Rameezdeen R, Zuo J, Zhou Z, Chandratilake R. Indoor [17] environment quality of green buildings: Case study of an LEED platinum certified factory in a warm humid tropical climate. Build Environ. 2015 Jan;84:105-3.
- [18] Devitofrancesco A, Belussi L, Meroni I, Scamoni F. Development of an indoor environmental quality assessment tool for the rating of offices in real working conditions. Sustainability. 2019 Mar;11(6):1645.
- [19] Piasecki M, Kostyrko K, Pykacz S. Indoor environmental quality assessment: Part 1: Choice of the indoor environmental quality sub-component models. J Build Phys. 2017 Nov;41(3):264-89.
- [20] Mui KW, Wong LT, Yu HC, Tsang TW. Development of a userfriendly indoor environmental quality (IEQ) calculator in air-conditioned offices. InIAQVEC 2016-9th International Conference on Indoor Air Quality Ventilation & Energy Conservation in
- [21] Suh M, Moon H, Han H, Ham S. Invisible and intangible, but undeniable: Role of ambient conditions in building hotel guests' loyalty. J Hosp Mark Manag. 2015 Oct;24(7):727-53.

- [22] Li H, Ye Q, Law R. Determinants of customer satisfaction in the hotel industry: An application of online review analysis. Asia Pac J Tour Res. 2013 Oct;18(7):784–802.
- [23] Liu Z, Park S. What makes a useful online review? Implication for travel product websites. Tour Manag. 2015 Apr;47:140–51.
- [24] Xie KL, Chen C, Wu S. Online consumer review factors affecting offline hotel popularity: evidence from trip-advisor. J Trav Tour Mark. 2016 Feb;33(2):211–23.
- [25] Qi M, Li X, Zhu E, Shi Y. Evaluation of perceived indoor environmental quality of five-star hotels in China: An application of online review analysis. Build Environ. 2017 Jan;111:1–9.
- [26] Buso T, Dell'Anna F, Becchio C, Bottero MC, Corgnati SP. Of comfort and cost: Examining indoor comfort conditions and guests' valuations in Italian hotel rooms. Ener Res Soc Sci. 2017 Oct:32:94–111.
- [27] Shen Z, Yang X, Liu C, Li J. Assessment of indoor environmental quality in budget hotels using text-mining method: case study of top five brands in China. Sustainability. 2021 Apr;13(8):4490.
- [28] Abdulaali H, Usman I, Hanafiah M, Abdulhasan M. Online review analysis of perceived Indoor Environmental Quality (IEQ) at former green certified hotels in Kuala Lumpur, Malaysia. J Xi'an Univ Archit Technol. 2020;XII(VI):659–70.
- [29] Snyder H. Literature review as a research methodology: An overview and quidelines. J Bus Res. 2019 Nov;104:333–9.
- [30] Chadegani A, Salehi H, Yunus M, Farhadi H, Fooladi M, Farhadi M, et al. A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Soc Sci. 2013:9:18–26.
- [31] Abdulaali HS, Usman IM, Korandeh ME, Alqawzai S, Alkhafaji S. Applicability of green building rating tools in minimizing construction waste within the Iraqi building projects. InIOP Conference Series: Earth and Environmental Science. Vol. 1167, No. 1, IOP Publishing; 2023 May, p. 012049.
- [32] Jin R, Yuan H, Chen Q. Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Res, Conser Rec. 2019 Jan;140:175–88.
- [33] Jin R, Zou PX, Piroozfar P, Wood H, Yang Y, Yan L, et al. A science mapping approach-based review of construction safety research. Saf Sci. 2019 Mar;113:285–97.
- [34] Wang Q, Waltman L. Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus. J Inform. 2016 May;10(2):347–64.
- [35] Wu P, Low SP. Project management and GBs: lessons from the rating systems. J Prof Issues Eng Educ Pract. 2010;136(2):64–70.
- [36] Gou Z, Lau SS. Contextualizing green building rating systems: Case study of Hong Kong. Habitat int. 2014 Oct;44:282–9.
- [37] Yusof ZB, Jamaludin M. Barriers of Malaysian green hotels and resorts. Procedia Soc Behav Sci. 2014 Oct;153:501–9.
- [38] Vierra S. Green building standards and certification systems. Washington, DC: National Institute of Building Sciences; 2016 Sep.
- [39] USGBC US. Green Building Council Releases Annual Top 10 Countries and Regions for LEED; 2023. Available at https://www.usgbc.org/articles/top-10-countries-leed-2023-demonstrate-green-building-movement-truly-global.
