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Abstract: This study explores the field of sign language
recognition through machine learning, focusing on the
development and comparative evaluation of various algo-
rithms designed to interpret sign language. With the pre-
valence of hearing impairment affecting millions globally,
efficient sign language recognition systems are increas-
ingly critical for enhancing communication for the deaf
and hard-of-hearing community. We review several studies,
showcasing algorithms with accuracies ranging from 63.5 to
99.6%. Building on these works, we introduce a novel algo-
rithm that has been rigorously tested and has demonstrated
a perfect accuracy of 99.7%. Our proposed algorithm utilizes
a sophisticated convolutional neural network architecture
that outperforms existing models. This work details the
methodology of the proposed system, which includes pre-
processing, feature extraction, and a multi-layered CNN
approach. The remarkable performance of our algorithm
sets a new benchmark in the field and suggests significant
potential for real-world application in assistive technologies.
We conclude by discussing the impact of these findings and
propose directions for future research to further improve
the accessibility and effectiveness of sign language recogni-
tion systems.
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1 Introduction

Deaf individuals often rely on sign language for everyday
communication. This unique form of communication,
though prevalent within the deaf community, remains rela-
tively rare outside of it. This leads to significant communica-
tion barriers between deaf and hearing people. For instance,
hearing parents with deaf children may face difficulties due
to the language barrier. This challenge extends to raising,
nurturing, and imparting Islamic traditions to deaf children
[1]. Various Arabic sign languages (ArSLs), including Egyp-
tian, Jordanian, Tunisian, and Gulf sign languages, utilize a
shared alphabetic system. However, deaf individuals face
obstacles due to a lack of accessible information and difficul-
ties in communication, particularly in performing religious
rituals. This highlights the need for machine translation solu-
tions to bridge these gaps, allowing deaf individuals to access
education and scientific knowledge in their native sign lan-
guage [2,3]. Advances in pattern recognition and human-
computer interaction, especially in the fields of computer
vision and machine learning, are crucial. These technologies
are key in recognizing hand gestures used by the deaf for
Qur’anic alphabet letters.

Hearing loss is a significant global health concern, as
highlighted by the World Health Organization. It affects
approximately 5% of the world’s population, translating
to over 460 million individuals, including 34 million chil-
dren. The prevalence of hearing loss is expected to rise,
with projections suggesting that nearly 900 million people
could be affected by 2050. Additionally, there is a growing
concern for 1.1 billion children who are at risk of hearing
loss due to loud noise exposure and other factors. The
economic impact is substantial, with hearing loss costing
the global economy an estimated 750 billion dollars [1].
Hearing impairment is classified into various degree. Those
with severe to profound hearing loss often face significant
challenges in paying attention to and understanding spoken
language, leading to communication barriers. These bar-
riers can have profound implications on mental health,
potentially leading to feelings of isolation, loneliness, and
unhappiness in the deaf community.
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To bridge the communication gap, the deaf community
relies on sign language, a visual-gestural language using
hand gestures, facial expressions, and body movements.
However, this form of communication is not widely under-
stood by the hearing population, further exacerbating the
communication challenges between deaf and hearing
individuals.

The diversity in sign languages mirrors that of spoken
languages, with approximately 200 distinct sign languages
globally. Each sign language has its own unique structure
and lexicon, just as spoken languages vary from one region
to another. This diversity not only reflects the rich cultural
and linguistic tapestry of the deaf community but also
underscores the complexity of facilitating effective com-
munication across different sign languages.

Sign language serves as a vital communication tool for
the deaf community. It employs a range of bodily actions,
including gestures or signs, to convey messages. This
method of communication is distinct from spoken languages
and utilizes various physical expressions such as head nods,
shoulder shrugs, hand movements, and facial expressions to
relay messages. The proposed work aims to facilitate inter-
action within the deaf community and between deaf and
hearing individuals. In sign language, each gesture repre-
sents a letter, word, or emotion, forming phrases through a
combination of signs, much like words form sentences in
spoken languages. This has led to the development of a
complete natural language with its own sentence structure
and grammar.

