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Abstract: An affordable local adsorbent was physically
activated and modified to form a novel composite adsor-
bent. Similar processes were used to activate bentonite and
limestone to create this low-cost local adsorbent. Furthermore,
when compared to the inexpensive local resources, the inno-
vative composite adsorbent showed improved adsorption
capacity. Fouling brought on by sulphate-ion pollution is a
significant problem in the wastewater treatment industry.
In this work, a composite material known as Limestone and
Bentonite composite, was developed, and its capacity to
absorb sulphate ions from tainted wastewater was eval-
uated. Using the scanning electron microscope, X-ray
diffraction, Fourier transform infrared spectroscopy, and
Brunauer–Emmett–Teller theory, the chemical, elemental,
and mineralogical properties, as well as the functional
group interaction, of the limestone, bentonite, and LB com-
posite were determined. The model wastewater initially
included 900mg/L of sulphate ions; however, the experi-
ment showed that the new (LB) composite absorbed over
729mg/L of sulphate ions. Its (LB) = 81% strong elimination
effectiveness was observed. It was found that the ideal

adsorption conditions were 250 rpm, 60min, 900mg/L, and
0.5 g/50mL. Adsorption studies were carried out in batches.
With a greater determination coefficient, the Freundlich
model provides a more accurate prediction for adsorption
processes, bolstering the theory that chemisorption is the
actual adsorption process. These results demonstrate the
novel composite adsorbent (LB)’s tremendous potential for
sulphate ion absorption.

Keywords: limestone, bentonite, adsorbent, wastewater,
sulphate, physical activation

1 Introduction

The increasing concern for water pollution caused by
metallic elements is a pressing issue in separation science
and environmental remediation [1]. Metallic components
are released into the environment from various sectors
such as electroplating, metal finishing, textiles, storage bat-
teries, mining, ceramics, and glass [2]. Metallic element
ions are abundant in the organisms via which they enter
food chains and cannot be broken down, leading to serious
health issues in both humans and animals [3]. The toxicity
of −

SO4

2 , Cu2+, and Pb2+ is the primary concern among the
metallic elements of public concern [4–7]. Thus, it becomes
vital to remove these harmful metal ions from manufac-
ture waste water and natural water sources. Water con-
taminated with metallic elements has been treated using
various methods such as chemical precipitation, adsorp-
tion, solvent extraction, reverse osmosis, ion exchange, fil-
tering, and electrodialysis [8–12]. Adsorption technologies
are very efficient and cost-effective due to their low price,
straightforward construction, and robust operability. Numerous
materials, including inorganic materials [13,14], polymers
[15], activated carbon [16–18], biomaterials [19], and sorption
resins [20], have been described for the adsorption of
metallic elements. Despite this, many researchers are still
interested in the creation of effective and significantly less
expensive adsorption materials. Adsorption is a highly effi-
cient method for removing toxins from wastewater, known
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for its versatility, design simplicity, reusability, low cost, and
eco-friendliness [21]. As shown in Figure 1 [22], adsorption is
the physical adhesion of ions and molecules to the surfaces
of other molecules. Hazardous contaminants have been suc-
cessfully removed fromwastewater using a variety of adsor-
bents, including biosorbents [23], activated carbon [24],
biochar [25], clays and minerals [26], polymers and compo-
sites [27], and others with a high adsorption uptake capacity.
This is due to their accessibility, economic viability, capacity
for regeneration, eco-friendliness, and place of origin [28].
They can also be created synthetically using green materials
[29]. However, the cost of using adsorbents for wastewater
treatment must be reduced without compromising water
treatment performance [30]. The preparation of an inexpen-
sive and efficient adsorbent was the goal of this investiga-
tion. Using limestone and bentonite clay material as an
adsorbent (BL) for the removal of sulphate ions is a smart
decision because of its good efficacy and reasonable cost.
Few research has examined the ability of clay minerals to
extract sulphate ions from solutions, as far as we are
aware. The aim of this work is to remove −

SO4

2 from waste-
water by employing waste and low-cost materials as an
adsorbent. Where, clay materials like bentonite and lime-
stone are effective adsorbents (LB) for removing sulphate
ions due to their low cost and high performance, though
research on their removal from liquids is limited. The pro-
ject’s goal is to extract −

SO4

2 from wastewater by employing
a wasteful and reasonably priced adsorbent.