- [40] Wei W, Ramalho O, Mandin C. Indoor air quality requirements in green building certifications. Build Environ. 2015 Oct;92:10–9.
- [41] Osmani M, Glass J, Price AD. Architects' perspectives on construction waste reduction by design. Waste Manag. 2008 lan:28(7):1147–58.

- [42] Wu Z, Shen L, Ann TW, Zhang X. A comparative analysis of waste management requirements between five green building rating systems for new residential buildings. J Clean Prod. 2016 Jan;112:895–902.
- [43] Abdulaali HS, Usman IM, Al-Ruwaishedi MR. A review on sustainable and green development in the tourism and hotel industry in Malaysia. J Adv Res Dyn Con Syst. 2019 Oct;11(10):854–67.
- [44] Roumi S, Zhang F, Stewart RA, Santamouris M. Commercial building indoor environmental quality models: A critical review. Energy Build. 2022 May;263:112033.
- [45] Mallawaarachchi H, De Silva L, Rameezdeen R. Indoor environmental quality and occupants' productivity: Suggestions to enhance national green certification criteria. Built Environ Proj Asset Manag. 2016 Nov:6(5):462–77.
- [46] Steinemann A, Wargocki P, Rismanchi B. Ten questions concerning green buildings and indoor air quality. Build Environ. 2017 Feb;112:351–8.
- [47] Guida A, Pagliuca A, Rospi G. Underground spaces and indoor comfort: the case of "Sassi di Matera". Underground Spaces: Design. Eng Environ Aspects. 2008;102:1149.
- [48] LEED. Green Building 101: What is indoor environmental quality?; 2018. https://www.usgbc.org/articles/green-building-101-whatindoor-environmental-quality.
- [49] Arif M, Katafygiotou M, Mazroei A, Kaushik A, Elsarrag E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. Int. J. Sustain. Built Environ. 2016 Jun 1;5(1):1–11.
- [50] Altomonte S, Saadouni S, Schiavon S. Occupant satisfaction in LEED and BREEAM-certified office buildings. 36th International Conference on Passive and Low Energy Architecture. Cities, Buildings, People: Towards Regenerative Environments, Los Angeles, USA; 2016.
- [51] Harčárová K, Vilčeková S. Indoor environmental quality in green certified office buildings. IOP Conference Series: Materials Science and Engineering. Vol. 1252, No. 1, IOP Publishing; 2022 Sep. p. 012054.
- [52] LEED. LEED for existing buildings Operation and maintenance. Rating System and Reference Package. USGBC; 2008.
- [53] Wei W, Wargocki P, Zirngibl J, Bendžalová J, Mandin C. Review of parameters used to assess the quality of the indoor environment in Green Building certification schemes for offices and hotels. Energy and Build. 2020 Feb;209:109683.
- [54] Doan DT, Ghaffarianhoseini A, Naismith N, Zhang T, Ghaffarianhoseini A, Tookey J. A critical comparison of green building rating systems. Build Environ. 2017 Oct;123:243–60.
- [55] Chiang CM, Lai CM. A study on the comprehensive indicator of indoor environment assessment for occupants' health in Taiwan. Build Environ. 2002 Apr;37(4):387–92.
- [56] Rahman MM, Raid MM. Impacts of indoor environmental quality (IEQ) elements on residential property market: A review. Jurnal Teknologi. 2015 Mar;73(5):99–106.
- [57] Gui X, Gou Z. Association between green building certification level and post-occupancy performance: Database analysis of the National Australian Built Environment Rating System. Build Environ. 2020 Jul;179:106971.
- [58] Patnaik A, Kumar V, Saha P. Importance of indoor environmental quality in green buildings. Environmental Pollution: Select Proceedings of ICWEES-2016. Singapore: Springer; 2018. p. 53–64.

- Catalina T, Iordache V. IEQ assessment on schools in the design stage. Build Environ. 2012 Mar;49:129-40.
- [60] Gayathri L, Perera BA, Sumanarathna DM. Factors affecting the indoor environmental quality in Sri Lanka: Green vs Conventional hotel buildings. The 5th World Construction Symposium 2016: Greening Environment, Eco Innovations & Entrepreneurship, Colombo, Sri Lanka; 2016.
- Suhag U, Maan S. Exploring the perception of the green hotel guests towards green practices. OSR J Bus Manag. 2022;24(7):20-9.
- [62] Zhang F, Seshadri K, Pattupogula VP, Badrinath C, Liu S. Visitors' satisfaction towards indoor environmental quality in Australian hotels and serviced apartments. Build Environ. 2023 Oct:244:110819.