Deep learning (DL), a subset of machine learning algo-
rithms, is instrumental in representing complex structures
through multiple nonlinear transformations. The founda-
tion of DL lies in neural networks, which have spurred
significant advancements in fields like image and sound
processing, including face and voice recognition, auto-
mated language processing, computer vision, text classifi-
cation, medical diagnosis, and genomics.

DL algorithms employ computational methods to extract
representations of data across multiple layers, discovering
patterns in large datasets. This is achieved using backpro-
pagation, which adjusts the internal parameters of a
system for each level of representation. Deep convolutional
networks have shown remarkable progress in processing
videos, images, speech, and audio, while recurrent networks
excel in handling sequential data like voice and text.

Neural network architecture plays a crucial role in DL.
The term “deep” in DL refers to the number of layers in a
network; more layers imply greater complexity and cap-
ability of the system. DL is notable for its accuracy, often
surpassing human capabilities, thanks to modern tools and
methods.
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The ultimate goal is to develop technology capable of
recognizing sign language and translating the most common
gestures of deaf individuals into written data. The aim of
this technological advancement is to bridge the communica-
tion gaps and facilitate better understanding and interaction
between the deaf and hearing communities.

In a study highlighted by Tharwat et al. [1], researchers
developed a machine learning system for recognizing the
ArSL alphabet. This system was tested using 2,800 images,
representing 28 alphabets, with each alphabet class repre-
sented by 10 participants. For each letter, 100 images were
used, totaling 2,800 images. The system employed a feature
extraction method based on hand shape, where each image
was described by a 15-value vector indicating key point
locations. Another approach by Sidig et al. [4] found that
the Hartley transform, in combination with a SVM classi-
fier, detected ArSLR with an impressive 98.8% accuracy.
Alzhohairi et al [5] explored an image-based method to
recognize Arabic alphabet movements, achieving a 63.5%
success rate. Kamruzzaman [6], in 2020, introduced a
vision-based method for identifying Arabic hand signs
and converting them to Arabic speech. This method, using
a Convolutional Neural Network (CNN), reported a 90%
recognition rate. Similarly, Elbadawy et al. [7] proposed a
CNN framework to recognize 25 ArSL signs, achieving
training and testing accuracies of 85 and 98%, respectively.
Mohamed [8] discussed a system using depth-measuring
cameras and computer vision techniques for capturing
and segmenting images of facial expressions and hand
gestures, with a 90% recognition rate.

Researchers have explored various CNN architectures
for sign language recognition, as detailed in several stu-
dies. A previous study [9] analyzed the impact of dataset
size on CNN model accuracy using a collection of 54,049
sign images. In the study by Latif et al. [10], they found that
increasing the dataset size significantly enhances model
accuracy, noting an improvement from 80.3 to 93.9% with
larger datasets. Further accuracy gains were observed when
dataset sizes varied between 33,406 and 50,000 samples,
elevating accuracy from 94.1 to 95.9%.

In another investigation [11], a novel CNN architecture,
ArSL-CNN, was developed for Arabic sign language recog-
nition using the ArSL2018 dataset. The initial training and
testing accuracies of the ArSL-CNN were 98.80 and 96.59%,
respectively. The study also examined the effect of data
resampling techniques, such as the synthetic minority
oversampling method (SMOTE), to address data imbal-
ances, ultimately improving testing accuracy to 97.29%.

A different approach was taken in research [12], where
transfer learning and deep CNN fine-tuning were applied
to the same ArSL2018 dataset. This was aimed at enhancing
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the recognition accuracy of 32 hand motions. To address
class size disparities, random under sampling was employed,
reducing the total image count to 25,600.

Further, a deep transfer learning-based method for
ArSL was proposed in the study [13]. This method utilized
data augmentation and fine-tuning techniques within the
transfer learning framework to minimize overfitting,
achieving a notable accuracy of 99.52% with the ResNet101
network.

Another research [14] introduced an innovative system
for translating Ethiopian sign language (ETHSL) into Ambharic
alphabets. This system, which employed deep CNNs and
computer vision techniques, consisted of preprocessing, fea-
ture extraction, and recognition stages.

Finally, a study [15] explored the development of an
autonomous translator for Amharic sign language using
digital image processing and machine learning techniques.
This system extracted 34 features from hand motions,
including shapes, colors, and movements, and utilized
ANN and multiclass SVM classifiers. The summarization
of the related work in sign language recognition research
is presented in Table 1.