2 Methodology

2.1 Flowchart

Experimental work protocol is shown in Figure 1.

2.2 Adsorbate

The sulphate solution was prepared by dissolving K2SO4 in
distilled water, resulting in a concentration of 900mg/L.
The solution was kept at 25°C, pH adjusted using 0.1 M
HCl or 0.1 M NaOH, and stock solutions were used for var-
ious concentrations (100, 200, 300, 400, 500, 700, and
900mg/L) for experiments.

Equations used [31]:

= ×W C V
M . wt

At. wt
,i

(1)

× = ×C V C V ,1 1 2 2 (2)

=
−

×R%
Co Ce

Co
100. (3)

The symbols used in the equations above are defined
in Table 1.

2.3 Adsorbent

The adsorbent composites are prepared by physical activa-
tion, crushing and forming a bentonite–water composite of
limestone and bentonite by progressively adding bento-
nite, and sludge is then added. Sludge is added, and the
materials are dried for 12 h at 105.5°C. The liquid is agitated
using a magnetic stirrer for 30 min. The cure is then fil-
tered and burned using filter sheets at 800°C for 2 h. The
finished product is ground by grinding. The bentonite-to-
sludge mass ratios were 4:1, 3:1, 2:1, 1:1, 1:2, 1:3 and 1:4 [32].
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Figure 1: Procedure of the experimental work.

Table 1: Definitions of the symbols used in Equations (1)–(3)

No Symbol Definition

1 W Weight of the salt in grams,
2 V Volume of the solution in liters
3 Ci Required sulphate concentration in milligrams per

litre
4 M Salt’s molecular weight in grams
5 At Atomic weight of SO4 in grams
6 C1 Concentration of the solution (1,000 mg/L)
7 C2 Concentration of the diluted solution
8 V1 Volume that is needed
9 V2 Diluted volume
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2.4 Batch tests

The LB’s sulphate adsorption capability was evaluated
using batch adsorption studies. To achieve homogeneous
mixing, the initial concentration was 900mg/L, initial pH
was 7.5, the contact time was 60 min, the agitation speed
was 200 rpm, and the adsorbent dosage was 100mg/50 mL
at room temperature (25°C). The solution was filtered
through 0.45 μm membrane filters, and barium chromate
spectrophotometry was used to calculate sulpate content.
Magnetic stirrers were used to mix 50 mL of effluent with
100 mg of adsorbent. The sulphate concentration was
determined by assuming 100% sulphate dissolution in
Equation (1) [33].

3 Results and discussion

Figure 2 illustrates the results of batch studies conducted to
evaluate the efficacy of the adsorbent in removing sulphate
from wastewater. The initial results suggested that the
ideal mass ratio of LB was 1:2, resulting in an 81%
efficiency.

3.1 Characterization of the material

3.1.1 Brunauer–Emmett–Teller (BET) analysis

The BET theory describes the physical adsorption of gas
molecules on solid surfaces and can be used to calculate

the specific surface area of a material [34]. The specific area
of bentonite is 11.2959m2/g and limestone is 7.5571m2/g. The
fact that composite LB had a specific surface area of
22.1282m2/g demonstrates that the activation process causes
the specific surface area to increase to 42.1283m2/g. This
shows that an increase in surface area leads to a higher
adsorption capacity.