- [63] Dang-Van T. Emotional and behavioral responses of consumers toward the indoor environmental quality of green luxury hotels. J Hosp Tour Manag. 2023 Jun;55:248-58.
- [64] Kim M, Lee E, Kim SJ, Cha J, Cichy RF. Impact of indoor environmental quality on hotel guests' behaviors. Int J Hosp Tour Admin. 2023 Mar;24(2):288-313.
- Ma N, Zhang Q, Murai F, Braham WW, Samuelson HW. Learning [65] building occupants' indoor environmental quality complaints and dissatisfaction from text-mining Booking. com reviews in the United States. Build Environ. 2023 Jun;237:110319.
- [66] Takigawa T, Saijo Y, Morimoto K, Nakayama K, Shibata E, Tanaka M, et al. A longitudinal study of aldehydes and volatile organic compounds associated with subjective symptoms related to sick building syndrome in new dwellings in Japan. Sci Total Environ. 2012 Feb;417:61-7.
- Adgate JL, Goldstein BD, McKenzie LM. Potential public health [67] hazards, exposures and health effects from unconventional natural gas development. Environ Sci Technol. 2014 Aug;48(15):8307-20.
- [68] Umoh AA, Adefemi A, Ibewe KI, Etukudoh EA, Ilojianya VI, Nwokediegwu ZQ. Green architecture and energy efficiency: a review of innovative design and construction techniques. Eng Sci Technol J. 2024;5(1):185-200.
- Roelofsen P. The impact of office environments on employee performance: The design of the workplace as a strategy for productivity enhancement. J facilities Manag. 2002 Jul;1(3):247-64.
- Khan AH, Karuppayil SM. Fungal pollution of indoor environ-[70] ments and its management. Saudi J Biol Sci. 2012 Oct;19(4):405-26.
- [71] EPA. United States Environmental Protection Agency; 2023. https://www.epa.gov/.
- [72] Kanchongkittiphon W, Gaffin JM, Phipatanakul W. The indoor environment and inner-city childhood asthma. Asian Pacific journal of allergy and immunology/launched by the Allergy and Immunology Society of Thailand. 2014 Jun;32(2):103.
- [73] Patnaik A, Mishra R. Climate controlled environment and student productivity: an empirical analysis. Parikalpana: KIIT J Manag. 2014;10(1):127.
- [74] Asadi E, Costa JJ, da Silva MG. Indoor air quality audit implementation in a hotel building in Portugal. Build Environ. 2011 Aug:46(8):1617-23.
- [75] Chang H, Huh C, Legendre TS, Simpson JJ. Exploring particulate matter pollution in hotel guestrooms. Int J Contemp Hosp Manag. 2020 Apr;32(3):1131-62.
- Wu P, Fang Z, Luo H, Zheng Z, Zhu K, Yang Y, et al. Comparative analysis of indoor air quality in green office buildings of varying

- star levels based on the grey method. Build Environ. 2021 May;195:107690.
- [77] Zaki NK, Bari NA. A Study on the indoor air quality (IAQ) at primary school in Industrial Area: A case study to Sekolah Kebangsaan Pasir Gudang 3 (SKPG3). InIOP Conference Series: Earth and Environmental Science. Vol. 1067, No. 1, IOP Publishing; 2022 Oct. p. 012010.
- [78] Amaro R. Coelho SD. Pastorinho MR. Taborda-Barata L. Vaz-Patto MA, Monteiro M, et al. House dust fungal communities' characterization: a double take on the six by sixty by six (6 × 60 × 6) project. Open Eng. 2016 Nov;6(1):542-7.
- [79] ASHRAE. Thermal Environmental Conditions for Human Occupancy. Vol. 557, ANSI/ASHRAE Standard; 2017. p. 6.
- [80] Mamani T. Herrera RF. Muñoz-La Rivera F. Atencio E. Variables that affect thermal comfort and its measuring instruments: A systematic review. Sustainability. 2022 Feb;14(3):1773.
- [81] Saad SM, Shakaff AY, Saad AR, Yusof AM, Andrew AM, Zakaria A, et al. Development of indoor environmental index: Air quality index and thermal comfort index. AIP Conference Proceedings, Vol. 1808. No. 1, AIP Publishing, 2017 Mar.
- [82] Hua Y, Göçer Ö, Göçer K. Spatial mapping of occupant satisfaction and indoor environment quality in a LEED platinum campus building. Build Environ. 2014 Sep;79:124-37.
- [83] Larriva MT, Mendes AS, Forcada N. The effect of climatic conditions on occupants' thermal comfort in naturally ventilated nursing homes. Build Environ. 2022 Apr;214:108930.