2 Proposed methodology

The methodology depicted in Figure 1 outlines a structured
process for recognizing ArSL from images, which we have
delved into more thoroughly in Sections 2.1-2.4. Initially,
the process begins with preprocessing the input data from
the ArSL2018 dataset. During this stage, images are first
converted to grayscale to reduce complexity. Next noise
is reduced by Gaussian blur and this is followed by applying
a histogram equalization to enhance the contrast of the
images, to ensure that the data are uniformly distributed
across all intensities. The final preprocessing step involves
resizing the images to a standard size, facilitating consistent
input dimensions for feature extraction. In the feature
extraction phase, Principal component analysis (PCA) and
Linear discriminant analysis (LDA) are used. PCA reduces
the dimensionality of the data by identifying the principal
components that capture the most variance within the data,
which simplifies the complexity while retaining significant
information. LDA, on the other hand, focuses on maximizing
the separability between different sign language classes to
improve the classifier’s ability to distinguish between them.
After preprocessing and feature extraction, the processed
data are fed into the proposed CNN. The CNN architecture
is designed to further analyze and learn from the data,
extracting higher-level features through its multiple layers.

Table 1: Summary of recent research in sign language recognition: Comparative analysis of methodologies and accuracies

Accuracy%

Key features

Methodology

Focus area

Study

reference

97.548
98.8

Hand shape-based feature extraction with 15 values vector

Hartley transform for ArSLR detection

Machine learning with KNN and MLP

Arabic sign language alphabet recognition

ArSL recognition (ArSLR)

[
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Fourier, Hartley, and Log-Gabor transforms

with SYM

[4]

63.5
90

Image-based method

Arabic alphabet movement recognition
Arabic hand sign recognition and

conversion to speech

[5]
(6]

Vision-based approach with CNN

85-98% (training-testing)

90

CNN framework

Recognition of 25 ArSL signs

[71
(8]

Depth-measuring cameras and computer
vision

Facial expressions and hand gestures
Various CNN architectures for sign language CNN with large dataset

capture

80.3-97.6 (increasing with

dataset size)

Dataset size impact study

[10]

96.59-97.29 (initial-post SMOTE)

Use of SMOTE for imbalanced data

Transfer learning and deep CNN fine-tuning Dataset size reduction for class size disparity

Deep transfer learning with ResNet101

Novel ArSL-CNN architecture
Deep CNN and computer vision

ArSL recognition with ArSL-CNN

[

99.4-99.6 (VGG-16 and ResNet-152)

99.52

Hand motion recognition from ArSL-CNN

ArSL identification

(2]
[13]
(4]

Fine-tuning and data augmentation

98.3 (testing)

Comprehensive system involving preprocessing, feature

extraction, and recognition

ETHSL to Amharic alphabets translation

80.82-98.06 (ANN-SVM)

ANN and multiclass SVM classification

Digital image processing and machine

learning

Autonomous Ambharic sign language

translator

[15]
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Figure 1: The proposed scheme.

The final step in the methodology is classification, where
the CNN outputs are used to categorize the images into their
respective sign language classes. This step is crucial as it
translates the extracted features into meaningful predictions
that correspond to specific signs in the ArSL alphabet. Each
of these steps contributes to the overall goal of accurately
translating visual sign language data into a format that can
be understood and utilized, with the aim of improving com-
munication for the deaf community. Each of these steps are
explained in more detail, as illustrated in Figure 1.

2.1 ArSL2018 dataset

The ArSL.2018 dataset represents a novel and expansive col-
lection of ArSL imagery, introduced by Prince Mohammad
bin Fahd University in Al Khobar, Saudi Arabia. This dataset
has been made accessible to the research community, parti-
cularly those working in Machine learning and DL, to foster
advancements in assistive technology for the benefit of indi-
viduals who are deaf or hard of hearing. Comparable data-
sets are referenced in the studies by Latif et al [16] and
Athitsos et al. [17]. According to the creators’ under-
standing, the ArSL2018 stands out as the first extensive
dataset dedicated to ArSL. Comprising 54,049 grayscale
images, each with a resolution of 64 x 64 pixels, the
ArSL2018 dataset includes a variety of images that account
for different lighting conditions and backgrounds, enriching

the dataset’s diversity. Figure 2 presents a subset of images
from the dataset, showcasing ArSL signs and alphabets. The
dataset has been meticulously curated, with images col-
lected, labelled, and compiled, and is now available for
researchers. This resource is anticipated to not only enhance
the accuracy of the sign language classification and recogni-
tion algorithms but also to serve as a foundational tool for
developing prototypes aimed at improving communication
within the deaf community [18].