3.1.2 Fourier transform infrared spectroscopy (FTIR) test

Figure 3 shows the FTIR spectra of limestone, bentonite, BL
before adsorption, BL after adsorption process. The samples’
spectra reveal the presence of many functional groups.
These spectra showed that following the alteration process,
there was a decrease, broadening, disappearance, or devel-
opment of new peaks. The effect of alteration was evident
by the shifts in the spectra. The noticeable bands upon
modification demonstrate the produced adsorbents’ ability
to effectively remove sulphate. The silicate characteristic
bands, which are closely linked to the stretching vibrations
of Si–O, are identified by the peaks seen at 1042.89, 1036.41,
and 1029.58 cm−1. These peaks coincide with those reported
by Bulut and Tez [35] at 1,150, 1,060, and 1,030 cm−1. The
Si–O deformation bands are attributed to the peaks at
1036.41 and 1007.92 cm1, which are more in line with the
values reported at 1,033, 1,032, and 1,007 cm1. The Al–OH
bending vibration of kaolin clay type was attributed to the
peaks ranging from 912 to 937 cm1, which are more in line
with the 914–936 cm1 range [36]. The Si–O stretching of the
kaolin clay type was attributed to the peaks at 799.10,
757.78, and 797.78 cm−1. These peaks matched the ones
noted by Georges–IVO 2 at 796, 754, and 695 cm−1.
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Figure 2: Removal efficiency of LB composite [33].
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Figure 3: FTIR spectra of (a) limestone, (b) bentonite, (c) LB before, and (d) LB after sulphate adsorption.
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3.1.3 Scanning electron microscope images

The surface morphology of LB is shown in Figure 4. The LB
has a compact, homogeneous pore structure with edges,
sharp corners, and rough surfaces. Because of its shape
and enormous surface area, LB was able to absorb addi-
tional pollution. The particles in this LB are regular and
well-defined. Usually, it is lamellar in structure.

3.1.4 EDS test

The LB composite is shown in Figure 5 to incorporate ele-
ments from the S, O, and EDS spectra. The fact that the
levels of S and O significantly rise after modification shows
that the co-precipitation method of synthesis was suc-
cessful in loading the LB composite.

3.2 Results of adsorption

This experiment’s objective was to assess how effectively
the adsorbent absorbed sulphate from simulated contami-
nated wastewater. The studies that were carried out using
various methods (contact time, pH solution, starting con-
centration, agitation speed, and adsorbent dosage) are
shown in this section.

3.2.1 Equilibrium time

The time needed to reach equilibrium is an important
measurement to make during batch testing since it shows

how long it will take for contaminants to re-distribute
between the liquid and solid phases. The −

SO4

2 transfer
monitoring from the liquid phase to the LB composite is
depicted in Figure 6 for contact durations of no more than
one hour (60 min). This result was obtained with the initial
conditions of pH = 7.5, 200 rpm of agitation, 0.1 g/50 mL
of dosage, and 900mg/L of adsorbate at 25°C. The LB
removal percentages rise quickly due to the abundance
of vacant sites accessible for interaction with sulphate
molecules [37]. Nonetheless, the decline in these areas
was associated with a reduction in sorption rate, especially
after 180 min. This time frame is adequate to achieve
“equilibrium” because no discernible change in sulphate
removal occurs until 60 min, and by 180 min, the sulphate
removal efficiency surpassed 90.4% [38]. Batch testing
determines the time needed for contaminants to redistri-
bute between liquid and solid phases. Monitoring −

SO4

2

transfer from the liquid phase to the LB composite for
contact times no longer than 60 min shows a quick rise
in LB removal percentages due to vacant sites. However,
sorption rate decreases after 180min, reaching “equilibrium”

with a sulphate removal efficiency exceeding 90.4% at
180 min [39].