- [84] Wei W, Lu JG, Galinsky AD, Wu H, Gosling SD, Rentfrow PJ, et al. Regional ambient temperature is associated with human personality. Hum Behav. 2017 Dec;1(12):890-5.
- [85] Nasir AR, Musa AR, Che-Ani AI, Utaberta N, Abdullah NA, Tawil NM. Identification of indoor environmental quality (IEQ) parameter in creating conducive learning environment for architecture studio. Proc Eng. 2011 Jan;20:354-62.
- [86] Warqocki P, Porras-Salazar JA, Contreras-Espinoza S. The relationship between classroom temperature and children's performance in school. Build Environ. 2019 Jun;157:197-204.
- [87] Ismail AR, Karagaratnan SK, Zulkifli R, Deros BM, Rahman MN. A review on thermal comfort assessment in Malaysian industries. Jurnal Teknologi. 2012;59(2):7-11.
- Al-Sakkaf A, Mohammed Abdelkader E, Mahmoud S, Bagchi A. Studying energy performance and thermal comfort conditions in heritage buildings: A case study of murabba palace. Sustainability. 2021 Nov;13(21):12250.
- [89] Sahid N, Rahim R, Hamzah B, Mulyadi R. Analysis of indoor thermal comfort of room space in the international standard hotel building. Adv Soc Sci Res J. 2019 Mar;6(2):504-23.
- [90] Vella RC, Martinez FJ, Yousif C, Gatt D. A study of thermal comfort in naturally ventilated churches in a Mediterranean climate. Energy and build. 2020 Apr;213:109843.
- [91] Hwang T, Kim JT. Effects of indoor lighting on occupants' visual comfort and eye health in a green building. Indoor Built Environ. 2011 Feb;20(1):75-90.
- Xiao H, Cai H, Li X. Non-visual effects of indoor light environment [92] on humans: A review. Physiol Behav. 2021 Jan;228:113195.
- [93] Huiberts LM, Smolders KC, de Kort YA. Non-image forming effects of illuminance level: exploring parallel effects on physiological arousal and task performance. Physiol Behav. 2016 Oct;164:129-39.
- [94] Boyce PR. Human factors in lighting. 3rd edn. New York: CRC Press; 2014.

- [95] Musa AR, Abdullah NA, Che-Ani AI, Tawil NM, Tahir MM. Indoor environmental quality for UKM architecture studio: An analysis on lighting performance. Procedia – Social and Behavioral Sciences. 60, 2012 Oct. p. 318–24.
- [96] Aries MB, Aarts MP, van Hoof J. Daylight and health: A review of the evidence and consequences for the built environment. Light Res Techn. 2015 Feb;47(1):6–27.
- [97] Salvadori G, Maccheroni D, Tambellini G. Sustainable lighting for cultural heritage: a pilot study for evaluating the exhibits' display inside historical buildings. IOP Conference Series: Materials Science and Engineering. Vol. 949, No. 1, IOP Publishing; 2020 Nov. p. 012019.
- [98] Sa'id EN, Dodo YA, Khandar MZ, Ahmad MH. Correlating visual comfort with green building index in an open plan office space. Life Sci J. 2014;11(10):908–12.
- [99] Huang L, Zhu Y, Ouyang Q, Cao B. A study on the effects of thermal, luminous, and acoustic environments on indoor environmental comfort in offices. Build Environ. 2012 Mar;49:304–9.
- [100] Yun GY, Kong HJ, Kim H, Kim JT. A field survey of visual comfort and lighting energy consumption in open plan offices. Energy and Build. 2012 Mar;46:146–51.
- [101] Serghides DK, Chatzinikola CK, Katafygiotou MC. Comparative studies of the occupants' behaviour in a university building during winter and summer time. Int J Sustainable Energy. 2015 Sep;34(8):528–51.
- [102] Binti Yusoff HNM. Guidelines on occupational safety and health for lighting at workplace. Putrajaya, Malaysia: Department of Occupational Safety and Health Malaysia; 2018.
- [103] Sharif S, Kamaruzzaman SN, Pitt M. Implementation Framework of Green Building for Malaysian Government Building: KKR2 Study. MATEC Web of Conferences. Vol. 66, EDP Sciences; 2016. p. 00095
- [104] Khan J, Liu C. The impact of colors on human memory in learning English collocations: Evidence from south Asian tertiary ESL students. Asian-Pac J Second Foreign Lang Educ. 2020 Sep;5(1):17.
- [105] Alapieti T, Mikkola R, Pasanen P, Salonen H. The influence of wooden interior materials on indoor environment: a review. Eur J Wood Wood Prod. 2020 Jul;78:617–34.