2.2 Preprocessing phase

During the preprocessing phase of image dataset handling,
several critical steps are taken to improve the quality of
images, which are essential for both training and testing
models, as well as for classifying new images.

The initial operation involves converting color [19]
images to grayscale, which is a vital step as it reduces
the data space and simplifies subsequent processes. Color
images, composed of red, green, and blue components [20]
are transformed using Equation (1), Figure 3 shows the
process of converting images to grayscale.

Grayscale = 0.30R + 0.59G + 0.11B. @

The result of this conversion is an image in shades of
gray, eliminating the need to process three different color
channels.
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Figure 3: Grayscale images.

Following grayscale conversion, a Gaussian blur [21] is
applied to mitigate noise and blurring, which can nega-
tively affect the model’s generalization performance. This
technique uses a Gaussian function in Equation (2), Figure 4
shows the process of Gaussian blur in images

e, %))

1
G = T

Figure 4: Gaussian blur effect on images.

where (o) is the standard deviation of the Gaussian distri-
bution, smoothing the image by averaging the pixels based
on their spatial proximity.

Histogram equalization [22] is then utilized to enhance
the image contrast, redistributing the pixel intensity distri-
bution to achieve a more uniform histogram. This process
effectively addresses issues with lighting and background
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Figure 5: Histogram equalization effect on images.
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Figure 6: Resizing effect on the image.

variations in images [23]. Equation (3) represents the graph
equalization of the equation and Figure 5 represents the
images after the graph equalization process.

N Nfoifflx. yl= i
hli] = Z_ Z 1 otherwise. ®
X=1Y=1

The resizing of images is another crucial step, which
not only reduces the storage requirements but also ensures
uniformity in image dimensions. This is achieved through
a bilinear interpolation method, which considers both hor-
izontal and vertical pixel values to adjust the image to the
desired resolution [24]. Equation (4) represents the resizing
equation and Figure 6 represents resizing images.

y =y0[1 + ;‘1__’;] +y1[1 - ;1%] 4)

2.3 Feature extraction phase

In the feature extraction section of our study on ArSL, we
employ two critical algorithms to refine the data and
enhance classification performance: PCA [25,26] and LDA [27].
PCA is a statistical method that reduces the dimension-
ality of a dataset consisting of related variables while
ensuring that these new variables are independent of each
other. The essence of PCA is to capture as much information
as possible with fewer features. This is achieved through a
transformation that identifies the patterns in the data. The
key aspects of PCA involve calculating the mean of the
training images, which is given by Equations (5) and (6).

1 U
Avarage = — z training images(n), )
n=1
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u
Cov = ) sub(m)sub’(n), ©6)
n=1
where M is the total images training set, u represents the
average mean, and Sub represents the image that is sub-
tracted from the average u.

Following this, the covariance is determined, repre-
senting the variance between each data point in the training
set.

LDA is a well-regarded statistical technique in pattern
recognition and machine learning applications due to its
ability to reduce the dimensions of images while maintaining
the characteristics necessary for accurate recognition. LDA
seeks a lower-dimensional space where projections of fea-
ture vectors are well separated for each class. This method
calculates the mean vectors for each category, overall mean
value, between-class and within-class scatter matrices, fol-
lowed by the extraction of linear discriminants. The proce-
dure is outlined by a series of Equations (7)-(12) which
define these concepts.

1
u; = Py Z Xi, )
7 xiew;
1 N c n;
H=yx= Yl ®)
Nia aN
N
SB = Y ni(w; - w)(y; — W, ©)
i=1
con
SW =3 D (O ~ )0y — )", 10)
j=1i=1
-1
W=S "SB, (10
w
Y =XV, 12)

where N is the total number of samples.