3.2.2 pH of the solution

Because pH has an impact on how ions behave during
adsorption, it is the primary regulator of an adsorbent’s
capacity to adsorb. Through protonation and deprotona-
tion, the basic and acidic groups of the adsorbents interact
with the surface structure. As protons are absorbed by the
binding sites of ions, a higher pH causes an increase in ion

Figure 3: (Continued)
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Figure 4: Images SEM for the (a) limestone, (b) bentonite, and (c) LB composite before adsorption and (d) LB composite after adsorption.
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adsorption. The adsorbent surface plays a role in the elim-
ination process by increasing removal efficiency through
competition between pollutants and H+ ions [35]. The
results (Figure 7) are consistent with previous research,
suggesting that pH plays a part in the elimination process.

3.2.3 Effect of initial SO4

2‒ concentrations

The efficiency of sulphate removal at various ion concen-
trations was examined in the study. According to the find-
ings, ion removal was more effective at lower starting
concentrations but became less effective at higher concentra-
tions. This is because ions cannot interact with the active
sites of the adsorbent, which becomes less favourable as
ion concentrations rise. It was also discovered that the pH
had a critical influence on the elimination process. The
starting ion concentration determined the percentage
of elimination [40]. The results (Figure 8) are consistent
with previous research, suggesting that pH plays a role
in the elimination process. The decrease in the percentage
of ions eliminated may result from the adsorbent’s
active sites’ inability to adsorb additional −

SO4

2 ions
from the solution. This suggests that monolayer ions
formed on the adsorbent’s outer surface, as the percen-
tage of removal was proportional to the starting ion
concentration.

3.2.4 Agitation speed

The study investigates the impact of agitation speed on
sulphate removal efficiency from wastewater. The results
show that the removal efficiency of −

SO4

2 increases with
agitation speed, reaching 97%. This is due to improved
ion diffusion on the adsorbent surface, leading to better
binding between adsorbent sites and sorbate ions. At
250 rpm, the best equilibrium and higher removal effi-
ciency are achieved due to the availability of functional
groups for interaction between sorbate and adsorbent.
This results (Figure 9) in faster ion removal and reduced
resistance to ion transport [41]. The reason for this is that
when rotational speed is increased, the degree of adsor-
bent aggregation decreases, increasing the total amount of
adsorbent surface area and raising the ion removal per-
centage. Additionally, −

SO4

2 ions encounter resistance as
they move through the boundary layer from the liquid
phase to the solid phase. Rotation thus accelerates the move-
ment of ions through solutions by thinning the boundary
layer and lowering the resistance to ion transport.

3.2.5 Effect of the adsorbent dosage

The study used varying adsorbent dosages in batch test-
ing to determine their impact on sulphate adsorption.

Figure 4: (Continued)
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Figure 5: EDS spectrum for the (a) limestone, (b) bentonite, and (c) LB composite before adsorption and (d) LB composite after adsorption.
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Figure 6: Sulphate removal efficiency affected by time.
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Results (Figure 10) showed that the sulphate removal
efficiency increased with increased dosages. However,

the concentration of sulphate in the solution and its
binding to the adsorbent remained constant after the
maximum rate of sulphate removal occurred at 0.5 g of
adsorbent [42].

3.3 Adsorption isotherm

The study calculates isotherms using the Langmuir and
Freundlich models to fit experimental data. The results
show a remarkable agreement between experimental and
predicted values for −

SO4

2 adsorption onto an adsorbent. The
Freundlich model has the best fit, with a higher R2 = 0.9798
when compared to other models. The general trend of
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55

79
88 88 89

97 97

0

20

40

60

80

100

120

effi
ci

en
cy

adsorbents dosage

Figure 10: Sulphate removal efficiency affected by the amounts of adsorbent dosage.

Table 2: Adsorption isotherm models SO4

2‒ on adsorbent; 25°C, pH = 6,
dosage = 0.1 g/50 mL, time = 1 h, and agitation speed = 200 rpm

Isotherm Equation No Calculated parameters SO4

2‒

Langmuir 2.2 qmax (mg/g) 44.4
b (L/mg) 0.93
R2 0.4705

Freundlich 2.3 KF (mg/g) 17.1
N 1.55
R2 0.9798
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isotherms for sulphate is favourable, as shown in Table 2
and Figure 11. Each contaminant equilibrium was deter-
mined using batch experiments.