- [106] Mesene M, Meskele M, Mengistu T. The proliferation of noise pollution as an urban social problem in Wolaita Sodo city, Wolaita zone, Ethiopia. Cogent Soc Sci. 2022 Dec;8(1):2103280.
- [107] del Puerto CL. The Influence of the built environment on graduate student perceptions of graduate school experience. J Educ Built Environ. 2011 Dec;6(2):79–92.
- [108] Sztubecka M, Skiba M. Noise level arrangement in determined zones of homogenous development of green areas on the example of the spa park in Inowrocław. Open Eng. 2016;6(1):524–31.
- [109] Massonnié J, Frasseto P, Mareschal D, Kirkham NZ. Learning in noisy classrooms: Children's reports of annoyance and distraction from noise are associated with individual differences in mindwandering and switching skills. Environ Behav. 2022 Jan;54(1):58–88.
- [110] Jafari MJ, Khosrowabadi R, Khodakarim S, Mohammadian F. The effect of noise exposure on cognitive performance and brain

- activity patternsOpen Access Maced. J Med Sci. 2019 Sep;7(17):2924.
- [111] Baliatsas C, van Kamp I, Van Poll R, Yzermans J. Health effects from low-frequency noise and infrasound in the general population: Is it time to listen? A systematic review of observational studies. Sci Total Environ. 2016 Jul;557:163–9.
- [112] Yao M, Zhao B. Window opening behavior of occupants in residential buildings in Beijing. Build Environ. 2017 Nov:124:441–9
- [113] Jablonska J, Trocka-Leszczynska E. Ergonomics of sound in a hotel environment. InAdvances in Human Factors in Architecture, Sustainable Urban Planning and Infrastructure. Proceedings of the AHFE 2019 International Conference on Human Factors in Architecture, Sustainable Urban Planning and Infrastructure. Vol. 10, Washington DC, USA: Springer International Publishing; July 24–28, 2019. p. 57–65.
- [114] Payne SR. The production of a perceived restorativeness soundscape scale. Appl Acoust. 2013 Feb;74(2):255–63.
- [115] Haghighi MM, Jusan MM. Exploring students behavior on seating arrangements in learning environment: a review. Procedia Soc Behav Sci. 2012 Jan;36:287–94.
- [116] Langer S, Bekö G, Bloom E, Widheden A, Ekberg L. Indoor air quality in passive and conventional new houses in Sweden. Build Environ. 2015 Nov;93:92–100.
- [117] AS MH, AT AH. The green building index rating tool: influence of building facade on indoor environmental quality (IEQ) performance. Int Transact J Eng Manage Appl Sci. 2017;8(2);79–90.
- [118] Ariffin AA, Nameghi EN, Zakaria NI. The effect of hospitableness and servicescape on guest satisfaction in the hotel industry. Can J Admin Sci. 2013 Jun;30(2):127–37.
- [119] Han YY, Meng Y. Research on the interior design of the atrium of the Chinese hotel. Sci Res | Educ Liter. 2013;10:148.
- [120] Lam LW, Chan KW, Fong D, Lo F. Does the look matter? The impact of casino service scape on gaming customer satisfaction, intention to revisit, and desire to stay. Int J Hosp Manag. 2011 Sep;30(3):558–67.
- [121] Vujcic M, Tomicevic-Dubljevic J, Grbic M, Lecic-Tosevski D, Vukovic O, Toskovic O. Nature based solution for improving mental health and well-being in urban areas. Environ Res. 2017 Oct;158:385–92.
- [122] Trang HL, Lee JS, Han H. How do green attributes elicit proenvironmental behaviors in guests? The case of green hotels in Vietnam. J Trav Tour Mark. 2019 Jan;36(1):14–28.
- [123] Gray T, Birrell C. Are biophilic-designed site office buildings linked to health benefits and high performing occupants? Int J Environ Res Pub Health. 2014 Dec;11(12):12204–22.
- [124] Moya TA, van den Dobbelsteen A, Ottele M, Bluyssen PM. A review of green systems within the indoor environment. Indoor Built Environ. 2019 Mar;28(3):298–309.
- [125] Han H, Jongsik Y, Hyun SS. Nature based solutions and customer retention strategy: Eliciting customer well-being experiences and self-rated mental health. Int J Hosp Manag. 2020 Apr;86:102446.
- [126] Xiao L, Wu R, Huang J, Yang X, Xu A Study on the relationship between restoration benefit and visual satisfaction of LONG-PLAN's indoor vertical greenery. Buildings 2022 Aug;12(8):1267.