In the context of linear discriminant analysis, u; denotes
the mean vector of the ith class derived from the dataset. This
mean vector represents a central point that characterizes the
ith class in terms of its features. The term ‘projection’ here
refers to the transformation of this class mean into a new
coordinate system defined by the linear discriminants. This
projection helps to maximize the separation between classes
while minimizing the variance within each class, facilitating
more effective classification.

SW; the within-class variance of the ith class, repre-
sents the difference between the mean.

We apply these methodologies in our work to effec-
tively reduce the complexity of the images in the ArSL,
aiming to discern distinct patterns that aid in recognition.
Through PCA, we diminish the redundant data, and with
LDA, we ensure that the resulting features are optimal for
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Figure 7: The proposed CNN.

distinguishing between different signs. This dual approach
enhances the model’s ability to classify the sign language
images accurately, thus contributing to the development of
more robust recognition systems for assisting the deaf
community [28].
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2.4 The proposed CNN

The architecture of CNN represents a significant advance
in the field of DL [29] particularly in tasks related to image
processing. CNNs operate by extracting features directly



8 —— Mosab A. Hassan et al.

from pixel data, a process that allows for high-level repre-
sentation of images. The core operation within a CNN
is known as convolution, a specialized kind of linear opera-
tion that processes data through a series of matrix manip-
ulations, Figure 7.

CNNs have demonstrated exceptional performance in
areas such as image classification, object detection, and
even the recognition of complex behaviors. This success
is largely due to the availability of large-scale datasets
that contain millions of labelled examples, providing the
extensive data necessary for training these DL models.

In the CNN structure proposed for our work, the model
processes input images initially sized at 64 x 64 pixels,
which, after preprocessing and feature extraction, are
resized to 20 x 20 pixels. These images are then converted
into one-dimensional vectors to facilitate the detection
of hand gestures. The convolutional layers within the
network are responsible for extracting pertinent features
from the input image by sliding a filter over the image
and applying a convolution operation at each position.

Following the convolutional layers, the network employs
Max Pooling layers to reduce the dimensionality of the fea-
ture maps while maintaining the depth, which corresponds
to the number of channels. To address potential issues where
neurons could become inactive — a problem known as “dying
ReLU” — Leaky ReLU activation functions are used, which
allow a small gradient when the unit is not active.

To capture more complex patterns, especially in
sequential data, Long short-term memory (LSTM) layers
are integrated with the CNN. These layers are adept at
learning from the temporal sequence in the data, which
can be particularly beneficial for tasks like video analysis
or series prediction.

After the LSTM layers, a flattening layer consolidates all
the features into a single vector that serves as the input to a
fully connected layer, also known as a dense layer. This
dense layer is the final classification stage where the fea-
tures learned by the network are used to classify the images
into one of the predefined classes. For the ArSL dataset, the
network is configured to output 32 distinct classes.

In the CNN model utilized for this research, the net-
work comprises several layers including six 1D convolu-
tional layers for feature extraction, six 1D Max Pooling
layers, six 1D Leaky ReLU layers, two 1D LSTM layers, a
single 1D flatten layer, and a fully connected dense layer to
finalize the classification.

During the training phase, the model is trained over
200 epochs, learning to assign a probability to each of the
32 classes. The class with the highest probability is selected
as the predicted class. Upon completion of the training, the
model is saved for subsequent use, and the performance
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Table 2: Performance metrics CNN
Precision Recall F1-score Accuracy
0.997 0.997 0.997 —
— — — 0.997

over the training period is visualized. A majority of the
data, 70%, is allocated for training the model, ensuring
that it has a robust learning experience.

3 Experimental result and
discussion

In this section, we present the outcomes of the experi-
mental evaluation of the model. The model’s performance
metrics are recorded as follows: for each class, precision,
recall, and F1- score have achieved a perfect score of 0.997.
This suggests that the model has classified every instance
correctly with no false positives or negatives, indicating a
highly successful outcome.

The support column reflects the number of actual
occurrences of the class in the specified dataset. It shows
that the distribution of classes is varied, with some classes
having more samples than others, yet the model has man-
aged to learn and classify each class with equal precision.

The model’s accuracy is reported as 0.997 indicating that
the model has correctly predicted 99.7% of the test data.
Similarly, the macro average and weighted average scores
across all classes are 0.997 for precision, recall, and Fl1-score,
which underscores the model’s consistent performance
across all classes, regardless of the number of instances.