3.4 Adsorption kinetics

The sulphate adsorption process can be modelled as a che-
mical or physical reaction using pseudo-first-order and
pseudo-second-order kinetics models. Nonlinear regres-
sion analysis was used to examine the nonlinear forms
of kinetics adsorption models. The determination coeffi-
cient (R2) for the sulphate adsorption process was found

R² = 0.4705

R² = 0.9798
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Figure 11: Adsorption isotherm models SO4

2‒ on the adsorbent at 25°C, pH = 6, dosage = 0.1 g/50mL, contact time = 1 h, and agitation speed = 200 rpm.

Table 3: Adsorption kinetics model coefficients for SO4

2‒ on adsorbent;
25°C, pH = 6, dosage = 0.1 g/50 mL, time = 1 h, and agitation speed =
200 rpm

Kinetic model Equation No Calculated
parameters

SO4

2‒

Pseudo-first-
order

2.9 k1 (min−1) 0.000167
q

e
(mg/g) 181.27

R2 0.8286
Pseudo-second-
order

2.10 k2 (g/mg min) 0.0003
q

e
(mg/g) 400

R2 0.9480
Experimental qe 400.5

R² = 0.8286

R² = 0.948
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Figure 12: Adsorption kinetics models calculated using nonlinear regression analysis for Sulfate (200 rpm, 0.1 g/50 mL, Co = 900mg/L, 25°C, contact
time = 1 h, and pH = 6).
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to be higher (R = 0.948) than the pseudo-first-order kinetics
model, indicating it follows a chemisorption process [43],
as shown in Table 3 and Figure 12.

3.5 Adsorption mechanisms

Equilibrium, thermodynamic, and kinetic investigations
were used to review the mechanism of sulphate adsorption
on synthetic adsorbents. Studies using several isotherm
models to describe the equilibrium of adsorption processes
were conducted (Langmuir, Freundlich). It is possible to
conclude that the adsorption processes on the surface of
the adsorbent were homogenous, heterogeneous, or a com-
bination of both based on the assumptions made by these
models. Additionally, they can indicate whether the
adsorption occurred chemically, physically, favourably,
or unfavourably. The rate of the adsorption processes is
mentioned in kinetic studies, which have been examined
using diffusion-based models (Boyd, intra-particle diffu-
sion, and mass-transfer models) and reaction-basedmodels
(pseudo-first-order and pseudo-second-order). The poten-
tial for instantaneous processes and the internal energy of
a system can also be represented by thermodynamic para-
meters derived from equilibrium calculations.

4 Conclusion

Limestone and bentonite, which were used to recycle waste
material, available, and without value (waste), were acti-
vated to increase their adsorption capacity, resulting in
the formation of a new composite adsorbent. The researcher
in this work used LB as an affordable adsorbent to solve
sulphate ion contamination in wastewater treatment. The
results demonstrated that LB was a more suitable adsorbent
for sulphate removal due to its low cost and high efficiency.
The procedure began with a concentration of 900mg/L, pH
of 7.5, a contact period of 60min, an agitation speed of
200 rpm, and an adsorbent dosage of 100mg/50mL. The
best mass-to-efficiency ratio, which yielded 81%, was (1:2).
BET, SEM, EDX, and Fourier transform infrared spectro-
scopy analysis of the LB showed that the specific surface
area was important for adsorption. The optimal parameters
for adsorption were determined to be 60min, 250 rpm,
900mg/L, and 0.5 g/50mL, with 97% efficiency. Adsorption
studies were conducted in a batch mode. The Freundlich
model offers a better forecast for adsorption processes,
with a higher determination coefficient, supporting the
hypothesis that chemisorption is the adsorption process.
Because of its affordability and accessibility, LB could be

used as a possible adsorbent for the removal of sulphate
from wastewater.
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