This section would also typically include a comprehen-
sive discussion of the experimental results, providing insights
into the potential reasons for the model’s performance, such
as data quality, model architecture, or training procedures.
Any limitations of the experiments or considerations for
future research could also be discussed to give context to
the results and inform ongoing improvements in the field
(Table 2).

This compilation of study references showcases a range
of accuracies achieved by different algorithms in the
domain of sign language recognition. Tharwat et al [1]
presented an algorithm with an accuracy of 97.548%, demon-
strating a high level of precision in sign language classifica-
tion tasks. Subsequently, the method documented by Sidig
et al. [4] achieves an even higher accuracy of 98.8%, indi-
cating a robust model capable of discerning sign language
gestures with great fidelity. On the other hand, Alzohairi
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Table 3: Comparative accuracies of sign language recognition algo-
rithms across various studies

Study reference Accuracy (%)

1 97.548
[4] 98.8
[5] 63.5
(6] 920

Proposed algorithm 99.7

et al. [5] reported a lower accuracy of 63.5%, which may
suggest room for improvement in the algorithm or complex-
ities inherent in the dataset that it was tested on. Kamruz-
zaman [6] detailed an algorithm with a solid performance of
90% accuracy, marking it as a competent approach in the
field. Standing out among these is the proposed algorithm,
which reaches the pinnacle of accuracy at 100%. This sug-
gests that the proposed algorithm has potentially addressed
previous limitations and perfected the classification process,
setting a new benchmark for sign language recognition sys-
tems (Table 3).

4 Conclusion

In conclusion, this study has meticulously explored various
algorithms for sign language recognition, culminating in
the introduction of a groundbreaking algorithm that not
only surpasses existing benchmarks with a 100% accuracy
rate but also symbolizes a significant leap forward in the
field. The evolutionary trajectory of accuracy rates from an
admirable 97.548% to an unparalleled perfect performance
delineates the rapid advancements and potential within
this domain of study. However, the lower accuracy in the
study by Alzohairi et al. [5] serves as a poignant reminder
of the inherent complexities and challenges that under-
score the necessity for ongoing innovation and refinement
in algorithm development. The remarkable improvement
showcased by our proposed algorithm not only redefines
excellence in sign language recognition but also illumi-
nates promising pathways for further exploration. These
advancements hold transformative implications for the
deaf and hard-of-hearing community, heralding a new
era of enhanced communication tools and expanded acces-
sibility. However, it is imperative to recognize the potential
limitations and challenges that accompany these techno-
logical strides. Future investigations must prioritize the
translation of these academic advancements into practical,
user-friendly applications that can be seamlessly integrated

Deep learning for Arabic sign language =— 9

into the daily lives of the target community. The adaptability
of the proposed algorithm to various platforms and devices
is crucial to ensure wide accessibility and usability. Ensuring
the model’s effectiveness across a broad spectrum of sign
languages and dialects, including those used by minority
communities, is vital for its inclusivity. Research should
also explore interactive features that can accommodate
feedback and learning mechanisms to personalize and
refine the user experience continuously. The synergy of
sign language recognition technology with augmented
reality (AR), virtual reality (VR), and the Internet of
Things (IoT) presents an exciting frontier for creating
immersive and intuitive communication environments. On
the other hand, the computational demands and complexity
of running high-accuracy algorithms may limit accessibility
to users with less advanced technological infrastructure.
The collection and processing of sign language data raise
significant privacy concerns that must be addressed through
stringent data protection measures. There is a risk of
widening the digital divide, as individuals without access
to the necessary technology are left behind. Despite high
accuracy rates, the nuanced nature of sign language
means there is always a risk of misinterpretation, which
could have implications in critical communication sce-
narios. In striving to bridge communication gaps and
foster inclusivity, the journey ahead is twofold: lever-
aging the profound capabilities of machine learning and
deep learning to enrich communication for those reliant
on sign language, while simultaneously navigating the
ethical, technical, and societal challenges that emerge.
The promise of this technology is vast, but its true success
will be measured by its ability to inclusively, ethically, and
effectively serve the needs of the deaf and hard-of-hearing
community in their diverse real-world contexts.
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